view tests/automated/lisp-tests.el @ 826:6728e641994e

[xemacs-hg @ 2002-05-05 11:30:15 by ben] syntax cache, 8-bit-format, lots of code cleanup README.packages: Update info about --package-path. i.c: Create an inheritable event and pass it on to XEmacs, so that ^C can be handled properly. Intercept ^C and signal the event. "Stop Build" in VC++ now works. bytecomp-runtime.el: Doc string changes. compat.el: Some attempts to redo this to make it truly useful and fix the "multiple versions interacting with each other" problem. Not yet done. Currently doesn't work. files.el: Use with-obsolete-variable to avoid warnings in new revert-buffer code. xemacs.mak: Split up CFLAGS into a version without flags specifying the C library. The problem seems to be that minitar depends on zlib, which depends specifically on libc.lib, not on any of the other C libraries. Unless you compile with libc.lib, you get errors -- specifically, no _errno in the other libraries, which must make it something other than an int. (#### But this doesn't seem to obtain in XEmacs, which also uses zlib, and can be linked with any of the C libraries. Maybe zlib is used differently and doesn't need errno, or maybe XEmacs provides an int errno; ... I don't understand. Makefile.in.in: Fix so that packages are around when testing. abbrev.c, alloc.c, buffer.c, buffer.h, bytecode.c, callint.c, casefiddle.c, casetab.c, casetab.h, charset.h, chartab.c, chartab.h, cmds.c, console-msw.h, console-stream.c, console-x.c, console.c, console.h, data.c, device-msw.c, device.c, device.h, dialog-msw.c, dialog-x.c, dired-msw.c, dired.c, doc.c, doprnt.c, dumper.c, editfns.c, elhash.c, emacs.c, eval.c, event-Xt.c, event-gtk.c, event-msw.c, event-stream.c, events.c, events.h, extents.c, extents.h, faces.c, file-coding.c, file-coding.h, fileio.c, fns.c, font-lock.c, frame-gtk.c, frame-msw.c, frame-x.c, frame.c, frame.h, glade.c, glyphs-gtk.c, glyphs-msw.c, glyphs-msw.h, glyphs-x.c, glyphs.c, glyphs.h, gui-msw.c, gui-x.c, gui.h, gutter.h, hash.h, indent.c, insdel.c, intl-win32.c, intl.c, keymap.c, lisp-disunion.h, lisp-union.h, lisp.h, lread.c, lrecord.h, lstream.c, lstream.h, marker.c, menubar-gtk.c, menubar-msw.c, menubar-x.c, menubar.c, minibuf.c, mule-ccl.c, mule-charset.c, mule-coding.c, mule-wnnfns.c, nas.c, objects-msw.c, objects-x.c, opaque.c, postgresql.c, print.c, process-nt.c, process-unix.c, process.c, process.h, profile.c, rangetab.c, redisplay-gtk.c, redisplay-msw.c, redisplay-output.c, redisplay-x.c, redisplay.c, redisplay.h, regex.c, regex.h, scrollbar-msw.c, search.c, select-x.c, specifier.c, specifier.h, symbols.c, symsinit.h, syntax.c, syntax.h, syswindows.h, tests.c, text.c, text.h, tooltalk.c, ui-byhand.c, ui-gtk.c, unicode.c, win32.c, window.c: Another big Ben patch. -- FUNCTIONALITY CHANGES: add partial support for 8-bit-fixed, 16-bit-fixed, and 32-bit-fixed formats. not quite done yet. (in particular, needs functions to actually convert the buffer.) NOTE: lots of changes to regex.c here. also, many new *_fmt() inline funs that take an Internal_Format argument. redo syntax cache code. make the cache per-buffer; keep the cache valid across calls to functions that use it. also keep it valid across insertions/deletions and extent changes, as much as is possible. eliminate the junky regex-reentrancy code by passing in the relevant lisp info to the regex routines as local vars. add general mechanism in extents code for signalling extent changes. fix numerous problems with the case-table implementation; yoshiki never properly transferred many algorithms from old-style to new-style case tables. redo char tables to support a default argument, so that mapping only occurs over changed args. change many chartab functions to accept Lisp_Object instead of Lisp_Char_Table *. comment out the code in font-lock.c by default, because font-lock.el no longer uses it. we should consider eliminating it entirely. Don't output bell as ^G in console-stream when not a TTY. add -mswindows-termination-handle to interface with i.c, so we can properly kill a build. add more error-checking to buffer/string macros. add some additional buffer_or_string_() funs. -- INTERFACE CHANGES AFFECTING MORE CODE: switch the arguments of write_c_string and friends to be consistent with write_fmt_string, which must have printcharfun first. change BI_* macros to BYTE_* for increased clarity; similarly for bi_* local vars. change VOID_TO_LISP to be a one-argument function. eliminate no-longer-needed CVOID_TO_LISP. -- char/string macro changes: rename MAKE_CHAR() to make_emchar() for slightly less confusion with make_char(). (The former generates an Emchar, the latter a Lisp object. Conceivably we should rename make_char() -> wrap_char() and similarly for make_int(), make_float().) Similar changes for other *CHAR* macros -- we now consistently use names with `emchar' whenever we are working with Emchars. Any remaining name with just `char' always refers to a Lisp object. rename macros with XSTRING_* to string_* except for those that reference actual fields in the Lisp_String object, following conventions used elsewhere. rename set_string_{data,length} macros (the only ones to work with a Lisp_String_* instead of a Lisp_Object) to set_lispstringp_* to make the difference clear. try to be consistent about caps vs. lowercase in macro/inline-fun names for chars and such, which wasn't the case before. we now reserve caps either for XFOO_ macros that reference object fields (e.g. XSTRING_DATA) or for things that have non-function semantics, e.g. directly modifying an arg (BREAKUP_EMCHAR) or evaluating an arg (any arg) more than once. otherwise, use lowercase. here is a summary of most of the macros/inline funs changed by all of the above changes: BYTE_*_P -> byte_*_p XSTRING_BYTE -> string_byte set_string_data/length -> set_lispstringp_data/length XSTRING_CHAR_LENGTH -> string_char_length XSTRING_CHAR -> string_emchar INTBYTE_FIRST_BYTE_P -> intbyte_first_byte_p INTBYTE_LEADING_BYTE_P -> intbyte_leading_byte_p charptr_copy_char -> charptr_copy_emchar LEADING_BYTE_* -> leading_byte_* CHAR_* -> EMCHAR_* *_CHAR_* -> *_EMCHAR_* *_CHAR -> *_EMCHAR CHARSET_BY_ -> charset_by_* BYTE_SHIFT_JIS* -> byte_shift_jis* BYTE_BIG5* -> byte_big5* REP_BYTES_BY_FIRST_BYTE -> rep_bytes_by_first_byte char_to_unicode -> emchar_to_unicode valid_char_p -> valid_emchar_p Change intbyte_strcmp -> qxestrcmp_c (duplicated functionality). -- INTERFACE CHANGES AFFECTING LESS CODE: use DECLARE_INLINE_HEADER in various places. remove '#ifdef emacs' from XEmacs-only files. eliminate CHAR_TABLE_VALUE(), which duplicated the functionality of get_char_table(). add BUFFER_TEXT_LOOP to simplify iterations over buffer text. define typedefs for signed and unsigned types of fixed sizes (INT_32_BIT, UINT_32_BIT, etc.). create ALIGN_FOR_TYPE as a higher-level interface onto ALIGN_SIZE; fix code to use it. add charptr_emchar_len to return the text length of the character pointed to by a ptr; use it in place of charcount_to_bytecount(..., 1). add emchar_len to return the text length of a given character. add types Bytexpos and Charxpos to generalize Bytebpos/Bytecount and Charbpos/Charcount, in code (particularly, the extents code and redisplay code) that works with either kind of index. rename redisplay struct params with names such as `charbpos' to e.g. `charpos' when they are e.g. a Charxpos, not a Charbpos. eliminate xxDEFUN in place of DEFUN; no longer necessary with changes awhile back to doc.c. split up big ugly combined list of EXFUNs in lisp.h on a file-by-file basis, since other prototypes are similarly split. rewrite some "*_UNSAFE" macros as inline funs and eliminate the _UNSAFE suffix. move most string code from lisp.h to text.h; the string code and text.h code is now intertwined in such a fashion that they need to be in the same place and partially interleaved. (you can't create forward references for inline funs) automated/lisp-tests.el, automated/symbol-tests.el, automated/test-harness.el: Fix test harness to output FAIL messages to stderr when in batch mode. Fix up some problems in lisp-tests/symbol-tests that were causing spurious failures.
author ben
date Sun, 05 May 2002 11:33:57 +0000
parents 5aa1854ad537
children 74cb069b8417
line wrap: on
line source

