Mercurial > hg > xemacs-beta
view src/miscplay.c @ 4885:6772ce4d982b
Fix hash tables, #'member*, #'assoc*, #'eql compiler macros if bignums
lisp/ChangeLog addition:
2010-01-24 Aidan Kehoe <kehoea@parhasard.net>
Correct the semantics of #'member*, #'eql, #'assoc* in the
presence of bignums; change the integerp byte code to fixnump
semantics.
* bytecomp.el (fixnump, integerp, byte-compile-integerp):
Change the integerp byte code to fixnump; add a byte-compile
method to integerp using fixnump and numberp and avoiding a
funcall most of the time, since in the non-core contexts where
integerp is used, it's mostly distinguishing between fixnums and
things that are not numbers at all.
* byte-optimize.el (side-effect-free-fns, byte-after-unbind-ops)
(byte-compile-side-effect-and-error-free-ops):
Replace the integerp bytecode with fixnump; add fixnump to the
side-effect-free-fns. Add the other extended number type
predicates to the list in passing.
* obsolete.el (floatp-safe): Mark this as obsolete.
* cl.el (eql): Go into more detail in the docstring here. Don't
bother checking whether both arguments are numbers; one is enough,
#'equal will fail correctly if they have distinct types.
(subst): Replace a call to #'integerp (deciding whether to use
#'memq or not) with one to #'fixnump.
Delete most-positive-fixnum, most-negative-fixnum from this file;
they're now always in C, so they can't be modified from Lisp.
* cl-seq.el (member*, assoc*, rassoc*):
Correct these functions in the presence of bignums.
* cl-macs.el (cl-make-type-test): The type test for a fixnum is
now fixnump. Ditch floatp-safe, use floatp instead.
(eql): Correct this compiler macro in the presence of bignums.
(assoc*): Correct this compiler macro in the presence of bignums.
* simple.el (undo):
Change #'integerp to #'fixnump here, since we use #'delq with the
same value as ELT a few lines down.
src/ChangeLog addition:
2010-01-24 Aidan Kehoe <kehoea@parhasard.net>
Fix problems with #'eql, extended number types, and the hash table
implementation; change the Bintegerp bytecode to fixnump semantics
even on bignum builds, since #'integerp can have a fast
implementation in terms of #'fixnump for most of its extant uses,
but not vice-versa.
* lisp.h: Always #include number.h; we want the macros provided in
it, even if the various number types are not available.
* number.h (NON_FIXNUM_NUMBER_P): New macro, giving 1 when its
argument is of non-immediate number type. Equivalent to FLOATP if
WITH_NUMBER_TYPES is not defined.
* elhash.c (lisp_object_eql_equal, lisp_object_eql_hash):
Use NON_FIXNUM_NUMBER_P in these functions, instead of FLOATP,
giving more correct behaviour in the presence of the extended
number types.
* bytecode.c (Bfixnump, execute_optimized_program):
Rename Bintegerp to Bfixnump; change its semantics to reflect the
new name on builds with bignum support.
* data.c (Ffixnump, Fintegerp, syms_of_data, vars_of_data):
Always make #'fixnump available, even on non-BIGNUM builds;
always implement #'integerp in this file, even on BIGNUM builds.
Move most-positive-fixnum, most-negative-fixnum here from
number.c, so they are Lisp constants even on builds without number
types, and attempts to change or bind them error.
Use the NUMBERP and INTEGERP macros even on builds without
extended number types.
* data.c (fixnum_char_or_marker_to_int):
Rename this function from integer_char_or_marker_to_int, to better
reflect the arguments it accepts.
* number.c (Fevenp, Foddp, syms_of_number):
Never provide #'integerp in this file. Remove #'oddp,
#'evenp; their implementations are overridden by those in cl.el.
* number.c (vars_of_number):
most-positive-fixnum, most-negative-fixnum are no longer here.
man/ChangeLog addition:
2010-01-23 Aidan Kehoe <kehoea@parhasard.net>
Generally: be careful to say fixnum, not integer, when talking
about fixed-precision integral types. I'm sure I've missed
instances, both here and in the docstrings, but this is a decent
start.
* lispref/text.texi (Columns):
Document where only fixnums, not integers generally, are accepted.
