Mercurial > hg > xemacs-beta
view src/symeval.h @ 826:6728e641994e
[xemacs-hg @ 2002-05-05 11:30:15 by ben]
syntax cache, 8-bit-format, lots of code cleanup
README.packages: Update info about --package-path.
i.c: Create an inheritable event and pass it on to XEmacs, so that ^C
can be handled properly. Intercept ^C and signal the event.
"Stop Build" in VC++ now works.
bytecomp-runtime.el: Doc string changes.
compat.el: Some attempts to redo this to
make it truly useful and fix the "multiple versions interacting
with each other" problem. Not yet done. Currently doesn't work.
files.el: Use with-obsolete-variable to avoid warnings in new revert-buffer code.
xemacs.mak: Split up CFLAGS into a version without flags specifying the C
library. The problem seems to be that minitar depends on zlib,
which depends specifically on libc.lib, not on any of the other C
libraries. Unless you compile with libc.lib, you get errors --
specifically, no _errno in the other libraries, which must make it
something other than an int. (#### But this doesn't seem to obtain
in XEmacs, which also uses zlib, and can be linked with any of the
C libraries. Maybe zlib is used differently and doesn't need
errno, or maybe XEmacs provides an int errno; ... I don't
understand.
Makefile.in.in: Fix so that packages are around when testing.
abbrev.c, alloc.c, buffer.c, buffer.h, bytecode.c, callint.c, casefiddle.c, casetab.c, casetab.h, charset.h, chartab.c, chartab.h, cmds.c, console-msw.h, console-stream.c, console-x.c, console.c, console.h, data.c, device-msw.c, device.c, device.h, dialog-msw.c, dialog-x.c, dired-msw.c, dired.c, doc.c, doprnt.c, dumper.c, editfns.c, elhash.c, emacs.c, eval.c, event-Xt.c, event-gtk.c, event-msw.c, event-stream.c, events.c, events.h, extents.c, extents.h, faces.c, file-coding.c, file-coding.h, fileio.c, fns.c, font-lock.c, frame-gtk.c, frame-msw.c, frame-x.c, frame.c, frame.h, glade.c, glyphs-gtk.c, glyphs-msw.c, glyphs-msw.h, glyphs-x.c, glyphs.c, glyphs.h, gui-msw.c, gui-x.c, gui.h, gutter.h, hash.h, indent.c, insdel.c, intl-win32.c, intl.c, keymap.c, lisp-disunion.h, lisp-union.h, lisp.h, lread.c, lrecord.h, lstream.c, lstream.h, marker.c, menubar-gtk.c, menubar-msw.c, menubar-x.c, menubar.c, minibuf.c, mule-ccl.c, mule-charset.c, mule-coding.c, mule-wnnfns.c, nas.c, objects-msw.c, objects-x.c, opaque.c, postgresql.c, print.c, process-nt.c, process-unix.c, process.c, process.h, profile.c, rangetab.c, redisplay-gtk.c, redisplay-msw.c, redisplay-output.c, redisplay-x.c, redisplay.c, redisplay.h, regex.c, regex.h, scrollbar-msw.c, search.c, select-x.c, specifier.c, specifier.h, symbols.c, symsinit.h, syntax.c, syntax.h, syswindows.h, tests.c, text.c, text.h, tooltalk.c, ui-byhand.c, ui-gtk.c, unicode.c, win32.c, window.c: Another big Ben patch.
-- FUNCTIONALITY CHANGES:
add partial support for 8-bit-fixed, 16-bit-fixed, and
32-bit-fixed formats. not quite done yet. (in particular, needs
functions to actually convert the buffer.) NOTE: lots of changes
to regex.c here. also, many new *_fmt() inline funs that take an
Internal_Format argument.
redo syntax cache code. make the cache per-buffer; keep the cache
valid across calls to functions that use it. also keep it valid
across insertions/deletions and extent changes, as much as is
possible. eliminate the junky regex-reentrancy code by passing in
the relevant lisp info to the regex routines as local vars.
add general mechanism in extents code for signalling extent changes.
fix numerous problems with the case-table implementation; yoshiki
never properly transferred many algorithms from old-style to
new-style case tables.
redo char tables to support a default argument, so that mapping
only occurs over changed args. change many chartab functions to
accept Lisp_Object instead of Lisp_Char_Table *.
comment out the code in font-lock.c by default, because
font-lock.el no longer uses it. we should consider eliminating it
entirely.