;; Copyright (C) 1998 Free Software Foundation, Inc.

;; Author: Martin Buchholz <martin@xemacs.org>
;; Maintainer: Martin Buchholz <martin@xemacs.org>
;; Created: 1998
;; Keywords: tests

;; This file is part of XEmacs.

;; XEmacs is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.

;; XEmacs is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;; General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with XEmacs; see the file COPYING.  If not, write to the Free
;; Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
;; 02111-1307, USA.

;;; Synched up with: Not in FSF.

;;; Commentary:

;;; Test basic Lisp engine functionality
;;; See test-harness.el for instructions on how to run these tests.

(eval-when-compile
  (condition-case nil
      (require 'test-harness)
    (file-error
     (push "." load-path)
     (when (and (boundp 'load-file-name) (stringp load-file-name))
       (push (file-name-directory load-file-name) load-path))
     (require 'test-harness))))

(Check-Error wrong-number-of-arguments (setq setq-test-foo))
(Check-Error wrong-number-of-arguments (setq setq-test-foo 1 setq-test-bar))
(Check-Error wrong-number-of-arguments (setq-default setq-test-foo))
(Check-Error wrong-number-of-arguments (setq-default setq-test-foo 1 setq-test-bar))
(Assert (eq (setq)         nil))
(Assert (eq (setq-default) nil))
(Assert (eq (setq         setq-test-foo 42) 42))
(Assert (eq (setq-default setq-test-foo 42) 42))
(Assert (eq (setq         setq-test-foo 42 setq-test-bar 99) 99))
(Assert (eq (setq-default setq-test-foo 42 setq-test-bar 99) 99))

(macrolet ((test-setq (expected-result &rest body)
		      `(progn
			 (defun test-setq-fun () ,@body)
			 (Assert (eq ,expected-result (test-setq-fun)))
			 (byte-compile 'test-setq-fun)
			 (Assert (eq ,expected-result (test-setq-fun))))))
  (test-setq nil (setq))
  (test-setq nil (setq-default))
  (test-setq 42  (setq         test-setq-var 42))
  (test-setq 42  (setq-default test-setq-var 42))
  (test-setq 42  (setq         test-setq-bar 99 test-setq-var 42))
  (test-setq 42  (setq-default test-setq-bar 99 test-setq-var 42))
  )

(let ((my-vector [1 2 3 4])
      (my-bit-vector (bit-vector 1 0 1 0))
      (my-string "1234")
      (my-list '(1 2 3 4)))

  ;;(Assert (fooooo)) ;; Generate Other failure
  ;;(Assert (eq 1 2)) ;; Generate Assertion failure

  (dolist (sequence (list my-vector my-bit-vector my-string my-list))
    (Assert (sequencep sequence))
    (Assert (eq 4 (length sequence))))

  (dolist (array (list my-vector my-bit-vector my-string))
    (Assert (arrayp array)))

  (Assert (eq (elt my-vector 0) 1))
  (Assert (eq (elt my-bit-vector 0) 1))
  (Assert (eq (elt my-string 0) ?1))
  (Assert (eq (elt my-list 0) 1))

  (fillarray my-vector 5)
  (fillarray my-bit-vector 1)
  (fillarray my-string ?5)

  (dolist (array (list my-vector my-bit-vector))
    (Assert (eq 4 (length array))))

  (Assert (eq (elt my-vector 0) 5))
  (Assert (eq (elt my-bit-vector 0) 1))
  (Assert (eq (elt my-string 0) ?5))

  (Assert (eq (elt my-vector 3) 5))
  (Assert (eq (elt my-bit-vector 3) 1))
  (Assert (eq (elt my-string 3) ?5))

  (fillarray my-bit-vector 0)
  (Assert (eq 4 (length my-bit-vector)))
  (Assert (eq (elt my-bit-vector 2) 0))
  )

(defun make-circular-list (length)
  "Create evil emacs-crashing circular list of length LENGTH"
  (let ((circular-list
	 (make-list
	  length
	  'you-are-trapped-in-a-twisty-maze-of-cons-cells-all-alike)))
    (setcdr (last circular-list) circular-list)
    circular-list))

;;-----------------------------------------------------
;; Test `nconc'
;;-----------------------------------------------------
(defun make-list-012 () (list 0 1 2))

(Check-Error wrong-type-argument (nconc 'foo nil))

(dolist (length '(1 2 3 4 1000 2000))
  (Check-Error circular-list (nconc (make-circular-list length) 'foo))
  (Check-Error circular-list (nconc '(1 . 2) (make-circular-list length) 'foo))
  (Check-Error circular-list (nconc '(1 . 2) '(3 . 4) (make-circular-list length) 'foo)))

(Assert (eq (nconc) nil))
(Assert (eq (nconc nil) nil))
(Assert (eq (nconc nil nil) nil))
(Assert (eq (nconc nil nil nil) nil))

(let ((x (make-list-012))) (Assert (eq (nconc nil x) x)))
(let ((x (make-list-012))) (Assert (eq (nconc x nil) x)))
(let ((x (make-list-012))) (Assert (eq (nconc nil x nil) x)))
(let ((x (make-list-012))) (Assert (eq (nconc x) x)))
(let ((x (make-list-012))) (Assert (eq (nconc x (make-circular-list 3)) x)))

(Assert (equal (nconc '(1 . 2) '(3 . 4) '(5 . 6)) '(1 3 5 . 6)))

(let ((y (nconc (make-list-012) nil (list 3 4 5) nil)))
  (Assert (eq (length y) 6))
  (Assert (eq (nth 3 y) 3)))