(Registers):
Remove some ancient char-int confoundance here.
* lispref/strings.texi (Creating Strings, Creating Strings):
Be more exact in describing where fixnums but not integers in
general are accepted.
(Creating Strings): Use a more contemporary example to illustrate
how concat deals with lists including integers about #xFF. Delete
some obsolete documentation on same.
(Char Table Types): Document that only fixnums are accepted as
values in syntax tables.
* lispref/searching.texi (String Search, Search and Replace):
Be exact in describing where fixnums but not integers in general
are accepted.
* lispref/range-tables.texi (Range Tables): Be exact in describing
them; only fixnums are accepted to describe ranges.
* lispref/os.texi (Killing XEmacs, User Identification)
(Time of Day, Time Conversion):
Be more exact about using fixnum where only fixed-precision
integers are accepted.
* lispref/objects.texi (Integer Type): Be more exact (and
up-to-date) about the possible values for
integers. Cross-reference to documentation of the bignum extension.
(Equality Predicates):
(Range Table Type):
(Array Type): Use fixnum, not integer, to describe a
fixed-precision integer.
(Syntax Table Type): Correct some English syntax here.
* lispref/numbers.texi (Numbers): Change the phrasing here to use
fixnum to mean the fixed-precision integers normal in emacs.
Document that our terminology deviates from that of Common Lisp,
and that we're working on it.
(Compatibility Issues): Reiterate the Common Lisp versus Emacs
Lisp compatibility issues.
(Comparison of Numbers, Arithmetic Operations):
* lispref/commands.texi (Command Loop Info, Working With Events):
* lispref/buffers.texi (Modification Time):
Be more exact in describing where fixnums but not integers in
general are accepted.
| author | Aidan Kehoe <kehoea@parhasard.net> |
|---|---|
| date | Sun, 24 Jan 2010 15:21:27 +0000 |
| parents | ecf1ebac70d8 |
| children |
line wrap: on
line source
/* miscplay.c - general routines related to playing sounds ** ** Copyright (C) 1995,96 by Markus Gutschke (gutschk@math.uni-muenster.de) ** This was sawed out from version 1.3 of linuxplay.c by ** Robert Bihlmeyer <robbe@orcus.priv.at>. ** ** Parts of this code were inspired by sunplay.c, which is copyright 1989 by ** Jef Poskanzer and 1991,92 by Jamie Zawinski; c.f. sunplay.c for further ** information. ** ** Permission to use, copy, modify, and distribute this software and its ** documentation for any purpose and without fee is hereby granted, provided ** that the above copyright notice appear in all copies and that both that ** copyright notice and this permission notice appear in supporting ** documentation. This software is provided "as is" without express or ** implied warranty. */ /* Synched up with: Not in FSF. */ /* This file Mule-ized by Ben Wing, 5-15-01. */ #include <config.h> #include "lisp.h" #include "miscplay.h" #include "sound.h" #include "syssignal.h" #include "sysfile.h" /* Maintain global variable for keeping parser state information; this struct is set to zero before the first invocation of the parser. The use of a global variable prevents multiple concurrent executions of this code, but this does not happen anyways... */ enum wvState { wvMain, wvSubchunk, wvOutOfBlock, wvSkipChunk, wvSoundChunk, wvFatal, wvFatalNotify }; static union { struct { int align; enum wvState state; size_t left; Binbyte leftover[HEADERSZ]; signed long chunklength; } wave; struct { int align; int isdata; int skipping; size_t left; Binbyte