Don't output bell as ^G in console-stream when not a TTY.
add -mswindows-termination-handle to interface with i.c, so we can
properly kill a build.
add more error-checking to buffer/string macros.
add some additional buffer_or_string_() funs.
-- INTERFACE CHANGES AFFECTING MORE CODE:
switch the arguments of write_c_string and friends to be
consistent with write_fmt_string, which must have printcharfun
first.
change BI_* macros to BYTE_* for increased clarity; similarly for
bi_* local vars.
change VOID_TO_LISP to be a one-argument function. eliminate
no-longer-needed CVOID_TO_LISP.
-- char/string macro changes:
rename MAKE_CHAR() to make_emchar() for slightly less confusion
with make_char(). (The former generates an Emchar, the latter a
Lisp object. Conceivably we should rename make_char() -> wrap_char()
and similarly for make_int(), make_float().)
Similar changes for other *CHAR* macros -- we now consistently use
names with `emchar' whenever we are working with Emchars. Any
remaining name with just `char' always refers to a Lisp object.
rename macros with XSTRING_* to string_* except for those that
reference actual fields in the Lisp_String object, following
conventions used elsewhere.
rename set_string_{data,length} macros (the only ones to work with
a Lisp_String_* instead of a Lisp_Object) to set_lispstringp_*
to make the difference clear.
try to be consistent about caps vs. lowercase in macro/inline-fun
names for chars and such, which wasn't the case before. we now
reserve caps either for XFOO_ macros that reference object fields
(e.g. XSTRING_DATA) or for things that have non-function semantics,
e.g. directly modifying an arg (BREAKUP_EMCHAR) or evaluating an
arg (any arg) more than once. otherwise, use lowercase.
here is a summary of most of the macros/inline funs changed by all
of the above changes:
BYTE_*_P -> byte_*_p
XSTRING_BYTE -> string_byte
set_string_data/length -> set_lispstringp_data/length
XSTRING_CHAR_LENGTH -> string_char_length
XSTRING_CHAR -> string_emchar
INTBYTE_FIRST_BYTE_P -> intbyte_first_byte_p
INTBYTE_LEADING_BYTE_P -> intbyte_leading_byte_p
charptr_copy_char -> charptr_copy_emchar
LEADING_BYTE_* -> leading_byte_*
CHAR_* -> EMCHAR_*
*_CHAR_* -> *_EMCHAR_*
*_CHAR -> *_EMCHAR
CHARSET_BY_ -> charset_by_*
BYTE_SHIFT_JIS* -> byte_shift_jis*
BYTE_BIG5* -> byte_big5*
REP_BYTES_BY_FIRST_BYTE -> rep_bytes_by_first_byte
char_to_unicode -> emchar_to_unicode
valid_char_p -> valid_emchar_p
Change intbyte_strcmp -> qxestrcmp_c (duplicated functionality).
-- INTERFACE CHANGES AFFECTING LESS CODE:
use DECLARE_INLINE_HEADER in various places.
remove '#ifdef emacs' from XEmacs-only files.
eliminate CHAR_TABLE_VALUE(), which duplicated the functionality
of get_char_table().
add BUFFER_TEXT_LOOP to simplify iterations over buffer text.
define typedefs for signed and unsigned types of fixed sizes
(INT_32_BIT, UINT_32_BIT, etc.).
create ALIGN_FOR_TYPE as a higher-level interface onto ALIGN_SIZE;
fix code to use it.
add charptr_emchar_len to return the text length of the character
pointed to by a ptr; use it in place of
charcount_to_bytecount(..., 1). add emchar_len to return the text
length of a given character.
add types Bytexpos and Charxpos to generalize Bytebpos/Bytecount
and Charbpos/Charcount, in code (particularly, the extents code
and redisplay code) that works with either kind of index. rename
redisplay struct params with names such as `charbpos' to
e.g. `charpos' when they are e.g. a Charxpos, not a Charbpos.