;;-----------------------------------------------------
;; Test `last'
;;-----------------------------------------------------
(Check-Error wrong-type-argument (last 'foo))
(Check-Error wrong-number-of-arguments (last))
(Check-Error wrong-number-of-arguments (last '(1 2) 1 1))
(Check-Error circular-list (last (make-circular-list 1)))
(Check-Error circular-list (last (make-circular-list 2000)))
(let ((x (list 0 1 2 3)))
  (Assert (eq (last nil) nil))
  (Assert (eq (last x 0) nil))
  (Assert (eq (last x  ) (cdddr x)))
  (Assert (eq (last x 1) (cdddr x)))
  (Assert (eq (last x 2) (cddr x)))
  (Assert (eq (last x 3) (cdr x)))
  (Assert (eq (last x 4) x))
  (Assert (eq (last x 9) x))
  (Assert (eq (last '(1 . 2) 0) 2))
  )

;;-----------------------------------------------------
;; Test `butlast' and `nbutlast'
;;-----------------------------------------------------
(Check-Error wrong-type-argument (butlast  'foo))
(Check-Error wrong-type-argument (nbutlast 'foo))
(Check-Error wrong-number-of-arguments (butlast))
(Check-Error wrong-number-of-arguments (nbutlast))
(Check-Error wrong-number-of-arguments (butlast  '(1 2) 1 1))
(Check-Error wrong-number-of-arguments (nbutlast '(1 2) 1 1))
(Check-Error circular-list (butlast  (make-circular-list 1)))
(Check-Error circular-list (nbutlast (make-circular-list 1)))
(Check-Error circular-list (butlast  (make-circular-list 2000)))
(Check-Error circular-list (nbutlast (make-circular-list 2000)))

(let* ((x (list 0 1 2 3))
       (y (butlast x))
       (z (nbutlast x)))
  (Assert (eq z x))
  (Assert (not (eq y x)))
  (Assert (equal y '(0 1 2)))
  (Assert (equal z y)))

(let* ((x (list 0 1 2 3 4))
       (y (butlast x 2))
       (z (nbutlast x 2)))
  (Assert (eq z x))
  (Assert (not (eq y x)))
  (Assert (equal y '(0 1 2)))
  (Assert (equal z y)))

(let* ((x (list 0 1 2 3))
       (y (butlast x 0))
       (z (nbutlast x 0)))
  (Assert (eq z x))
  (Assert (not (eq y x)))
  (Assert (equal y '(0 1 2 3)))
  (Assert (equal z y)))

(Assert (eq (butlast  '(x)) nil))
(Assert (eq (nbutlast '(x)) nil))
(Assert (eq (butlast  '()) nil))
(Assert (eq (nbutlast '()) nil))

;;-----------------------------------------------------
;; Test `copy-list'
;;-----------------------------------------------------
(Check-Error wrong-type-argument (copy-list 'foo))
(Check-Error wrong-number-of-arguments (copy-list))
(Check-Error wrong-number-of-arguments (copy-list '(1 2) 1))
(Check-Error circular-list (copy-list (make-circular-list 1)))
(Check-Error circular-list (copy-list (make-circular-list 2000)))
(Assert (eq '() (copy-list '())))
(dolist (x '((1) (1 2) (1 2 3) (1 2 . 3)))
  (let ((y (copy-list x)))
    (Assert (and (equal x y) (not (eq x y))))))

;;-----------------------------------------------------
;; Arithmetic operations
;;-----------------------------------------------------

;; Test `+'
(Assert (eq (+ 1 1) 2))
(Assert (= (+ 1.0 1.0) 2.0))
(Assert (= (+ 1.0 3.0 0.0) 4.0))
(Assert (= (+ 1 1.0) 2.0))
(Assert (= (+ 1.0 1) 2.0))
(Assert (= (+ 1.0 1 1) 3.0))
(Assert (= (+ 1 1 1.0) 3.0))
(Assert (eq (1+ most-positive-fixnum) most-negative-fixnum))
(Assert (eq (+ most-positive-fixnum 1) most-negative-fixnum))

;; Test `-'
(Check-Error wrong-number-of-arguments (-))
(Assert (eq (- 0) 0))
(Assert (eq (- 1) -1))
(dolist (one `(1 1.0 ?\1 ,(Int-to-Marker 1)))
  (Assert (= (+ 1 one) 2))
  (Assert (= (+ one) 1))
  (Assert (= (+ one) one))
  (Assert (= (- one) -1))
  (Assert (= (- one one) 0))
  (Assert (= (- one one one) -1))
  (Assert (= (- 0 one) -1))
  (Assert (= (- 0 one one) -2))
  (Assert (= (+ one 1) 2))
  (dolist (zero '(0 0.0 ?\0))
    (Assert (= (+ 1 zero) 1))
    (Assert (= (+ zero 1) 1))
    (Assert (= (- zero) zero))
    (Assert (= (- zero) 0))
    (Assert (= (- zero zero) 0))
    (Assert (= (- zero one one) -2))))

(Assert (= (- 1.5 1) .5))
(Assert (= (- 1 1.5) (- .5)))

(Assert (eq (1- most-negative-fixnum) most-positive-fixnum))
(Assert (eq (- most-negative-fixnum 1) most-positive-fixnum))

;; Test `/'

;; Test division by zero errors
(dolist (zero '(0 0.0 ?\0))
  (Check-Error arith-error (/ zero))
  (dolist (n1 `(42 42.0 ?\042 ,(Int-to-Marker 42)))
    (Check-Error arith-error (/ n1 zero))
    (dolist (n2 `(3 3.0 ?\03 ,(Int-to-Marker 3)))
      (Check-Error arith-error (/ n1 n2 zero)))))

;; Other tests for `/'
(Check-Error wrong-number-of-arguments (/))
(let (x)
  (Assert (= (/ (setq x 2))   0))
  (Assert (= (/ (setq x 2.0)) 0.5)))

(dolist (six '(6 6.0 ?\06))
  (dolist (two '(2 2.0 ?\02))
    (dolist (three '(3 3.0 ?\03))
      (Assert (= (/ six two) three)))))

(dolist (three '(3 3.0 ?\03))
  (Assert (= (/ three 2.0) 1.5)))
(dolist (two '(2 2.0 ?\02))
  (Assert (= (/ 3.0 two) 1.5)))

;; Test `*'
(Assert (= 1 (*)))

(dolist (one `(1 1.0 ?\01 ,(Int-to-Marker 1)))
  (Assert (= 1 (* one))))

(dolist (two '(2 2.0 ?\02))
  (Assert (= 2 (* two))))

(dolist (six '(6 6.0 ?\06))
  (dolist (two '(2 2.0 ?\02))
    (dolist (three '(3 3.0 ?\03))
      (Assert (= (* three two) six)))))

(dolist (three '(3 3.0 ?\03))
  (dolist (two '(2 2.0 ?\02))
    (Assert (= (* 1.5 two) three))
    (dolist (five '(5 5.0 ?\05))
      (Assert (= 30 (* five two three))))))

;; Test `+'
(Assert (= 0 (+)))

(dolist (one `(1 1.0 ?\01 ,(Int-to-Marker 1)))
  (Assert (= 1 (+ one))))

(dolist (two '(2 2.0 ?\02))
  (Assert (= 2 (+ two))))

