Mercurial > hg > xemacs-beta
view src/cmds.c @ 4885:6772ce4d982b
Fix hash tables, #'member*, #'assoc*, #'eql compiler macros if bignums
lisp/ChangeLog addition:
2010-01-24 Aidan Kehoe <kehoea@parhasard.net>
Correct the semantics of #'member*, #'eql, #'assoc* in the
presence of bignums; change the integerp byte code to fixnump
semantics.
* bytecomp.el (fixnump, integerp, byte-compile-integerp):
Change the integerp byte code to fixnump; add a byte-compile
method to integerp using fixnump and numberp and avoiding a
funcall most of the time, since in the non-core contexts where
integerp is used, it's mostly distinguishing between fixnums and
things that are not numbers at all.
* byte-optimize.el (side-effect-free-fns, byte-after-unbind-ops)
(byte-compile-side-effect-and-error-free-ops):
Replace the integerp bytecode with fixnump; add fixnump to the
side-effect-free-fns. Add the other extended number type
predicates to the list in passing.
* obsolete.el (floatp-safe): Mark this as obsolete.
* cl.el (eql): Go into more detail in the docstring here. Don't
bother checking whether both arguments are numbers; one is enough,
#'equal will fail correctly if they have distinct types.
(subst): Replace a call to #'integerp (deciding whether to use
#'memq or not) with one to #'fixnump.
Delete most-positive-fixnum, most-negative-fixnum from this file;
they're now always in C, so they can't be modified from Lisp.
* cl-seq.el (member*, assoc*, rassoc*):
Correct these functions in the presence of bignums.
* cl-macs.el (cl-make-type-test): The type test for a fixnum is
now fixnump. Ditch floatp-safe, use floatp instead.
(eql): Correct this compiler macro in the presence of bignums.
(assoc*): Correct this compiler macro in the presence of bignums.
* simple.el (undo):
Change #'integerp to #'fixnump here, since we use #'delq with the
same value as ELT a few lines down.
src/ChangeLog addition:
2010-01-24 Aidan Kehoe <kehoea@parhasard.net>
Fix problems with #'eql, extended number types, and the hash table
implementation; change the Bintegerp bytecode to fixnump semantics
even on bignum builds, since #'integerp can have a fast
implementation in terms of #'fixnump for most of its extant uses,
but not vice-versa.
* lisp.h: Always #include number.h; we want the macros provided in
it, even if the various number types are not available.
* number.h (NON_FIXNUM_NUMBER_P): New macro, giving 1 when its
argument is of non-immediate number type. Equivalent to FLOATP if
WITH_NUMBER_TYPES is not defined.
* elhash.c (lisp_object_eql_equal, lisp_object_eql_hash):
Use NON_FIXNUM_NUMBER_P in these functions, instead of FLOATP,
giving more correct behaviour in the presence of the extended
number types.
* bytecode.c (Bfixnump, execute_optimized_program):
Rename Bintegerp to Bfixnump; change its semantics to reflect the
new name on builds with bignum support.
* data.c (Ffixnump, Fintegerp, syms_of_data, vars_of_data):
Always make #'fixnump available, even on non-BIGNUM builds;
always implement #'integerp in this file, even on BIGNUM builds.
Move most-positive-fixnum, most-negative-fixnum here from
number.c, so they are Lisp constants even on builds without number
types, and attempts to change or bind them error.
Use the NUMBERP and INTEGERP macros even on builds without
extended number types.
* data.c (fixnum_char_or_marker_to_int):
Rename this function from integer_char_or_marker_to_int, to better
reflect the arguments it accepts.
* number.c (Fevenp, Foddp, syms_of_number):
Never provide #'integerp in this file. Remove #'oddp,
#'evenp; their implementations are overridden by those in cl.el.
* number.c (vars_of_number):
most-positive-fixnum, most-negative-fixnum are no longer here.
man/ChangeLog addition:
2010-01-23 Aidan Kehoe <kehoea@parhasard.net>
Generally: be careful to say fixnum, not integer, when talking
about fixed-precision integral types. I'm sure I've missed
instances, both here and in the docstrings, but this is a decent
start.
* lispref/text.texi (Columns):
Document where only fixnums, not integers generally, are accepted.
(Registers):
Remove some ancient char-int confoundance here.
* lispref/strings.texi (Creating Strings, Creating Strings):
Be more exact in describing where fixnums but not integers in
general are accepted.
(Creating Strings): Use a more contemporary example to illustrate
how concat deals with lists including integers about #xFF. Delete
some obsolete documentation on same.
