Mercurial > hg > xemacs-beta
view lwlib/lwlib-colors.c @ 4885:6772ce4d982b
Fix hash tables, #'member*, #'assoc*, #'eql compiler macros if bignums
lisp/ChangeLog addition:
2010-01-24 Aidan Kehoe <kehoea@parhasard.net>
Correct the semantics of #'member*, #'eql, #'assoc* in the
presence of bignums; change the integerp byte code to fixnump
semantics.
* bytecomp.el (fixnump, integerp, byte-compile-integerp):
Change the integerp byte code to fixnump; add a byte-compile
method to integerp using fixnump and numberp and avoiding a
funcall most of the time, since in the non-core contexts where
integerp is used, it's mostly distinguishing between fixnums and
things that are not numbers at all.
* byte-optimize.el (side-effect-free-fns, byte-after-unbind-ops)
(byte-compile-side-effect-and-error-free-ops):
Replace the integerp bytecode with fixnump; add fixnump to the
side-effect-free-fns. Add the other extended number type
predicates to the list in passing.
* obsolete.el (floatp-safe): Mark this as obsolete.
* cl.el (eql): Go into more detail in the docstring here. Don't
bother checking whether both arguments are numbers; one is enough,
#'equal will fail correctly if they have distinct types.
(subst): Replace a call to #'integerp (deciding whether to use
#'memq or not) with one to #'fixnump.
Delete most-positive-fixnum, most-negative-fixnum from this file;
they're now always in C, so they can't be modified from Lisp.
* cl-seq.el (member*, assoc*, rassoc*):
Correct these functions in the presence of bignums.
* cl-macs.el (cl-make-type-test): The type test for a fixnum is
now fixnump. Ditch floatp-safe, use floatp instead.
(eql): Correct this compiler macro in the presence of bignums.
(assoc*): Correct this compiler macro in the presence of bignums.
* simple.el (undo):
Change #'integerp to #'fixnump here, since we use #'delq with the
same value as ELT a few lines down.
src/ChangeLog addition:
2010-01-24 Aidan Kehoe <kehoea@parhasard.net>
Fix problems with #'eql, extended number types, and the hash table
implementation; change the Bintegerp bytecode to fixnump semantics
even on bignum builds, since #'integerp can have a fast
implementation in terms of #'fixnump for most of its extant uses,
but not vice-versa.
* lisp.h: Always #include number.h; we want the macros provided in
it, even if the various number types are not available.
* number.h (NON_FIXNUM_NUMBER_P): New macro, giving 1 when its
argument is of non-immediate number type. Equivalent to FLOATP if
WITH_NUMBER_TYPES is not defined.
* elhash.c (lisp_object_eql_equal, lisp_object_eql_hash):
Use NON_FIXNUM_NUMBER_P in these functions, instead of FLOATP,
giving more correct behaviour in the presence of the extended
number types.
* bytecode.c (Bfixnump, execute_optimized_program):
Rename Bintegerp to Bfixnump; change its semantics to reflect the
new name on builds with bignum support.
* data.c (Ffixnump, Fintegerp, syms_of_data, vars_of_data):
Always make #'fixnump available, even on non-BIGNUM builds;
always implement #'integerp in this file, even on BIGNUM builds.
Move most-positive-fixnum, most-negative-fixnum here from
number.c, so they are Lisp constants even on builds without number
types, and attempts to change or bind them error.
Use the NUMBERP and INTEGERP macros even on builds without
extended number types.
* data.c (fixnum_char_or_marker_to_int):
Rename this function from integer_char_or_marker_to_int, to better
reflect the arguments it accepts.
* number.c (Fevenp, Foddp, syms_of_number):
Never provide #'integerp in this file. Remove #'oddp,
#'evenp; their implementations are overridden by those in cl.el.
* number.c (vars_of_number):
most-positive-fixnum, most-negative-fixnum are no longer here.
man/ChangeLog addition:
2010-01-23 Aidan Kehoe <kehoea@parhasard.net>
Generally: be careful to say fixnum, not integer, when talking
about fixed-precision integral types. I'm sure I've missed
instances, both here and in the docstrings, but this is a decent
start.