(dolist (five '(5 5.0 ?\05))
  (dolist (two '(2 2.0 ?\02))
    (dolist (three '(3 3.0 ?\03))
      (Assert (= (+ three two) five))
      (Assert (= 10 (+ five two three))))))

;; Test `max', `min'
(dolist (one `(1 1.0 ?\01 ,(Int-to-Marker 1)))
  (Assert (= one (max one)))
  (Assert (= one (max one one)))
  (Assert (= one (max one one one)))
  (Assert (= one (min one)))
  (Assert (= one (min one one)))
  (Assert (= one (min one one one)))
  (dolist (two `(2 2.0 ?\02 ,(Int-to-Marker 2)))
    (Assert (= one (min one two)))
    (Assert (= one (min one two two)))
    (Assert (= one (min two two one)))
    (Assert (= two (max one two)))
    (Assert (= two (max one two two)))
    (Assert (= two (max two two one)))))

;; The byte compiler has special handling for these constructs:
(let ((three 3) (five 5))
  (Assert (= (+ three five 1) 9))
  (Assert (= (+ 1 three five) 9))
  (Assert (= (+ three five -1) 7))
  (Assert (= (+ -1 three five) 7))
  (Assert (= (+ three 1) 4))
  (Assert (= (+ three -1) 2))
  (Assert (= (+ -1 three) 2))
  (Assert (= (+ -1 three) 2))
  (Assert (= (- three five 1) -3))
  (Assert (= (- 1 three five) -7))
  (Assert (= (- three five -1) -1))
  (Assert (= (- -1 three five) -9))
  (Assert (= (- three 1) 2))
  (Assert (= (- three 2 1) 0))
  (Assert (= (- 2 three 1) -2))
  (Assert (= (- three -1) 4))
  (Assert (= (- three 0) 3))
  (Assert (= (- three 0 five) -2))
  (Assert (= (- 0 three 0 five) -8))
  (Assert (= (- 0 three five) -8))
  (Assert (= (* three 2) 6))
  (Assert (= (* three -1 five) -15))
  (Assert (= (* three 1 five) 15))
  (Assert (= (* three 0 five) 0))
  (Assert (= (* three 2 five) 30))
  (Assert (= (/ three 1) 3))
  (Assert (= (/ three -1) -3))
  (Assert (= (/ (* five five) 2 2) 6))
  (Assert (= (/ 64 five 2) 6)))


;;-----------------------------------------------------
;; Logical bit-twiddling operations
;;-----------------------------------------------------
(Assert (= (logxor)  0))
(Assert (= (logior)  0))
(Assert (= (logand) -1))

(Check-Error wrong-type-argument (logxor 3.0))
(Check-Error wrong-type-argument (logior 3.0))
(Check-Error wrong-type-argument (logand 3.0))

(dolist (three '(3 ?\03))
  (Assert (eq 3 (logand three)))
  (Assert (eq 3 (logxor three)))
  (Assert (eq 3 (logior three)))
  (Assert (eq 3 (logand three three)))
  (Assert (eq 0 (logxor three three)))
  (Assert (eq 3 (logior three three))))

(dolist (one `(1 ?\01 ,(Int-to-Marker 1)))
  (dolist (two '(2 ?\02))
    (Assert (eq 0 (logand one two)))
    (Assert (eq 3 (logior one two)))
    (Assert (eq 3 (logxor one two))))
  (dolist (three '(3 ?\03))
    (Assert (eq 1 (logand one three)))
    (Assert (eq 3 (logior one three)))
    (Assert (eq 2 (logxor one three)))))

;;-----------------------------------------------------
;; Test `%', mod
;;-----------------------------------------------------
(Check-Error wrong-number-of-arguments (%))
(Check-Error wrong-number-of-arguments (% 1))
(Check-Error wrong-number-of-arguments (% 1 2 3))

(Check-Error wrong-number-of-arguments (mod))
(Check-Error wrong-number-of-arguments (mod 1))
(Check-Error wrong-number-of-arguments (mod 1 2 3))

(Check-Error wrong-type-argument (% 10.0 2))
(Check-Error wrong-type-argument (% 10 2.0))

(dotimes (j 30)
  (let ((x (- (random) (random))))
    (Assert (eq x (+ (% x 17) (* (/ x 17) 17))))
    (Assert (eq (- x) (+ (% (- x) 17) (* (/ (- x) 17) 17))))
    (Assert (eq (% x -17) (- (% (- x) 17))))
    ))

(macrolet
    ((division-test (seven)
    `(progn
       (Assert (eq (% ,seven      2)  1))
       (Assert (eq (% ,seven     -2)  1))
       (Assert (eq (% (- ,seven)  2) -1))
       (Assert (eq (% (- ,seven) -2) -1))

       (Assert (eq (% ,seven      4)  3))
       (Assert (eq (% ,seven     -4)  3))
       (Assert (eq (% (- ,seven)  4) -3))
       (Assert (eq (% (- ,seven) -4) -3))

       (Assert (eq (%  35 ,seven)     0))
       (Assert (eq (% -35 ,seven)     0))
       (Assert (eq (%  35 (- ,seven)) 0))
       (Assert (eq (% -35 (- ,seven)) 0))

       (Assert (eq (mod ,seven      2)  1))
       (Assert (eq (mod ,seven     -2) -1))
       (Assert (eq (mod (- ,seven)  2)  1))
       (Assert (eq (mod (- ,seven) -2) -1))

       (Assert (eq (mod ,seven      4)  3))
       (Assert (eq (mod ,seven     -4) -1))
       (Assert (eq (mod (- ,seven)  4)  1))
       (Assert (eq (mod (- ,seven) -4) -3))

       (Assert (eq (mod  35 ,seven)     0))
       (Assert (eq (mod -35 ,seven)     0))
       (Assert (eq (mod  35 (- ,seven)) 0))
       (Assert (eq (mod -35 (- ,seven)) 0))

       (Assert (= (mod ,seven      2.0)  1.0))
       (Assert (= (mod ,seven     -2.0) -1.0))
       (Assert (= (mod (- ,seven)  2.0)  1.0))
       (Assert (= (mod (- ,seven) -2.0) -1.0))

       (Assert (= (mod ,seven      4.0)  3.0))
       (Assert (= (mod ,seven     -4.0) -1.0))
       (Assert (= (mod (- ,seven)  4.0)  1.0))
       (Assert (= (mod (- ,seven) -4.0) -3.0))

       (Assert (eq (% 0 ,seven) 0))
       (Assert (eq (% 0 (- ,seven)) 0))

       (Assert (eq (mod 0 ,seven) 0))
       (Assert (eq (mod 0 (- ,seven)) 0))

       (Assert (= (mod 0.0 ,seven) 0.0))
       (Assert (= (mod 0.0 (- ,seven)) 0.0)))))

  (division-test 7)
  (division-test ?\07)
  (division-test (Int-to-Marker 7)))



;;-----------------------------------------------------
;; Arithmetic comparison operations
;;-----------------------------------------------------
(Check-Error wrong-number-of-arguments (=))
(Check-Error wrong-number-of-arguments (<))
(Check-Error wrong-number-of-arguments (>))
(Check-Error wrong-number-of-arguments (<=))
(Check-Error wrong-number-of-arguments (>=))
(Check-Error wrong-number-of-arguments (/=))