(Char Table Types): Document that only fixnums are accepted as
values in syntax tables.
* lispref/searching.texi (String Search, Search and Replace):
Be exact in describing where fixnums but not integers in general
are accepted.
* lispref/range-tables.texi (Range Tables): Be exact in describing
them; only fixnums are accepted to describe ranges.
* lispref/os.texi (Killing XEmacs, User Identification)
(Time of Day, Time Conversion):
Be more exact about using fixnum where only fixed-precision
integers are accepted.
* lispref/objects.texi (Integer Type): Be more exact (and
up-to-date) about the possible values for
integers. Cross-reference to documentation of the bignum extension.
(Equality Predicates):
(Range Table Type):
(Array Type): Use fixnum, not integer, to describe a
fixed-precision integer.
(Syntax Table Type): Correct some English syntax here.
* lispref/numbers.texi (Numbers): Change the phrasing here to use
fixnum to mean the fixed-precision integers normal in emacs.
Document that our terminology deviates from that of Common Lisp,
and that we're working on it.
(Compatibility Issues): Reiterate the Common Lisp versus Emacs
Lisp compatibility issues.
(Comparison of Numbers, Arithmetic Operations):
* lispref/commands.texi (Command Loop Info, Working With Events):
* lispref/buffers.texi (Modification Time):
Be more exact in describing where fixnums but not integers in
general are accepted.
| author | Aidan Kehoe <kehoea@parhasard.net> |
|---|---|
| date | Sun, 24 Jan 2010 15:21:27 +0000 |
| parents | 91950589598c |
| children | c096d8051f89 308d34e9f07d |
line wrap: on
line source
/* Simple built-in editing commands. Copyright (C) 1985, 1992, 1993, 1994, 1995 Free Software Foundation, Inc. Copyright (C) 2002 Ben Wing. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: Mule 2.0, FSF 19.30. */ #include <config.h> #include "lisp.h" #include "commands.h" #include "buffer.h" #include "extents.h" #include "syntax.h" #include "insdel.h" Lisp_Object Qkill_forward_chars; Lisp_Object Qself_insert_command; Lisp_Object Qno_self_insert; Lisp_Object Vblink_paren_function; /* A possible value for a buffer's overwrite-mode variable. */ Lisp_Object Qoverwrite_mode_binary; /* Non-nil means put this face on the next self-inserting character. */ Lisp_Object Vself_insert_face; /* This is the command that set up Vself_insert_face. */ Lisp_Object Vself_insert_face_command; /* A char-table for characters which may invoke auto-filling. */ Lisp_Object Vauto_fill_chars; DEFUN ("forward-char", Fforward_char, 0, 2, "_p", /* Move point right COUNT characters (left if COUNT is negative). On attempt to pass end of buffer, stop and signal `end-of-buffer'. On attempt to pass beginning of buffer, stop and signal `beginning-of-buffer'. On reaching end of buffer, stop and signal error. The characters that are moved over may be added to the current selection \(i.e. active region) if the Shift key is held down, a motion key is used to invoke this command, and `shifted-motion-keys-select-region' is t; see the documentation for this variable for more details. */ (count, buffer)) { struct buffer *buf = decode_buffer (buffer, 1); EMACS_INT n; if (NILP (count)) n = 1; else { CHECK_INT (count); n = XINT (count); } /* This used to just set point to point + XINT (count), and then check to see if it was within boundaries. But now that SET_PT can potentially do a lot of stuff (calling entering and exiting hooks, etcetera), that's not a good approach. So we validate the proposed position, then set point. */ { Charbpos new_point = BUF_PT (buf) + n; if (new_point < BUF_BEGV (buf)) { BUF_SET_PT (buf, BUF_BEGV (buf)); Fsignal (Qbeginning_of_buffer, Qnil); return Qnil; } if (new_point > BUF_ZV (buf)) { BUF_SET_PT (buf, BUF_ZV (buf)); Fsignal (Qend_of_buffer, Qnil); return Qnil; } BUF_SET_PT (buf, new_point); } return Qnil; } DEFUN ("backward-char", Fbackward_char, 0, 2, "_p", /* Move point left COUNT characters (right if COUNT is negative). On attempt to pass end of buffer, stop and signal `end-of-buffer'. On attempt to pass beginning of