leftover[HEADERSZ]; } audio; } parsestate; /* Use a global buffer as scratch-pad for possible conversions of the sampling format */ Binbyte miscplay_sndbuf[SNDBUFSZ]; /* Initialize global parser state information to zero */ void reset_parsestate() { memset(&parsestate,0,sizeof(parsestate)); } /* Verify that we could fully parse the entire soundfile; this is needed only for files in WAVE format */ int parse_wave_complete() { if (parsestate.wave.state != wvOutOfBlock && parsestate.wave.state != wvFatal) { sound_warn("Unexpected end of WAVE file"); return 0; } else return 1; } /* There is no special treatment required for parsing raw data files; we assume that these files contain data in 8bit unsigned format that has been sampled at 8kHz; there is no extra header */ static size_t parseraw(void **data,size_t *sz,void **outbuf) { int rc = *sz; *outbuf = *data; *sz = 0; return(rc); } /* Currently we cannot cope with files in VOC format; if you really need to play these files, they should be converted by using SOX */ static size_t parsevoc(void **UNUSED (data), size_t *UNUSED (sz), void **UNUSED (outbuf)) { return(0); } /* We need to perform some look-ahead in order to parse files in WAVE format; this might require re-partioning of the data segments if headers cross the boundaries between two read operations. This is done in a two-step way: first we request a certain amount of bytes... */ static int waverequire(void **data,size_t *sz,size_t rq) { int rc = 1; if (rq > HEADERSZ) { sound_warn("Header size exceeded while parsing WAVE file"); parsestate.wave.state = wvFatal; *sz = 0; return(0); } if ((rq -= parsestate.wave.left) <= 0) return(rc); if (rq > *sz) {rq = *sz; rc = 0;} memcpy(parsestate.wave.leftover+parsestate.wave.left, *data,rq); parsestate.wave.left += rq; (*(Binbyte **)data) += rq; *sz -= rq; return(rc); } /* ...and next we remove this many bytes from the buffer */ static inline void waveremove(size_t rq) { if (parsestate.wave.left <= rq) parsestate.wave.left = 0; else { parsestate.wave.left -= rq; memmove(parsestate.wave.leftover, parsestate.wave.leftover+rq, parsestate.wave.left); } return; } /* Sound files in WAVE format can contain an arbitrary amount of tagged chunks; this requires quite some effort for parsing the data */ static size_t parsewave(void **data,size_t *sz,void **outbuf) { for (;;) switch (parsestate.wave.state) { case wvMain: if (!waverequire(data,sz,20)) return(0); /* Keep compatibility with Linux 68k, etc. by not relying on byte-sex */ parsestate.wave.chunklength = parsestate.wave.leftover[16] + 256*(parsestate.wave.leftover[17] + 256*(parsestate.wave.leftover[18] + 256*parsestate.wave.leftover[19])); waveremove(20); parsestate.wave.state = wvSubchunk; break; case wvSubchunk: if (!waverequire(data,sz,parsestate.wave.chunklength)) return(0); parsestate.wave.align = parsestate.wave.chunklength < 14 ? 1 : parsestate.wave.leftover[12]; if (parsestate.wave.align != 1 && parsestate.wave.align != 2 && parsestate.wave.align != 4) { sound_warn("Illegal datawidth detected while parsing WAVE file"); parsestate.wave.state = wvFatal; } else parsestate.wave.state = wvOutOfBlock; waveremove(parsestate.wave.chunklength); break; case wvOutOfBlock: if (!waverequire(data,sz,8)) return(0); /* Keep compatibility with Linux 68k, etc. by not relying on byte-sex */ parsestate.wave.chunklength = parsestate.wave.leftover[4] + 256*(parsestate.wave.leftover[5] + 256*(parsestate.wave.leftover[6] + 256*(parsestate.wave.leftover[7] & 0x7F))); if (memcmp(parsestate.wave.leftover,"data",4)) parsestate.wave.state = wvSkipChunk; else parsestate.wave.state = wvSoundChunk; waveremove(8); break; case wvSkipChunk: if (parsestate.wave.chunklength > 0 && *sz > 0 && (signed long)*sz < (signed long)parsestate.wave.chunklength) { parsestate.wave.chunklength -= *sz; *sz = 0; } else { if (parsestate.wave.chunklength > 0 && *sz > 0) { *sz -= parsestate.wave.chunklength; (*(Binbyte **)data) += parsestate.wave.chunklength; } parsestate.wave.state = wvOutOfBlock; } break; case wvSoundChunk: { size_t count,rq; if (parsestate.wave.left) { /* handle leftover bytes from last alignment operation */ count = parsestate.wave.left; rq = HEADERSZ-count; if (rq > (size_t) parsestate.wave.chunklength) rq = parsestate.wave.chunklength; if (!waverequire(data,sz,rq)) { parsestate.wave.chunklength -= parsestate.wave.left - count; return(0); } parsestate.wave.chunklength -= rq; *outbuf = parsestate.wave.leftover; parsestate.wave.left = 0; return(rq); } if (*sz >= (size_t) parsestate.wave.chunklength) { count = parsestate.wave.chunklength; rq = 0; } else { count = *sz; count -= rq = count % parsestate.wave.align; } *outbuf = *data; (*(Binbyte **)data) += count; *sz -= count; if ((parsestate.wave.chunklength -= count) < parsestate.wave.align) { parsestate.wave.state = wvOutOfBlock; /* Some broken software (e.g. SOX) attaches junk to the end of a sound chunk; so, let's ignore this... */ if (parsestate.wave.chunklength) parsestate.wave.state = wvSkipChunk; } else if (rq) /* align data length to a multiple of datasize; keep additional data in "leftover" buffer --- this is necessary to ensure proper functioning of the sndcnv... routines */ waverequire(data,sz,rq); return(count); } case wvFatalNotify: sound_warn("Irrecoverable error while parsing WAVE file"); parsestate.wave.state = wvFatal; break; case wvFatal: default: *sz = 0; return(0); } } /* Strip the header from files in Sun/DEC audio format; this requires some extra processing as the header can be an arbitrary size and it might result in alignment errors for subsequent conversions --- thus we do some buffering, where needed */ static size_t parsesundecaudio(void **data,size_t *sz,void **outbuf) { /* There is data left over from the last invocation of this function; join it with the new data and return a sound chunk that is as big as a single entry */ if (parsestate.audio.left) { if (parsestate.audio.left + *sz > (size_t) parsestate.audio.align) { int count; memmove(parsestate.audio.leftover + parsestate.audio.left, *data, count = parsestate.audio.align - parsestate.audio.left); *outbuf = parsestate.audio.leftover; *sz -= count; *data = (*(CBinbyte **)data) + count; parsestate.audio.left = 0; return(parsestate.audio.align); } else { /* We need even more data in order to get one complete single entry! */ memmove(parsestate.audio.leftover + parsestate.audio.left, *data, *sz); *data = (*(CBinbyte **)data) + *sz; parsestate.audio.left += *sz; *sz = 0; return(0); } } /* This is the main sound chunk, strip of any extra data that does not fit the alignment requirements and move these bytes into the leftover buffer*/ if (parsestate.audio.isdata) { int rc = *sz; *outbuf = *data; if ((parsestate.audio.left = rc % parsestate.audio.align) != 0) { memmove(parsestate.audio.leftover, (CBinbyte *)*outbuf + rc - parsestate.audio.left, parsestate.audio.left); rc -= parsestate.audio.left; } *sz = 0; return(rc); } /* This is the first invocation of this function; we need to parse the header information and determine how many bytes we