;; One argument always yields t
(loop for x in `(1 1.0 ,(Int-to-Marker 1) ?z) do
  (Assert (eq t (=  x)))
  (Assert (eq t (<  x)))
  (Assert (eq t (>  x)))
  (Assert (eq t (>= x)))
  (Assert (eq t (<= x)))
  (Assert (eq t (/= x)))
  )

;; Type checking
(Check-Error wrong-type-argument (=  'foo 1))
(Check-Error wrong-type-argument (<= 'foo 1))
(Check-Error wrong-type-argument (>= 'foo 1))
(Check-Error wrong-type-argument (<  'foo 1))
(Check-Error wrong-type-argument (>  'foo 1))
(Check-Error wrong-type-argument (/= 'foo 1))

;; Meat
(dolist (one `(1 1.0 ,(Int-to-Marker 1) ?\01))
  (dolist (two '(2 2.0 ?\02))
    (Assert (<  one two))
    (Assert (<= one two))
    (Assert (<= two two))
    (Assert (>  two one))
    (Assert (>= two one))
    (Assert (>= two two))
    (Assert (/= one two))
    (Assert (not (/= two two)))
    (Assert (not (< one one)))
    (Assert (not (> one one)))
    (Assert (<= one one two two))
    (Assert (not (< one one two two)))
    (Assert (>= two two one one))
    (Assert (not (> two two one one)))
    (Assert (= one one one))
    (Assert (not (= one one one two)))
    (Assert (not (/= one two one)))
    ))

(dolist (one `(1 1.0 ,(Int-to-Marker 1) ?\01))
  (dolist (two '(2 2.0 ?\02))
    (Assert (<  one two))
    (Assert (<= one two))
    (Assert (<= two two))
    (Assert (>  two one))
    (Assert (>= two one))
    (Assert (>= two two))
    (Assert (/= one two))
    (Assert (not (/= two two)))
    (Assert (not (< one one)))
    (Assert (not (> one one)))
    (Assert (<= one one two two))
    (Assert (not (< one one two two)))
    (Assert (>= two two one one))
    (Assert (not (> two two one one)))
    (Assert (= one one one))
    (Assert (not (= one one one two)))
    (Assert (not (/= one two one)))
    ))

;; ad-hoc
(Assert (< 1 2))
(Assert (< 1 2 3 4 5 6))
(Assert (not (< 1 1)))
(Assert (not (< 2 1)))


(Assert (not (< 1 1)))
(Assert (< 1 2 3 4 5 6))
(Assert (<= 1 2 3 4 5 6))
(Assert (<= 1 2 3 4 5 6 6))
(Assert (not (< 1 2 3 4 5 6 6)))
(Assert (<= 1 1))

(Assert (not (eq (point) (point-marker))))
(Assert (= 1 (Int-to-Marker 1)))
(Assert (= (point) (point-marker)))

;;-----------------------------------------------------
;; testing list-walker functions
;;-----------------------------------------------------
(macrolet
    ((test-fun
      (fun)
      `(progn
	 (Check-Error wrong-number-of-arguments (,fun))
	 (Check-Error wrong-number-of-arguments (,fun nil))
	 (Check-Error malformed-list (,fun nil 1))
	 ,@(loop for n in '(1 2 2000)
	     collect `(Check-Error circular-list (,fun 1 (make-circular-list ,n))))))
     (test-funs (&rest funs) `(progn ,@(loop for fun in funs collect `(test-fun ,fun)))))

  (test-funs member old-member
	     memq   old-memq
	     assoc  old-assoc
	     rassoc old-rassoc
	     rassq  old-rassq
	     delete old-delete
	     delq   old-delq
	     remassoc remassq remrassoc remrassq))

(let ((x '((1 . 2) 3 (4 . 5))))
  (Assert (eq (assoc  1 x) (car x)))
  (Assert (eq (assq   1 x) (car x)))
  (Assert (eq (rassoc 1 x) nil))
  (Assert (eq (rassq  1 x) nil))
  (Assert (eq (assoc  2 x) nil))
  (Assert (eq (assq   2 x) nil))
  (Assert (eq (rassoc 2 x) (car x)))
  (Assert (eq (rassq  2 x) (car x)))
  (Assert (eq (assoc  3 x) nil))
  (Assert (eq (assq   3 x) nil))
  (Assert (eq (rassoc 3 x) nil))
  (Assert (eq (rassq  3 x) nil))
  (Assert (eq (assoc  4 x) (caddr x)))
  (Assert (eq (assq   4 x) (caddr x)))
  (Assert (eq (rassoc 4 x) nil))
  (Assert (eq (rassq  4 x) nil))
  (Assert (eq (assoc  5 x) nil))
  (Assert (eq (assq   5 x) nil))
  (Assert (eq (rassoc 5 x) (caddr x)))
  (Assert (eq (rassq  5 x) (caddr x)))
  (Assert (eq (assoc  6 x) nil))
  (Assert (eq (assq   6 x) nil))
  (Assert (eq (rassoc 6 x) nil))
  (Assert (eq (rassq  6 x) nil)))

(let ((x '(("1" . "2") "3" ("4" . "5"))))
  (Assert (eq (assoc  "1" x) (car x)))
  (Assert (eq (assq   "1" x) nil))
  (Assert (eq (rassoc "1" x) nil))
  (Assert (eq (rassq  "1" x) nil))
  (Assert (eq (assoc  "2" x) nil))
  (Assert (eq (assq   "2" x) nil))
  (Assert (eq (rassoc "2" x) (car x)))
  (Assert (eq (rassq  "2" x) nil))
  (Assert (eq (assoc  "3" x) nil))
  (Assert (eq (assq   "3" x) nil))
  (Assert (eq (rassoc "3" x) nil))
  (Assert (eq (rassq  "3" x) nil))
  (Assert (eq (assoc  "4" x) (caddr x)))
  (Assert (eq (assq   "4" x) nil))
  (Assert (eq (rassoc "4" x) nil))
  (Assert (eq (rassq  "4" x) nil))
  (Assert (eq (assoc  "5" x) nil))
  (Assert (eq (assq   "5" x) nil))
  (Assert (eq (rassoc "5" x) (caddr x)))
  (Assert (eq (rassq  "5" x) nil))
  (Assert (eq (assoc  "6" x) nil))
  (Assert (eq (assq   "6" x) nil))
  (Assert (eq (rassoc "6" x) nil))
  (Assert (eq (rassq  "6" x) nil)))

(flet ((a () (list '(1 . 2) 3 '(4 . 5))))
  (Assert (let* ((x (a)) (y (remassoc  1 x))) (and (not (eq x y)) (equal y '(3 (4 . 5))))))
  (Assert (let* ((x (a)) (y (remassq   1 x))) (and (not (eq x y)) (equal y '(3 (4 . 5))))))
  (Assert (let* ((x (a)) (y (remrassoc 1 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  1 x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  2 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   2 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc 2 x))) (and (not (eq x y)) (equal y '(3 (4 . 5))))))
  (Assert (let* ((x (a)) (y (remrassq  2 x))) (and (not (eq x y)) (equal y '(3 (4 . 5))))))