buffer, stop and signal `beginning-of-buffer'. The characters that are moved over may be added to the current selection \(i.e. active region) if the Shift key is held down, a motion key is used to invoke this command, and `shifted-motion-keys-select-region' is t; see the documentation for this variable for more details. */ (count, buffer)) { if (NILP (count)) count = make_int (-1); else { CHECK_INT (count); count = make_int (- XINT (count)); } return Fforward_char (count, buffer); } DEFUN ("forward-line", Fforward_line, 0, 2, "_p", /* Move COUNT lines forward (backward if COUNT is negative). Precisely, if point is on line I, move to the start of line I + COUNT. If there isn't room, go as far as possible (no error). Returns the count of lines left to move. If moving forward, that is COUNT - number of lines moved; if backward, COUNT + number moved. \(Note that if COUNT is negative, the return will be non-positive.) With positive COUNT, a non-empty line at the end counts as one line successfully moved (for the return value). If BUFFER is nil, the current buffer is assumed. The characters that are moved over may be added to the current selection \(i.e. active region) if the Shift key is held down, a motion key is used to invoke this command, and `shifted-motion-keys-select-region' is t; see the documentation for this variable for more details. */ (count, buffer)) { struct buffer *buf = decode_buffer (buffer, 1); Charbpos pos2 = BUF_PT (buf); Charbpos pos; EMACS_INT n, shortage, negp; if (NILP (count)) n = 1; else { CHECK_INT (count); n = XINT (count); } negp = n <= 0; pos = scan_buffer (buf, '\n', pos2, 0, n - negp, &shortage, 1); if (shortage > 0 && (negp || (BUF_ZV (buf) > BUF_BEGV (buf) && pos != pos2 && BUF_FETCH_CHAR (buf, pos - 1) != '\n'))) shortage--; BUF_SET_PT (buf, pos); return make_int (negp ? - shortage : shortage); } DEFUN ("point-at-bol", Fpoint_at_bol, 0, 2, 0, /* Return the character position of the first character on the current line. With argument COUNT not nil or 1, move forward COUNT - 1 lines first. If scan reaches end of buffer, return that position. This function does not move point. */ (count, buffer)) { struct buffer *b = decode_buffer (buffer, 1); REGISTER int orig, end; buffer = wrap_buffer (b); if (NILP (count)) count = make_int (0); else { CHECK_INT (count); count = make_int (XINT (count) - 1); } orig = BUF_PT (b); Fforward_line (count, buffer); end = BUF_PT (b); BUF_SET_PT (b, orig); return make_int (end); } DEFUN ("beginning-of-line", Fbeginning_of_line, 0, 2, "_p", /* Move point to beginning of current line. With argument COUNT not nil or 1, move forward COUNT - 1 lines first. If scan reaches end of buffer, stop there without error. If BUFFER is nil, the current buffer is assumed. The characters that are moved over may be added to the current selection \(i.e. active region) if the Shift key is held down, a motion key is used to invoke this command, and `shifted-motion-keys-select-region' is t; see the documentation for this variable for more details. */ (count, buffer)) { struct buffer *b = decode_buffer (buffer, 1); BUF_SET_PT (b, XINT (Fpoint_at_bol (count, buffer))); return Qnil; } DEFUN ("point-at-eol", Fpoint_at_eol, 0, 2, 0, /* Return the character position of the last character on the current line. With argument COUNT not nil or 1, move forward COUNT - 1 lines first. If scan reaches end of buffer, return that position. This function does not move point. */ (count, buffer)) { struct buffer *buf = decode_buffer (buffer, 1); EMACS_INT n; if (NILP (count)) n = 1; else { CHECK_INT (count); n = XINT (count); } return make_int (find_before_next_newline (buf, BUF_PT (buf), 0, n - (n <= 0))); } DEFUN ("end-of-line", Fend_of_line, 0, 2, "_p", /* Move point to end of current line. With argument COUNT not nil or 1, move forward COUNT - 1 lines first. If scan reaches end of buffer, stop there without error. If BUFFER is nil, the current buffer is assumed. The characters that are moved over may be added to the current selection \(i.e. active region) if the Shift key