eliminate xxDEFUN in place of DEFUN; no longer necessary with
changes awhile back to doc.c.
split up big ugly combined list of EXFUNs in lisp.h on a
file-by-file basis, since other prototypes are similarly split.
rewrite some "*_UNSAFE" macros as inline funs and eliminate the
_UNSAFE suffix.
move most string code from lisp.h to text.h; the string code and
text.h code is now intertwined in such a fashion that they need
to be in the same place and partially interleaved. (you can't
create forward references for inline funs)
automated/lisp-tests.el, automated/symbol-tests.el, automated/test-harness.el: Fix test harness to output FAIL messages to stderr when in
batch mode.
Fix up some problems in lisp-tests/symbol-tests that were
causing spurious failures.
author | ben |
---|---|
date | Sun, 05 May 2002 11:33:57 +0000 |
parents | e38acbeb1cae |
children | 184461bc8de4 |
line wrap: on
line source
/* Definitions of symbol-value forwarding for XEmacs Lisp interpreter. Copyright (C) 1985, 1986, 1987, 1992, 1993 Free Software Foundation, Inc. Copyright (C) 2000, 2001, 2002 Ben Wing. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: Not in FSF. */ /* Fsymbol_value checks whether XSYMBOL (sym)->value is one of these, * and does weird magic stuff if so */ #ifndef INCLUDED_symeval_h_ #define INCLUDED_symeval_h_ enum symbol_value_type { /* The following tags use the 'symbol_value_forward' structure and are strictly for variables DEFVARed on the C level. */ SYMVAL_FIXNUM_FORWARD, /* Forward C "Fixnum", really "EMACS_INT" */ SYMVAL_CONST_FIXNUM_FORWARD, /* Same, but can't be set */ SYMVAL_BOOLEAN_FORWARD, /* Forward C boolean ("int") */ SYMVAL_CONST_BOOLEAN_FORWARD, /* Same, but can't be set */ SYMVAL_OBJECT_FORWARD, /* Forward C Lisp_Object */ SYMVAL_CONST_OBJECT_FORWARD, /* Same, but can't be set */ SYMVAL_CONST_SPECIFIER_FORWARD, /* Same, can't be set, but gives a different message when attempting to set that says "use set-specifier" */ SYMVAL_DEFAULT_BUFFER_FORWARD, /* Forward Lisp_Object into Vbuffer_defaults */ SYMVAL_CURRENT_BUFFER_FORWARD, /* Forward Lisp_Object into current_buffer */ SYMVAL_CONST_CURRENT_BUFFER_FORWARD, /* Forward Lisp_Object into current_buffer, can't be set */ SYMVAL_DEFAULT_CONSOLE_FORWARD, /* Forward Lisp_Object into Vconsole_defaults */ SYMVAL_SELECTED_CONSOLE_FORWARD, /* Forward Lisp_Object into Vselected_console */ SYMVAL_CONST_SELECTED_CONSOLE_FORWARD, /* Forward Lisp_Object into Vselected_console, can't be set */ SYMVAL_UNBOUND_MARKER, /* Only Qunbound actually has this tag */ /* The following tags use the 'symbol_value_buffer_local' structure */ SYMVAL_BUFFER_LOCAL, /* make-variable-buffer-local */ SYMVAL_SOME_BUFFER_LOCAL, /* make-local-variable */ /* The following tag uses the 'symbol_value_lisp_magic' structure */ SYMVAL_LISP_MAGIC, /* Forward to lisp callbacks */ /* The following tag uses the 'symbol_value_varalias' structure */ SYMVAL_VARALIAS /* defvaralias */ #if 0 /* NYI */ SYMVAL_CONSTANT_SYMBOL, /* Self-evaluating symbol */ /* NYI */ #endif }; /* Underlying C type used to implement DEFVAR_INT */ typedef EMACS_INT Fixnum; struct symbol_value_magic { struct lcrecord_header lcheader; void *value; enum symbol_value_type type; }; #define SYMBOL_VALUE_MAGIC_P(x) \ (LRECORDP (x) && \ XRECORD_LHEADER (x)->type <= lrecord_type_max_symbol_value_magic) #define XSYMBOL_VALUE_MAGIC_TYPE(v) \ (((struct symbol_value_magic *) XPNTR (v))->type) #define wrap_symbol_value_magic(p) wrap_pointer_1 (p) void print_symbol_value_magic (Lisp_Object, Lisp_Object, int); /********** The various different symbol-value-magic types ***********/ /* 1. symbol-value-forward */ /* This type of symbol-value-magic is used for variables declared DEFVAR_LISP, DEFVAR_INT, DEFVAR_BOOL, DEFVAR_BUFFER_LOCAL, DEFVAR_BUFFER_DEFAULTS, DEFVAR_SPECIFIER, and for Qunbound. Note that some of these types of variables can be made buffer-local. Then, the symbol's value