  (Assert (let* ((x (a)) (y (remassoc  3 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   3 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc 3 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  3 x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  4 x))) (and (eq x y) (equal y '((1 . 2) 3)))))
  (Assert (let* ((x (a)) (y (remassq   4 x))) (and (eq x y) (equal y '((1 . 2) 3)))))
  (Assert (let* ((x (a)) (y (remrassoc 4 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  4 x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  5 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   5 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc 5 x))) (and (eq x y) (equal y '((1 . 2) 3)))))
  (Assert (let* ((x (a)) (y (remrassq  5 x))) (and (eq x y) (equal y '((1 . 2) 3)))))

  (Assert (let* ((x (a)) (y (remassoc  6 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   6 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc 6 x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  6 x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (delete     3 x))) (and (eq x y) (equal y '((1 . 2) (4 . 5))))))
  (Assert (let* ((x (a)) (y (delq       3 x))) (and (eq x y) (equal y '((1 . 2) (4 . 5))))))
  (Assert (let* ((x (a)) (y (old-delete 3 x))) (and (eq x y) (equal y '((1 . 2) (4 . 5))))))
  (Assert (let* ((x (a)) (y (old-delq   3 x))) (and (eq x y) (equal y '((1 . 2) (4 . 5))))))

  (Assert (let* ((x (a)) (y (delete     '(1 . 2) x))) (and (not (eq x y)) (equal y '(3 (4 . 5))))))
  (Assert (let* ((x (a)) (y (delq       '(1 . 2) x))) (and      (eq x y)  (equal y (a)))))
  (Assert (let* ((x (a)) (y (old-delete '(1 . 2) x))) (and (not (eq x y)) (equal y '(3 (4 . 5))))))
  (Assert (let* ((x (a)) (y (old-delq   '(1 . 2) x))) (and      (eq x y)  (equal y (a)))))
  )



(flet ((a () (list '("1" . "2") "3" '("4" . "5"))))
  (Assert (let* ((x (a)) (y (remassoc  "1" x))) (and (not (eq x y)) (equal y '("3" ("4" . "5"))))))
  (Assert (let* ((x (a)) (y (remassq   "1" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc "1" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  "1" x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  "2" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   "2" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc "2" x))) (and (not (eq x y)) (equal y '("3" ("4" . "5"))))))
  (Assert (let* ((x (a)) (y (remrassq  "2" x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  "3" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   "3" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc "3" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  "3" x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  "4" x))) (and (eq x y) (equal y '(("1" . "2") "3")))))
  (Assert (let* ((x (a)) (y (remassq   "4" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc "4" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  "4" x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  "5" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   "5" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc "5" x))) (and (eq x y) (equal y '(("1" . "2") "3")))))
  (Assert (let* ((x (a)) (y (remrassq  "5" x))) (and (eq x y) (equal y (a)))))

  (Assert (let* ((x (a)) (y (remassoc  "6" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remassq   "6" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassoc "6" x))) (and (eq x y) (equal y (a)))))
  (Assert (let* ((x (a)) (y (remrassq  "6" x))) (and (eq x y) (equal y (a))))))

;;-----------------------------------------------------
;; function-max-args, function-min-args
;;-----------------------------------------------------
(defmacro check-function-argcounts (fun min max)
  `(progn
     (Assert (eq (function-min-args ,fun) ,min))
     (Assert (eq (function-max-args ,fun) ,max))))

(check-function-argcounts 'prog1 1 nil)         ; special form
(check-function-argcounts 'command-execute 1 3)	; normal subr
(check-function-argcounts 'funcall 1 nil)       ; `MANY' subr
(check-function-argcounts 'garbage-collect 0 0) ; no args subr

;; Test interpreted and compiled functions
(loop for (arglist min max) in
  '(((arg1 arg2 &rest args) 2 nil)
    ((arg1 arg2 &optional arg3 arg4) 2 4)
    ((arg1 arg2 &optional arg3 arg4 &rest args) 2 nil)
    (() 0 0))
  do
  (eval
   `(progn
      (defun test-fun ,arglist nil)
      (check-function-argcounts '(lambda ,arglist nil) ,min ,max)
      (check-function-argcounts (byte-compile '(lambda ,arglist nil)) ,min ,max))))

;;-----------------------------------------------------
;; Detection of cyclic variable indirection loops
;;-----------------------------------------------------
(fset 'test-sym1 'test-sym1)
(Check-Error cyclic-function-indirection (test-sym1))

(fset 'test-sym1 'test-sym2)
(fset 'test-sym2 'test-sym1)
(Check-Error cyclic-function-indirection (test-sym1))
(fmakunbound 'test-sym1) ; else macroexpand-internal infloops!
(fmakunbound 'test-sym2)

;;-----------------------------------------------------
;; Test `type-of'
;;-----------------------------------------------------
(Assert (eq (type-of load-path) 'cons))
(Assert (eq (type-of obarray) 'vector))
(Assert (eq (type-of 42) 'integer))
(Assert (eq (type-of ?z) 'character))
(Assert (eq (type-of "42") 'string))
(Assert (eq (type-of 'foo) 'symbol))
(Assert (eq (type-of (selected-device)) 'device))

;;-----------------------------------------------------
;; Test mapping functions
;;-----------------------------------------------------
(Check-Error wrong-type-argument (mapcar #'identity (current-buffer)))
(Assert (equal (mapcar #'identity load-path) load-path))
(Assert (equal (mapcar #'identity '(1 2 3)) '(1 2 3)))
(Assert (equal (mapcar #'identity "123") '(?1 ?2 ?3)))
(Assert (equal (mapcar #'identity [1 2 3]) '(1 2 3)))
(Assert (equal (mapcar #'identity #*010) '(0 1 0)))

(let ((z 0) (list (make-list 1000 1)))
  (mapc (lambda (x) (incf z x)) list)
  (Assert (eq 1000 z)))

(Check-Error wrong-type-argument (mapvector #'identity (current-buffer)))
(Assert (equal (mapvector #'identity '(1 2 3)) [1 2 3]))
(Assert (equal (mapvector #'identity "123") [?1 ?2 ?3]))
(Assert (equal (mapvector #'identity [1 2 3]) [1 2 3]))
(Assert (equal (mapvector #'identity #*010) [0 1 0]))

(Check-Error wrong-type-argument (mapconcat #'identity (current-buffer) "foo"))
(Assert (equal (mapconcat #'identity '("1" "2" "3") "|") "1|2|3"))
(Assert (equal (mapconcat #'identity ["1" "2" "3"]  "|") "1|2|3"))

;; The following 2 functions used to crash XEmacs via mapcar1().
;; We don't test the actual values of the mapcar, since they're undefined.
(Assert
 (let ((x (list (cons 1 1) (cons 2 2) (cons 3 3))))
   (mapcar
    (lambda (y)
      "Devious evil mapping function"
      (when (eq (car y) 2) ; go out onto a limb
	(setcdr x nil)     ; cut it off behind us
	(garbage-collect)) ; are we riding a magic broomstick?
      (car y))             ; sorry, hard landing
    x)))