is held down, a motion key is used to invoke this command, and `shifted-motion-keys-select-region' is t; see the documentation for this variable for more details. */ (count, buffer)) { struct buffer *b = decode_buffer (buffer, 1); BUF_SET_PT (b, XINT (Fpoint_at_eol (count, buffer))); return Qnil; } DEFUN ("delete-char", Fdelete_char, 0, 2, "*p\nP", /* Delete the following COUNT characters (previous, with negative COUNT). Optional second arg KILLP non-nil means kill instead (save in kill ring). Interactively, COUNT is the prefix arg, and KILLP is set if COUNT was explicitly specified. */ (count, killp)) { /* This function can GC */ Charbpos pos; struct buffer *buf = current_buffer; EMACS_INT n; if (NILP (count)) n = 1; else { CHECK_INT (count); n = XINT (count); } pos = BUF_PT (buf) + n; if (NILP (killp)) { if (n < 0) { if (pos < BUF_BEGV (buf)) signal_error (Qbeginning_of_buffer, 0, Qunbound); else buffer_delete_range (buf, pos, BUF_PT (buf), 0); } else { if (pos > BUF_ZV (buf)) signal_error (Qend_of_buffer, 0, Qunbound); else buffer_delete_range (buf, BUF_PT (buf), pos, 0); } } else { call1 (Qkill_forward_chars, count); } return Qnil; } DEFUN ("delete-backward-char", Fdelete_backward_char, 0, 2, "*p\nP", /* Delete the previous COUNT characters (following, with negative COUNT). Optional second arg KILLP non-nil means kill instead (save in kill ring). Interactively, COUNT is the prefix arg, and KILLP is set if COUNT was explicitly specified. */ (count, killp)) { /* This function can GC */ EMACS_INT n; if (NILP (count)) n = 1; else { CHECK_INT (count); n = XINT (count); } return Fdelete_char (make_int (- n), killp); } static void internal_self_insert (Ichar ch, int noautofill); DEFUN ("self-insert-command", Fself_insert_command, 1, 1, "*p", /* Insert the character you type. Whichever character you type to run this command is inserted. If a prefix arg COUNT is specified, the character is inserted COUNT times. */ (count)) { /* This function can GC */ Ichar ch; Lisp_Object c; EMACS_INT n; CHECK_NATNUM (count); n = XINT (count); if (CHAR_OR_CHAR_INTP (Vlast_command_char)) c = Vlast_command_char; else c = Fevent_to_character (Vlast_command_event, Qnil, Qnil, Qnil); if (NILP (c)) invalid_operation ( "Last typed key has no character equivalent (that we know of)", Fcopy_event (Vlast_command_event, Qnil)); CHECK_CHAR_COERCE_INT (c); ch = XCHAR (c); while (n--) internal_self_insert (ch, (n != 0)); return Qnil; } /* Insert character C1. If NOAUTOFILL is nonzero, don't do autofill even if it is enabled. FSF: If this insertion is suitable for direct output (completely simple), return 0. A value of 1 indicates this *might* not have been simple. A value of 2 means this did things that call for an undo boundary. */ static void internal_self_insert (Ichar c1, int noautofill) { /* This function can GC */ /* int hairy = 0; -- unused */ REGISTER enum syntaxcode synt; REGISTER Ichar c2; Lisp_Object overwrite; Lisp_Object syntax_table; struct buffer *buf = current_buffer; int tab_width; overwrite = buf->overwrite_mode; syntax_table = buf->mirror_syntax_table; #if 0 /* No, this is very bad, it makes undo *always* undo a character at a time instead of grouping consecutive self-inserts together. Nasty nasty. */ if (!NILP (Vbefore_change_functions) || !NILP (Vafter_change_functions) || !NILP (Vbefore_change_function) || !NILP (Vafter_change_function)) hairy = 1; #endif if (!NILP (overwrite) && BUF_PT (buf) < BUF_ZV (buf) && (EQ (overwrite, Qoverwrite_mode_binary) || (c1 != '\n' && BUF_FETCH_CHAR (buf, BUF_PT (buf)) != '\n')) && (EQ (overwrite, Qoverwrite_mode_binary) || BUF_FETCH_CHAR (buf, BUF_PT (buf)) != '\t' || ((tab_width = XINT (buf->tab_width), tab_width <= 0) || tab_width > 20 || !