need to skip until the start of the sound chunk */ if (!parsestate.audio.skipping) { Binbyte *header = (Binbyte *) *data; if (*sz < 8) { sound_warn("Irrecoverable error while parsing Sun/DEC audio file"); return(0); } /* Keep compatibility with Linux 68k, etc. by not relying on byte-sex */ if (header[3]) { /* Sun audio (big endian) */ parsestate.audio.align = ((header[15] > 2)+1)*header[23]; parsestate.audio.skipping = header[7]+256*(header[6]+256* (header[5]+256*header[4])); } else { /* DEC audio (little endian) */ parsestate.audio.align = ((header[12] > 2)+1)*header[20]; parsestate.audio.skipping = header[4]+256*(header[5]+256* (header[6]+256*header[7])); }} /* We are skipping extra data that has been attached to header; most usually this will be just a comment, such as the original filename and/or the creation date. Make sure that we do not return less than one single sound sample entry to the caller; if this happens, rather decide to move those few bytes into the leftover buffer and deal with it later */ if (*sz >= (size_t) parsestate.audio.skipping) { /* Skip just the header information and return the sound chunk */ int rc = *sz - parsestate.audio.skipping; *outbuf = (CBinbyte *)*data + parsestate.audio.skipping; if ((parsestate.audio.left = rc % parsestate.audio.align) != 0) { memmove(parsestate.audio.leftover, (CBinbyte *)*outbuf + rc - parsestate.audio.left, parsestate.audio.left); rc -= parsestate.audio.left; } *sz = 0; parsestate.audio.skipping = 0; parsestate.audio.isdata++; return(rc); } else { /* Skip everything */ parsestate.audio.skipping -= *sz; return(0); } } /* If the soundcard could not be set to natively support the data format, we try to do some limited on-the-fly conversion to a different format; if no conversion is needed, though, we can output directly */ size_t sndcnvnop(void **data,size_t *sz,void **outbuf) { int rc = *sz; *outbuf = *data; *sz = 0; return(rc); } /* Convert 8 bit unsigned stereo data to 8 bit unsigned mono data */ size_t sndcnv8U_2mono(void **data,size_t *sz,void **outbuf) { REGISTER Binbyte *src; REGISTER Binbyte *dest; int rc,count; count = *sz / 2; if (count > SNDBUFSZ) { *sz -= 2*SNDBUFSZ; count = SNDBUFSZ; } else *sz = 0; rc = count; src = (Binbyte *) *data; *outbuf = dest = miscplay_sndbuf; while (count--) { *dest++ = (Binbyte)(((int)*(src) + (int)*(src+1)) / 2); src += 2; } *data = src; return(rc); } /* Convert 8 bit signed stereo data to 8 bit signed mono data */ size_t sndcnv8S_2mono(void **data,size_t *sz,void **outbuf) { REGISTER Binbyte *src; REGISTER Binbyte *dest; int rc, count; count = *sz / 2; if (count > SNDBUFSZ) { *sz -= 2*SNDBUFSZ; count = SNDBUFSZ; } else *sz = 0; rc = count; src = (Binbyte *) *data; *outbuf = dest = miscplay_sndbuf; while (count--) { *dest++ = (Binbyte)(((int)*((SBinbyte *)(src)) + (int)*((SBinbyte *)(src+1))) / 2); src += 2; } *data = src; return(rc); } /* Convert 8 bit signed stereo data to 8 bit unsigned mono data */ size_t sndcnv2monounsigned(void **data,size_t *sz,void **outbuf) { REGISTER Binbyte *src; REGISTER Binbyte *dest; int rc,count; count = *sz / 2; if (count > SNDBUFSZ) { *sz -= 2*SNDBUFSZ; count = SNDBUFSZ; } else *sz = 0; rc = count; src = (Binbyte *) *data; *outbuf = dest = miscplay_sndbuf; while (count--) { *dest++ = (Binbyte)(((int)*((SBinbyte *)(src)) + (int)*((SBinbyte *)(src+1))) / 2) ^ 0x80; src += 2; } *data = src; return(rc); } /* Convert 8 bit signed mono data to 8 bit unsigned mono data */ size_t sndcnv2unsigned(void **data,size_t *sz,void **outbuf) { REGISTER