(Assert
 (let ((x (list (cons 1 1) (cons 2 2) (cons 3 3))))
   (mapcar
    (lambda (y)
      "Devious evil mapping function"
      (when (eq (car y) 1)
	(setcdr (cdr x) 42)) ; drop a brick wall onto the freeway
      (car y))
    x)))

;;-----------------------------------------------------
;; Test vector functions
;;-----------------------------------------------------
(Assert (equal [1 2 3] [1 2 3]))
(Assert (equal [] []))
(Assert (not (equal [1 2 3] [])))
(Assert (not (equal [1 2 3] [1 2 4])))
(Assert (not (equal [0 2 3] [1 2 3])))
(Assert (not (equal [1 2 3] [1 2 3 4])))
(Assert (not (equal [1 2 3 4] [1 2 3])))
(Assert (equal (vector 1 2 3) [1 2 3]))
(Assert (equal (make-vector 3 1) [1 1 1]))

;;-----------------------------------------------------
;; Test bit-vector functions
;;-----------------------------------------------------
(Assert (equal #*010 #*010))
(Assert (equal #* #*))
(Assert (not (equal #*010 #*011)))
(Assert (not (equal #*010 #*)))
(Assert (not (equal #*110 #*010)))
(Assert (not (equal #*010 #*0100)))
(Assert (not (equal #*0101 #*010)))
(Assert (equal (bit-vector 0 1 0) #*010))
(Assert (equal (make-bit-vector 3 1) #*111))
(Assert (equal (make-bit-vector 3 0) #*000))

;;-----------------------------------------------------
;; Test buffer-local variables used as (ugh!) function parameters
;;-----------------------------------------------------
(make-local-variable 'test-emacs-buffer-local-variable)
(byte-compile
 (defun test-emacs-buffer-local-parameter (test-emacs-buffer-local-variable)
   (setq test-emacs-buffer-local-variable nil)))
(test-emacs-buffer-local-parameter nil)

;;-----------------------------------------------------
;; Test split-string
;;-----------------------------------------------------
;; Hrvoje didn't like these tests so I'm disabling them for now. -sb
;(Assert (equal (split-string "foo" "") '("" "f" "o" "o" "")))
;(Assert (equal (split-string "foo" "^") '("" "foo")))
;(Assert (equal (split-string "foo" "$") '("foo" "")))
(Assert (equal (split-string "foo,bar" ",") '("foo" "bar")))
(Assert (equal (split-string ",foo,bar," ",") '("" "foo" "bar" "")))
(Assert (equal (split-string ",foo,bar," "^,") '("" "foo,bar,")))
(Assert (equal (split-string ",foo,bar," ",$") '(",foo,bar" "")))
(Assert (equal (split-string ",foo,,bar," ",") '("" "foo" "" "bar" "")))
(Assert (equal (split-string "foo,,,bar" ",") '("foo" "" "" "bar")))
(Assert (equal (split-string "foo,,bar,," ",") '("foo" "" "bar" "" "")))
(Assert (equal (split-string "foo,,bar" ",+") '("foo" "bar")))
(Assert (equal (split-string ",foo,,bar," ",+") '("" "foo" "bar" "")))

(Assert (not (string-match "\\(\\.\\=\\)" ".")))
(Assert (string= "" (let ((str "test string"))
		      (if (string-match "^.*$" str)
			  (replace-match "\\U" t nil str)))))
(with-temp-buffer
  (erase-buffer)
  (insert "test string")
  (re-search-backward "^.*$")
  (replace-match "\\U" t)
  (Assert (and (bobp) (eobp))))

;;-----------------------------------------------------
;; Test near-text buffer functions.
;;-----------------------------------------------------
(with-temp-buffer
  (erase-buffer)
  (Assert (eq (char-before) nil))
  (Assert (eq (char-before (point)) nil))
  (Assert (eq (char-before (point-marker)) nil))
  (Assert (eq (char-before (point) (current-buffer)) nil))
  (Assert (eq (char-before (point-marker) (current-buffer)) nil))
  (Assert (eq (char-after) nil))
  (Assert (eq (char-after (point)) nil))
  (Assert (eq (char-after (point-marker)) nil))
  (Assert (eq (char-after (point) (current-buffer)) nil))
  (Assert (eq (char-after (point-marker) (current-buffer)) nil))
  (Assert (eq (preceding-char) 0))
  (Assert (eq (preceding-char (current-buffer)) 0))
  (Assert (eq (following-char) 0))
  (Assert (eq (following-char (current-buffer)) 0))
  (insert "foobar")
  (Assert (eq (char-before) ?r))
  (Assert (eq (char-after) nil))
  (Assert (eq (preceding-char) ?r))
  (Assert (eq (following-char) 0))
  (goto-char (point-min))
  (Assert (eq (char-before) nil))
  (Assert (eq (char-after) ?f))
  (Assert (eq (preceding-char) 0))
  (Assert (eq (following-char) ?f))
  )

;;-----------------------------------------------------
;; Test plist manipulation functions.
;;-----------------------------------------------------
(let ((sym (make-symbol "test-symbol")))
  (Assert (eq t (get* sym t t)))
  (Assert (eq t (get  sym t t)))
  (Assert (eq t (getf nil t t)))
  (Assert (eq t (plist-get nil t t)))
  (put sym 'bar 'baz)
  (Assert (eq 'baz (get sym 'bar)))
  (Assert (eq 'baz (getf '(bar baz) 'bar)))
  (Assert (eq 'baz (getf (symbol-plist sym) 'bar)))
  (Assert (eq 2 (getf '(1 2) 1)))
  (Assert (eq 4 (put sym 3 4)))
  (Assert (eq 4 (get sym 3)))
  (Assert (eq t (remprop sym 3)))
  (Assert (eq nil (remprop sym 3)))
  (Assert (eq 5 (get sym 3 5)))
  )

(loop for obj in
  (list (make-symbol "test-symbol")
	"test-string"
	(make-extent nil nil nil)
	(make-face 'test-face))
  do
  (Assert (eq 2 (get obj ?1 2)))
  (Assert (eq 4 (put obj ?3 4)))
  (Assert (eq 4 (get obj ?3)))
  (when (or (stringp obj) (symbolp obj))
    (Assert (equal '(?3 4) (object-plist obj))))
  (Assert (eq t (remprop obj ?3)))
  (when (or (stringp obj) (symbolp obj))
    (Assert (eq '() (object-plist obj))))
  (Assert (eq nil (remprop obj ?3)))
  (when (or (stringp obj) (symbolp obj))
    (Assert (eq '() (object-plist obj))))
  (Assert (eq 5 (get obj ?3 5)))
  )

(Check-Error-Message
 error "Object type has no properties"
 (get 2 'property))

(Check-Error-Message
 error "Object type has no settable properties"
 (put (current-buffer) 'property 'value))

(Check-Error-Message
 error "Object type has no removable properties"
 (remprop ?3 'property))

(Check-Error-Message
 error "Object type has no properties"
 (object-plist (symbol-function 'car)))

(Check-Error-Message
 error "Can't remove property from object"
 (remprop (make-extent nil nil nil) 'detachable))