((current_column (buf) + 1) % tab_width)))) { buffer_delete_range (buf, BUF_PT (buf), BUF_PT (buf) + 1, 0); /* hairy = 2; */ } if (!NILP (buf->abbrev_mode) && !WORD_SYNTAX_P (syntax_table, c1) && NILP (buf->read_only) && BUF_PT (buf) > BUF_BEGV (buf)) { c2 = BUF_FETCH_CHAR (buf, BUF_PT (buf) - 1); if (WORD_SYNTAX_P (syntax_table, c2)) { #if 1 Fexpand_abbrev (); #else /* FSFmacs */ Lisp_Object sym = Fexpand_abbrev (); /* I think this is too bogus to add. The function should have a way of examining the character to be inserted, so it can decide whether to insert it or not. We should design it better than that. */ /* Here FSFmacs remembers MODIFF, compares it after Fexpand_abbrev() finishes, and updates HAIRY. */ /* NOTE: we cannot simply check for Vlast_abbrev, because Fexpand_abbrev() can bail out before setting it to anything meaningful, leaving us stuck with an old value. Thus Fexpand_abbrev() was extended to return the actual abbrev symbol. */ if (!NILP (sym) && !NILP (symbol_function (XSYMBOL (sym))) && SYMBOLP (symbol_function (XSYMBOL (sym)))) { Lisp_Object prop = Fget (symbol_function (XSYMBOL (sym)), Qno_self_insert, Qnil); if (!NILP (prop)) return; } #endif /* FSFmacs */ } } if ((CHAR_TABLEP (Vauto_fill_chars) ? !NILP (get_char_table (c1, Vauto_fill_chars)) : (c1 == ' ' || c1 == '\n')) && !noautofill && !NILP (buf->auto_fill_function)) { buffer_insert_emacs_char (buf, c1); if (c1 == '\n') /* After inserting a newline, move to previous line and fill */ /* that. Must have the newline in place already so filling and */ /* justification, if any, know where the end is going to be. */ BUF_SET_PT (buf, BUF_PT (buf) - 1); call0 (buf->auto_fill_function); if (c1 == '\n') BUF_SET_PT (buf, BUF_PT (buf) + 1); /* hairy = 2; */ } else buffer_insert_emacs_char (buf, c1); /* If previous command specified a face to use, use it. */ if (!NILP (Vself_insert_face) && EQ (Vlast_command, Vself_insert_face_command)) { Lisp_Object before = make_int (BUF_PT (buf) - 1); Lisp_Object after = make_int (BUF_PT (buf)); Fput_text_property (before, after, Qface, Vself_insert_face, Qnil); Fput_text_property (before, after, Qstart_open, Qt, Qnil); Fput_text_property (before, after, Qend_open, Qnil, Qnil); /* #### FSFmacs properties are normally closed ("sticky") on the end but not the beginning. It's the opposite for us. */ Vself_insert_face = Qnil; } synt = SYNTAX (syntax_table, c1); if ((synt == Sclose || synt == Smath) && !NILP (Vblink_paren_function) && INTERACTIVE && !noautofill) { call0 (Vblink_paren_function); /* hairy = 2; */ } /* return hairy; */ } /* (this comes from Mule but is a generally good idea) */ DEFUN ("self-insert-internal", Fself_insert_internal, 1, 1, 0, /* Invoke `self-insert-command' as if CHARACTER is entered from keyboard. */ (character)) { /* This function can GC */ CHECK_CHAR_COERCE_INT (character); internal_self_insert (XCHAR (character), 0); return Qnil; } /* module initialization */ void syms_of_cmds (void) { DEFSYMBOL (Qkill_forward_chars); DEFSYMBOL (Qself_insert_command); DEFSYMBOL (Qoverwrite_mode_binary); DEFSYMBOL (Qno_self_insert); DEFSUBR (Fforward_char); DEFSUBR (Fbackward_char); DEFSUBR (Fforward_line); DEFSUBR (Fbeginning_of_line); DEFSUBR (Fend_of_line); DEFSUBR (Fpoint_at_bol); DEFSUBR (Fpoint_at_eol); DEFSUBR (Fdelete_char); DEFSUBR (Fdelete_backward_char); DEFSUBR (Fself_insert_command); DEFSUBR (Fself_insert_internal); } void vars_of_cmds (void) { DEFVAR_LISP ("self-insert-face", &Vself_insert_face /* If non-nil, set the face of the next self-inserting character to this. See also `self-insert-face-command'. */ ); Vself_insert_face = Qnil; DEFVAR_LISP ("self-insert-face-command", &Vself_insert_face_command /* This is the command that set up `self-insert-face'. If `last-command' does not equal this value, we ignore `self-insert-face'. */ ); Vself_insert_face_command = Qnil; DEFVAR_LISP ("blink-paren-function", &Vblink_paren_function /* Function called, if non-nil, whenever a close parenthesis is inserted. More precisely, a char with closeparen syntax is self-inserted. */ ); Vblink_paren_function = Qnil; DEFVAR_LISP ("auto-fill-chars", &Vauto_fill_chars /* A char-table for characters which invoke auto-filling. Such characters have value t in this table. */); Vauto_fill_chars = Fmake_char_table (Qgeneric); XCHAR_TABLE (Vauto_fill_chars)->ascii[' '] = Qt; XCHAR_TABLE (Vauto_fill_chars)->ascii['\n'] = Qt; }