* lispref/text.texi (Columns):
Document where only fixnums, not integers generally, are accepted.
(Registers):
Remove some ancient char-int confoundance here.
* lispref/strings.texi (Creating Strings, Creating Strings):
Be more exact in describing where fixnums but not integers in
general are accepted.
(Creating Strings): Use a more contemporary example to illustrate
how concat deals with lists including integers about #xFF. Delete
some obsolete documentation on same.
(Char Table Types): Document that only fixnums are accepted as
values in syntax tables.
* lispref/searching.texi (String Search, Search and Replace):
Be exact in describing where fixnums but not integers in general
are accepted.
* lispref/range-tables.texi (Range Tables): Be exact in describing
them; only fixnums are accepted to describe ranges.
* lispref/os.texi (Killing XEmacs, User Identification)
(Time of Day, Time Conversion):
Be more exact about using fixnum where only fixed-precision
integers are accepted.
* lispref/objects.texi (Integer Type): Be more exact (and
up-to-date) about the possible values for
integers. Cross-reference to documentation of the bignum extension.
(Equality Predicates):
(Range Table Type):
(Array Type): Use fixnum, not integer, to describe a
fixed-precision integer.
(Syntax Table Type): Correct some English syntax here.
* lispref/numbers.texi (Numbers): Change the phrasing here to use
fixnum to mean the fixed-precision integers normal in emacs.
Document that our terminology deviates from that of Common Lisp,
and that we're working on it.
(Compatibility Issues): Reiterate the Common Lisp versus Emacs
Lisp compatibility issues.
(Comparison of Numbers, Arithmetic Operations):
* lispref/commands.texi (Command Loop Info, Working With Events):
* lispref/buffers.texi (Modification Time):
Be more exact in describing where fixnums but not integers in
general are accepted.
author | Aidan Kehoe <kehoea@parhasard.net> |
---|---|
date | Sun, 24 Jan 2010 15:21:27 +0000 |
parents | ad2f4ae9895b |
children | a6c778975d7d |
line wrap: on
line source
/* Color data structures for X and Xft. Copyright (C) 2004 Free Software Foundation, Inc. Author: Stephen J. Turnbull <stephen@xemacs.org> Created: 24 Jul 2004 by Stephen J. Turnbull This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: Not in GNU Emacs. */ #include <config.h> #include <limits.h> /* for ULONG_MAX */ #include <stdlib.h> /* for malloc() */ #include <stdio.h> #include <X11/Xlib.h> #include <X11/IntrinsicP.h> #include <X11/ShellP.h> /* for ShellWidget */ #include "lwlib-colors.h" static int debug_colors = 1; #ifdef __cplusplus #define X_CLASSFIELD c_class #else #define X_CLASSFIELD class #endif #define MINL(x,y) ((((unsigned long) (x)) < ((unsigned long) (y))) \ ? ((unsigned long) (x)) : ((unsigned long) (y))) /* WIDGET is an Xt widget, VISUAL and DEPTH are return values */ void visual_info_from_widget (Widget widget, Visual **visual, int *depth) { /* grab the visual and depth from the nearest shell ancestor */ Widget p = XtParent(widget); *visual = CopyFromParent; *depth = -1; while (*visual == CopyFromParent && p) { if (XtIsShell(p)) { *visual = ((ShellWidget)p)->shell.visual; *depth = p->core.depth; } p = XtParent(p); } if (*visual == CopyFromParent || !