;;-----------------------------------------------------
;; Test subseq
;;-----------------------------------------------------
(Assert (equal (subseq nil 0) nil))
(Assert (equal (subseq [1 2 3] 0) [1 2 3]))
(Assert (equal (subseq [1 2 3] 1 -1) [2]))
(Assert (equal (subseq "123" 0) "123"))
(Assert (equal (subseq "1234" -3 -1) "23"))
(Assert (equal (subseq #*0011 0) #*0011))
(Assert (equal (subseq #*0011 -3 3) #*01))
(Assert (equal (subseq '(1 2 3) 0) '(1 2 3)))
(Assert (equal (subseq '(1 2 3 4) -3 nil) '(2 3 4)))

(Check-Error wrong-type-argument (subseq 3 2))
(Check-Error args-out-of-range (subseq [1 2 3] -42))
(Check-Error args-out-of-range (subseq [1 2 3] 0 42))

;;-----------------------------------------------------
;; Time-related tests
;;-----------------------------------------------------
(Assert (= (length (current-time-string)) 24))

;;-----------------------------------------------------
;; format test
;;-----------------------------------------------------
(Assert (string= (format "%d" 10) "10"))
(Assert (string= (format "%o" 8) "10"))
(Assert (string= (format "%x" 31) "1f"))
(Assert (string= (format "%X" 31) "1F"))
;; MS-Windows uses +002 in its floating-point numbers.  #### We should
;; perhaps fix this, but writing our own floating-point support in doprnt.c
;; is very hard.
(Assert (or (string= (format "%e" 100) "1.000000e+02")
	    (string= (format "%e" 100) "1.000000e+002")))
(Assert (or (string= (format "%E" 100) "1.000000E+02")
	    (string= (format "%E" 100) "1.000000E+002")))
(Assert (or (string= (format "%E" 100) "1.000000E+02")
	    (string= (format "%E" 100) "1.000000E+002")))
(Assert (string= (format "%f" 100) "100.000000"))
(Assert (string= (format "%7.3f" 12.12345) " 12.123"))
(Assert (string= (format "%07.3f" 12.12345) "012.123"))
(Assert (string= (format "%-7.3f" 12.12345) "12.123 "))
(Assert (string= (format "%-07.3f" 12.12345) "12.123 "))
(Assert (string= (format "%g" 100.0) "100"))
(Assert (or (string= (format "%g" 0.000001) "1e-06")
	    (string= (format "%g" 0.000001) "1e-006")))
(Assert (string= (format "%g" 0.0001) "0.0001"))
(Assert (string= (format "%G" 100.0) "100"))
(Assert (or (string= (format "%G" 0.000001) "1E-06")
	    (string= (format "%G" 0.000001) "1E-006")))
(Assert (string= (format "%G" 0.0001) "0.0001"))

(Assert (string= (format "%2$d%1$d" 10 20) "2010"))
(Assert (string= (format "%-d" 10) "10"))
(Assert (string= (format "%-4d" 10) "10  "))
(Assert (string= (format "%+d" 10) "+10"))
(Assert (string= (format "%+d" -10) "-10"))
(Assert (string= (format "%+4d" 10) " +10"))
(Assert (string= (format "%+4d" -10) " -10"))
(Assert (string= (format "% d" 10) " 10"))
(Assert (string= (format "% d" -10) "-10"))
(Assert (string= (format "% 4d" 10) "  10"))
(Assert (string= (format "% 4d" -10) " -10"))
(Assert (string= (format "%0d" 10) "10"))
(Assert (string= (format "%0d" -10) "-10"))
(Assert (string= (format "%04d" 10) "0010"))
(Assert (string= (format "%04d" -10) "-010"))
(Assert (string= (format "%*d" 4 10) "  10"))
(Assert (string= (format "%*d" 4 -10) " -10"))
(Assert (string= (format "%*d" -4 10) "10  "))
(Assert (string= (format "%*d" -4 -10) "-10 "))
(Assert (string= (format "%#d" 10) "10"))
(Assert (string= (format "%#o" 8) "010"))
(Assert (string= (format "%#x" 16) "0x10"))
(Assert (or (string= (format "%#e" 100) "1.000000e+02")
	    (string= (format "%#e" 100) "1.000000e+002")))
(Assert (or (string= (format "%#E" 100) "1.000000E+02")
	    (string= (format "%#E" 100) "1.000000E+002")))
(Assert (string= (format "%#f" 100) "100.000000"))
(Assert (string= (format "%#g" 100.0) "100.000"))
(Assert (or (string= (format "%#g" 0.000001) "1.00000e-06")
	    (string= (format "%#g" 0.000001) "1.00000e-006")))
(Assert (string= (format "%#g" 0.0001) "0.000100000"))
(Assert (string= (format "%#G" 100.0) "100.000"))
(Assert (or (string= (format "%#G" 0.000001) "1.00000E-06")
	    (string= (format "%#G" 0.000001) "1.00000E-006")))
(Assert (string= (format "%#G" 0.0001) "0.000100000"))
(Assert (string= (format "%.1d" 10) "10"))
(Assert (string= (format "%.4d" 10) "0010"))
;; Combination of `-', `+', ` ', `0', `#', `.', `*'
(Assert (string= (format "%-04d" 10) "10  "))
(Assert (string= (format "%-*d" 4 10) "10  "))
;; #### Correctness of this behavior is questionable.
;; It might be better to signal error.
(Assert (string= (format "%-*d" -4 10) "10  "))
;; These behavior is not specified.
;; (format "%-+d" 10)
;; (format "%- d" 10)
;; (format "%-01d" 10)
;; (format "%-#4x" 10)
;; (format "%-.1d" 10)

(Assert (string= (format "%01.1d" 10) "10"))
(Assert (string= (format "%03.1d" 10) " 10"))
(Assert (string= (format "%01.3d" 10) "010"))
(Assert (string= (format "%1.3d" 10) "010"))
(Assert (string= (format "%3.1d" 10) " 10"))

;;; The following two tests used to use 1000 instead of 100,
;;; but that merely found buffer overflow bugs in Solaris sprintf().
(Assert (= 102 (length (format "%.100f" 3.14))))
(Assert (= 100 (length (format "%100f" 3.14))))

;;; Check for 64-bit cleanness on LP64 platforms.
(Assert (= (read (format "%d"  most-positive-fixnum)) most-positive-fixnum))
(Assert (= (read (format "%ld" most-positive-fixnum)) most-positive-fixnum))
(Assert (= (read (format "%u"  most-positive-fixnum)) most-positive-fixnum))
(Assert (= (read (format "%lu" most-positive-fixnum)) most-positive-fixnum))
(Assert (= (read (format "%d"  most-negative-fixnum)) most-negative-fixnum))
(Assert (= (read (format "%ld" most-negative-fixnum)) most-negative-fixnum))

;;; "%u" is undocumented, and Emacs Lisp has no unsigned type.
;;; What to do if "%u" is used with a negative number?
;;; The most reasonable thing seems to be to print an un-read-able number.
;;; The printed value might be useful to a human, if not to Emacs Lisp.
(Check-Error invalid-read-syntax (read (format "%u" most-negative-fixnum)))
(Check-Error invalid-read-syntax (read (format "%u" -1)))

;; Check all-completions ignore element start with space.
(Assert (not (all-completions "" '((" hidden" . "object")))))
(Assert (all-completions " " '((" hidden" . "object"))))