Binbyte *src; REGISTER Binbyte *dest; int rc,count; count = *sz; if (count > SNDBUFSZ) { *sz -= SNDBUFSZ; count = SNDBUFSZ; } else *sz = 0; rc = count; src = (Binbyte *) *data; *outbuf = dest = miscplay_sndbuf; while (count--) *dest++ = *(src)++ ^ 0x80; *data = src; return(rc); } /* Convert a number in the range -32768..32767 to an 8 bit ulaw encoded number --- I hope, I got this conversion right :-) */ static inline SBinbyte int2ulaw(int i) { /* Lookup table for fast calculation of number of bits that need shifting*/ static short int t_bits[128] = { 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7}; REGISTER int bits,logi; /* unrolling this condition (hopefully) improves execution speed */ if (i < 0) { if ((i = (132-i)) > 0x7FFF) i = 0x7FFF; logi = (i >> ((bits = t_bits[i/256])+4)); return((bits << 4 | logi) ^ 0x7F); } else { if ((i = 132+i) > 0x7FFF) i = 0x7FFF; logi = (i >> ((bits = t_bits[i/256])+4)); return(~(bits << 4 | logi)); } } /* Convert from 8 bit ulaw mono to 8 bit linear mono */ size_t sndcnvULaw_2linear(void **data,size_t *sz,void **outbuf) { /* conversion table stolen from Linux's ulaw.h */ static Binbyte ulaw_dsp[] = { 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 113, 114, 114, 115, 115, 116, 116, 117, 117, 118, 118, 119, 119, 120, 120, 121, 121, 121, 122, 122, 122, 122, 123, 123, 123, 123, 124, 124, 124, 124, 125, 125, 125, 125, 125, 125, 126, 126, 126, 126, 126, 126, 126, 126, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 253, 249, 245, 241, 237, 233, 229, 225, 221, 217, 213, 209, 205, 201, 197, 193, 190, 188, 186, 184, 182, 180, 178, 176, 174, 172, 170, 168, 166, 164, 162, 160, 158, 157, 156, 155, 154, 153, 152, 151, 150, 149, 148, 147, 146, 145, 144, 143, 143, 142, 142, 141, 141, 140, 140, 139, 139, 138, 138, 137, 137, 136, 136, 135, 135, 135, 134, 134, 134, 134, 133, 133, 133, 133, 132, 132, 132, 132, 131, 131, 131, 131, 131, 131, 130, 130, 130, 130, 130, 130, 130, 130, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, }; Binbyte *p=(Binbyte *)*data; *outbuf = *data; while ((*sz)--) { *p = ulaw_dsp[*p]; p++; } *sz = 0; *data = p; return p - (Binbyte *)*outbuf; } /* Convert 8 bit ulaw stereo data to 8 bit ulaw mono data */ size_t sndcnvULaw_2mono(void **data,size_t *sz,void **outbuf) { static short int ulaw2int[256] = { /* Precomputed lookup table for conversion from ulaw to 15 bit signed */ -16062,-15550,-15038,-14526,-14014,-13502,-12990,-12478, -11966,-11454,-10942,-10430, -9918, -9406, -8894, -8382, -7998, -7742, -7486, -7230, -6974, -6718, -6462, -6206, -5950, -5694, -5438, -5182, -4926, -4670, -4414, -4158, -3966, -3838, -3710, -3582, -3454, -3326, -3198, -3070, -2942, -2814, -2686, -2558, -2430, -2302, -2174, -2046, -1950, -1886, -1822, -1758, -1694, -1630, -1566, -1502, -1438, -1374, -1310, -1246, -1182, -1118, -1054, -990, -942, -910, -878, -846, -814, -782, -750, -718, -686, -654, -622, -590, -558, -526, -494, -462, -438, -422, -406, -390, -374, -358, -342, -326, -310, -294, -278, -262, -246, -230, -214, -198, -186, -178, -170, -162, -154, -146, -138, -130, -122, -114, -106, -98, -90, -82, -74, -66, -60, -56, -52, -48, -44, -40, -36, -32, -28, -24, -20, -16, -12, -8, -4, +0, +16062,+15550,+15038,+14526,+14014,+13502,+12990,+12478, +11966,+11454,+10942,+10430, +9918, +9406, +8894, +8382, +7998, +7742, +7486, +7230, +6974, +6718, +6462, +6206, +5950, +5694, +5438, +5182, +4926, +4670, +4414, +4158, +3966, +3838, +3710, +3582, +3454, +3326, +3198, +3070, +2942, +2814, +2686, +2558, +2430, +2302, +2174, +2046, +1950, +1886, +1822, +1758, +1694, +1630, +1566, +1502, +1438, +1374, +1310, +1246, +1182, +1118, +1054, +990, +942, +910, +878, +846, +814, +782, +750, +718, +686, +654, +622, +590, +558, +526, +494, +462, +438, +422, +406, +390, +374, +358, +342, +326, +310, +294, +278, +262, +246, +230, +214, +198, +186, +178, +170, +162, +154, +146, +138, +130, +122, +114, +106, +98, +90, +82, +74, +66, +60, +56, +52, +48, +44, +40, +36, +32, +28, +24, +20, +16, +12, +8, +4, +0}; REGISTER