*visual) { if (debug_colors > 1) fprintf (stderr, "\nvisual_info_from_widget:" " failed, using DefaultVisualOfScreen"); *visual = DefaultVisualOfScreen (XtScreen (widget)); *depth = DefaultDepthOfScreen (XtScreen (widget)); } else if (debug_colors > 1) fprintf (stderr, "\nvisual_info_from_widget: succeeded"); } /* Do we need all this hair on modern hardware? */ /* Replacement for XAllocColor() that tries to return the nearest available color if the colormap is full. Original was from FSFmacs, but rewritten by Jareth Hein <jareth@camelot-soft.com> 97/11/25 Modified by Lee Kindness <lkindness@csl.co.uk> 31/08/99 to handle previous total failure which was due to a read/write colorcell being the nearest match - tries the next nearest... Return value is 1 for normal success, 2 for nearest color success, 3 for Non-deallocable success. */ int x_allocate_nearest_color (Display *display, Colormap colormap, Visual *visual, XColor *color_def) { int status; /* #### [[Apparently this is often called with data derived from a widget with no ShellWidget ancestor, or before the shell has a visual. Currently this recovery code is in xlwmenu.c and xlwscrollbar.c, but likely should come here.]] I suspect the problem is that the visual-tracing code was improperly written, missing a level of indirection. CopyFromParent == NULL in XFree86/Darwin. */ if (visual == CopyFromParent || !visual) { Screen *screen = DefaultScreenOfDisplay (display); fprintf (stderr, "\nx_allocate_nearest_color: bad visual (%08lx)", (unsigned long) visual); visual = DefaultVisualOfScreen (screen); } if (visual->X_CLASSFIELD == DirectColor || visual->X_CLASSFIELD == TrueColor) { if (XAllocColor (display, colormap, color_def) != 0) { status = 1; } else { /* We're dealing with a TrueColor/DirectColor visual, so play games with the RGB values in the XColor struct. */ /* #### JH: I'm not sure how a call to XAllocColor can fail in a TrueColor or DirectColor visual, so I will just reformat the request to match the requirements of the visual, and re-issue the request. If this fails for anybody, I wanna know about it so I can come up with a better plan */ unsigned long rshift,gshift,bshift,rbits,gbits,bbits,junk; junk = visual->red_mask; rshift = 0; while ((junk & 0x1) == 0) { junk = junk >> 1; rshift ++; } rbits = 0; while (junk != 0) { junk = junk >> 1; rbits++; } junk = visual->green_mask; gshift = 0; while ((junk & 0x1) == 0) { junk = junk >> 1; gshift ++; } gbits = 0; while (junk != 0) { junk = junk >> 1; gbits++; } junk = visual->blue_mask; bshift = 0; while ((junk & 0x1) == 0) { junk = junk >> 1; bshift ++; } bbits = 0; while (junk != 0) { junk = junk >> 1; bbits++; } color_def->red = color_def->red >> (16 - rbits); color_def->green = color_def->green >> (16 - gbits); color_def->blue = color_def->blue >> (16 - bbits); if (XAllocColor (display, colormap, color_def) != 0) status = 1; else { int rd, gr, bl; /* #### JH: I'm punting here, knowing that doing this will at least draw the color correctly. However, unless we convert all of the functions that allocate colors (graphics libraries, etc) to use this function doing this is very likely to cause problems later... */ if (rbits > 8) rd = color_def->red << (rbits - 8); else rd = color_def->red >> (8 - rbits); if (gbits > 8) gr = color_def->green << (gbits - 8); else gr = color_def->green >> (8 - gbits); if (bbits > 8) bl = color_def->blue << (bbits - 8); else bl = color_def->blue >> (8 - bbits); color_def->pixel = (rd << rshift) | (gr << gshift) | (bl << bshift); status = 3; } } } else { XColor *cells = NULL; /* JH: I can't believe there's no way to go backwards from a colormap ID and get its visual and number of entries, but X apparently isn't built that way... */ int no_cells = visual->map_entries; status = 0; if (XAllocColor (display, colormap, color_def) != 0) status = 1; else while( status != 2 ) { /* If we got to this point, the colormap is full, so we're going to try and get the next closest color. The algorithm used is a least-squares matching, which is what X uses for closest color matching with StaticColor visuals. */ int nearest; long nearest_delta, trial_delta; int x; if( cells == NULL ) { /* #### this could be annoyingly slow tell me again why lwlib can't use alloca & friends? */ cells = (XColor *) malloc (sizeof(XColor)*no_cells); for (x = 0; x < no_cells; x++) cells[x].pixel = x; /* read the current colormap */ XQueryColors (display, colormap, cells, no_cells); } nearest = 0; /* I'm assuming CSE so I'm not going to condense this. */ nearest_delta = ((((color_def->red >> 8) - (cells[0].red >> 8)) * ((color_def->red >> 8) - (cells[0].red >> 8))) + (((color_def->green >> 8) - (cells[0].green >> 8)) * ((color_def->green >> 8) - (cells[0].green >> 8))) + (((color_def->blue >> 8) - (cells[0].blue >> 8)) * ((color_def->blue >> 8) - (cells[0].blue >> 8)))); for (x = 1; x < no_cells; x++) { trial_delta = ((((color_def->red >> 8) - (cells[x].red >> 8)) * ((color_def->red >> 8) - (cells[x].red >> 8))) + (((color_def->green >> 8) - (cells[x].green >> 8)) * ((color_def->green >> 8) - (cells[x].green >> 8))) + (((color_def->blue >> 8) - (cells[x].blue >> 8)) * ((color_def->blue >> 8) - (cells[x].blue >> 8)))); /* less? Ignore cells marked as previously failing */ if( (trial_delta < nearest_delta) && (cells[x].pixel != ULONG_MAX) ) { nearest = x; nearest_delta = trial_delta; } } color_def->red = cells[nearest].red; color_def->green = cells[nearest].green; color_def->blue = cells[nearest].blue; if (XAllocColor (display, colormap, color_def) != 0) status = 2; else /* LSK: Either the colour map has changed since * we read it, or the colour is allocated * read/write... Mark this cmap entry so it's * ignored in the next iteration. */ cells[nearest].pixel = ULONG_MAX; } } return status; } #if 0 /* Replacement for XAllocColor() that tries to return the nearest available color if the colormap is full. From GNU Emacs. #### Review this to see if there's anything our hairy version could use. */ int FIXME_allocate_nearest_color (Display *display, Colormap screen_colormap, XColor *color_def) { int status = XAllocColor (display, screen_colormap, color_def); if (status) return status; { /* If we got to this point, the colormap is full, so we're going to try to get the next closest color. The algorithm used is a least-squares matching, which is what X uses for closest color matching with StaticColor visuals. */ int nearest, x; unsigned long nearest_delta = ULONG_MAX; int no_cells = XDisplayCells (display, XDefaultScreen (display)); /* Don't use alloca here because lwlib doesn't have the necessary configuration information that src does. */ XColor *cells = (XColor *) malloc (sizeof (XColor) * no_cells); for (x = 0; x < no_cells; x++) cells[x].pixel = x; XQueryColors (display, screen_colormap, cells, no_cells); for (nearest = 0, x = 0; x < no_cells; x++) { long dred = (color_def->red >> 8) - (cells[x].red >> 8); long dgreen = (color_def->green >> 8) - (cells[x].green >> 8); long dblue = (color_def->blue >> 8) - (cells[x].blue >> 8); unsigned long delta = dred * dred + dgreen * dgreen + dblue * dblue; if (delta < nearest_delta) { nearest = x; nearest_delta = delta; } } color_def->red = cells[nearest].red; color_def->green = cells[nearest].green; color_def->blue = cells[nearest].blue; free (cells); return XAllocColor (display, screen_colormap, color_def); } } #endif #ifdef USE_XFT XftColor xft_convert_color (Display *dpy, Colormap cmap, Visual *visual, int c, int dim) { static XColor color; /* #### why is this static ?? */ XftColor result; color.pixel = c; XQueryColor(dpy, cmap, &color); if (dim) { color.red = MINL (65535, color.red * 1.5); color.green = MINL (65535, color.green * 1.5); color.blue = MINL (65535, color.blue * 1.5); x_allocate_nearest_color (dpy, cmap, visual, &color); } result.pixel = color.pixel; result.color.red = color.red; result.color.green = color.green; result.color.blue = color.blue; result.color.alpha = 0xffff; return result; } #endif /* USE_XFT */ /* end of lwlib-colors.c */