Binbyte *src; REGISTER Binbyte *dest; int rc,count; count = *sz / 2; if (count > SNDBUFSZ) { *sz -= 2*SNDBUFSZ; count = SNDBUFSZ; } else *sz = 0; rc = count; src = (Binbyte *) *data; *outbuf = dest = miscplay_sndbuf; while (count--) { /* it is not possible to directly interpolate between two ulaw encoded data bytes, thus we need to convert to linear format first and later we convert back to ulaw format */ *dest++ = int2ulaw(ulaw2int[*src] + ulaw2int[*(src+1)]); src += 2; } *data = src; return(rc); } size_t sndcnv16swap(void **data,size_t *sz,void **outbuf) { size_t cnt = *sz / 2; unsigned short *p; *outbuf = *data; p = (unsigned short *) *outbuf; while (cnt--) { *p = ((*p & 0x00ff) << 8) | (*p >> 8); p++; } *data = p; cnt = *sz; *sz = 0; return cnt; } /* Convert 16 bit little endian signed stereo data to 16 bit little endian signed mono data */ size_t sndcnv16_2monoLE(void **data,size_t *sz,void **outbuf) { REGISTER Binbyte *src; REGISTER Binbyte *dest; int rc,count; signed short i; count = *sz / 2; if (count > SNDBUFSZ) { *sz -= 2*SNDBUFSZ; count = SNDBUFSZ; } else *sz = 0; rc = count; src = (Binbyte *) *data; *outbuf = dest = miscplay_sndbuf; for (count /= 2; count--; ) { i = ((int)(src[0]) + 256*(int)(src[1]) + (int)(src[2]) + 256*(int)(src[3])) / 2; src += 4; *dest++ = (Binbyte)(i & 0xFF); *dest++ = (Binbyte)((i / 256) & 0xFF); } *data = src; return(rc); } /* Convert 16 bit big endian signed stereo data to 16 bit big endian signed mono data */ size_t sndcnv16_2monoBE(void **data,size_t *sz,void **outbuf) { REGISTER Binbyte *src; REGISTER Binbyte *dest; int rc,count; signed short i; count = *sz / 2; if (count > SNDBUFSZ) { *sz -= 2*SNDBUFSZ; count = SNDBUFSZ; } else *sz = 0; rc = count; src = (Binbyte *) *data; *outbuf = dest = miscplay_sndbuf; for (count /= 2; count--; ) { i = ((int)(src[1]) + 256*(int)(src[0]) + (int)(src[3]) + 256*(int)(src[2])) / 2; src += 4; *dest++ = (Binbyte)((i / 256) & 0xFF); *dest++ = (Binbyte)(i & 0xFF); } *data = src; return(rc); } /* Convert 16 bit little endian signed data to 8 bit unsigned data */ size_t sndcnv2byteLE(void **data,size_t *sz,void **outbuf) { REGISTER Binbyte *src; REGISTER Binbyte *dest; int rc,count; count = *sz / 2; if (count > SNDBUFSZ) { *sz -= 2*SNDBUFSZ; count = SNDBUFSZ; } else *sz = 0; rc = count; src = (Binbyte *) *data; *outbuf = dest = miscplay_sndbuf; while (count--) { *dest++ = (Binbyte)(((SBinbyte *)src)[1] ^ (SBinbyte)0x80); src += 2; } *data = src; return(rc); } /* Convert 16 bit big endian signed data to 8 bit unsigned data */ size_t sndcnv2byteBE(void **data,size_t *sz,void **outbuf) { REGISTER Binbyte *src; REGISTER Binbyte *dest; int rc,count; count = *sz / 2; if (count > SNDBUFSZ) { *sz -= 2*SNDBUFSZ; count = SNDBUFSZ; } else *sz = 0; rc = count; src = (Binbyte *) *data; *outbuf = dest = miscplay_sndbuf; while (count--) { *dest++ = (Binbyte)(((SBinbyte *)src)[0] ^ (SBinbyte)0x80); src += 2; } *data = src; return(rc); } /* Convert 16 bit little endian signed stereo data to 8 bit unsigned mono data */ size_t sndcnv2monobyteLE(void **data,size_t *sz,void **outbuf) { REGISTER Binbyte *src; REGISTER Binbyte *dest; int rc,count; count = *sz / 4; if (count > SNDBUFSZ) { *sz -= 4*SNDBUFSZ; count = SNDBUFSZ; } else *sz = 0; rc = count; src = (Binbyte *) *data; *outbuf = dest = miscplay_sndbuf; while (count--) { *dest++ = (Binbyte)(((int)((SBinbyte *)src)[1] + (int)((SBinbyte *)src)[3]) / 2 ^ 0x80); src += 4; } *data = src; return(rc); } /* Convert 16 bit big endian signed stereo data to 8 bit unsigned mono data */ size_t sndcnv2monobyteBE(void **data,size_t *sz,void **outbuf) { REGISTER Binbyte *src; REGISTER Binbyte *dest; int rc,count; count = *sz / 4; if (count > SNDBUFSZ) { *sz -= 4*SNDBUFSZ; count = SNDBUFSZ; } else *sz = 0; rc = count; src = (Binbyte *) *data; *outbuf = dest = miscplay_sndbuf; while (count--) { *dest++ = (Binbyte)(((int)((SBinbyte *)src)[0] + (int)((SBinbyte *)src)[2]) / 2 ^ 0x80); src += 4; } *data = src; return(rc); } /* Look at the header of the sound file and try to determine the format; we can recognize files in VOC, WAVE, and, Sun/DEC-audio format--- everything else is assumed to be raw 8 bit unsigned data sampled at 8kHz */ fmtType analyze_format(Binbyte *format,int *fmt,int *speed, int *tracks, size_t (**parsesndfile)(void **,size_t *sz, void **)) { /* Keep compatibility with Linux 68k, etc. by not relying on byte-sex */ if (!memcmp(format,"Creative Voice File\x1A\x1A\x00",22) && (format[22]+256*format[23]) == ((0x1233-format[24]-256*format[25])&0xFFFF)) { /* VOC */ *fmt = AFMT_U8; *speed = 8000; *tracks = 2; *parsesndfile = parsevoc; return(fmtVoc); } else if (!memcmp(format,"RIFF",4) && !memcmp(format+8,"WAVEfmt ",8)) { /* WAVE */ if (memcmp(format+20,"\001\000\001"/* PCM mono */,4) && memcmp(format+20,"\001\000\002"/* PCM stereo */,4)) return(fmtIllegal); *fmt = (format[32]/(*tracks = format[22])) == 1 ? AFMT_U8 : AFMT_S16_LE; /* Keep compatibility with Linux 68k, etc. by not relying on byte-sex */ *speed = format[24]+256*(format[25]+256* (format[26]+256*format[27])); *parsesndfile = parsewave; return(fmtWave); } else if (!memcmp(format,".snd",4)) { /* Sun Audio (big endian) */ if (format[7]+256*(format[6]+256*(format[5]+256*format[4])) < 24) { *fmt = AFMT_MU_LAW; *speed = 8000; *tracks = 1; *parsesndfile = parsesundecaudio; return(fmtSunAudio); } if (!memcmp(format+12,"\000\000\000\001",4)) *fmt = AFMT_MU_LAW; else if (!memcmp(format+12,"\000\000\000\002",4)) *fmt = AFMT_S8; else if (!memcmp(format+12,"\000\000\000\003",4)) *fmt = AFMT_S16_BE; else return(fmtIllegal); /* Keep compatibility with Linux 68k, etc. by not relying on byte-sex */ *speed = format[19]+256*(format[18]+256* (format[17]+256*format[16])); *tracks = format[23]; *parsesndfile = parsesundecaudio; return(fmtSunAudio); } else if (!memcmp(format,".sd",4)) { /* DEC Audio (little endian) */ if (format[4]+256*(format[5]+256*(format[6]+256*format[7])) < 24) { *fmt = AFMT_MU_LAW; *speed = 8000; *tracks = 1; *parsesndfile = parsesundecaudio; return(fmtSunAudio); } if (!memcmp(format+12,"\001\000\000",4)) *fmt = AFMT_MU_LAW; else if (!memcmp(format+12,"\002\000\000",4)) *fmt = AFMT_S8; else if (!memcmp(format+12,"\003\000\000",4)) *fmt = AFMT_S16_LE; else return(fmtIllegal); /* Keep compatibility with Linux 68k, etc. by not relying on byte-sex */ *speed = format[16]+256*(format[17]+256* (format[18]+256*format[19])); *tracks = format[20]; *parsesndfile = parsesundecaudio; return(fmtSunAudio); } else { *fmt = AFMT_U8; *speed = 8000; *tracks = 1; *parsesndfile = parseraw; return(fmtRaw); } }