field contains a symbol-value-buffer-local, whose CURRENT-VALUE field then contains a symbol-value-forward. */ struct symbol_value_forward { struct symbol_value_magic magic; /* `magicfun' is a function controlling the magic behavior of this forward variable. SYM is the symbol being operated on (read, set, etc.); VAL is either the value to set or the value to be returned. IN_OBJECT is the buffer or console that the value is read in or set in. A value of Qnil means that the current buffer and possibly other buffers are being set. (This value will never be passed for built-in buffer-local or console-local variables such as `truncate-lines'.) (Currently, a value of Qnil is always passed for DEFVAR_INT, DEFVAR_LISP, and DEFVAR_BOOL variables; the code isn't smart enough to figure out what buffers besides the current buffer are being affected. Because the magic function is called before the value is changed, it's not that easy to determine which buffers are getting changed. #### If this information is important, let me know and I will look into providing it.) (Remember also that the only console-local variables currently existing are built-in ones, because others can't be created.) FLAGS gives more information about the operation being performed. The return value indicates what the magic function actually did. Currently FLAGS and the return value are not used. This function is only called when the value of a forward variable is about to be changed. Note that this can occur explicitly through a call to `set', `setq', `set-default', or `setq-default', or implicitly by the current buffer being changed. */ int (*magicfun) (Lisp_Object sym, Lisp_Object *val, Lisp_Object in_object, int flags); }; DECLARE_LRECORD (symbol_value_forward, struct symbol_value_forward); #define XSYMBOL_VALUE_FORWARD(x) \ XRECORD (x, symbol_value_forward, struct symbol_value_forward) #define symbol_value_forward_forward(m) ((void *)((m)->magic.value)) #define symbol_value_forward_magicfun(m) ((m)->magicfun) /* 2. symbol-value-buffer-local */ struct symbol_value_buffer_local { struct symbol_value_magic magic; /* Used in a symbol value cell when the symbol's value is per-buffer. The type of the symbol-value-magic will be either SYMVAL_BUFFER_LOCAL (i.e. `make-variable-buffer-local' was called) or SYMVAL_SOME_BUFFER_LOCAL (i.e. `make-local-variable' was called). The only difference between the two is that when setting the former kind of variable, an implicit `make-local-variable' is called. A buffer-local variable logically has -- a default value -- local values in some buffers The primary place where the local values are stored is in each buffer's local_var_alist slot. In the simplest implementation, all that this structure needs to keep track of is the default value; to retrieve the value in a buffer, look in that buffer's local_var_alist, and use the default value if there is no local value. To implement `make-local-variable' in a buffer, look in the buffer's local_var_alist, and if no element exists for this symbol, add one, copying the value from the default value. When setting the value in a buffer, look in the buffer's local_var_alist, and set the value in that list if an element exists for this symbol; otherwise, set the default. (Remember that SYMVAL_BUFFER_LOCAL variables implicitly call `make-local-variable' first, so when setting a value, there will always be an entry in the buffer's local_var_alist to set.) However, this operation is potentially slow. To speed it up, we cache the value in one buffer in this structure. NOTE: This is *not* a write-through cache. I.e. when setting the value in the buffer that is cached, we *only* change the cache and don't write the value through to either the buffer's local_var_alist or the default value. Therefore, when retrieving a value in a buffer, you must *always* look in the cache to see if it refers to that buffer. The cache consists of -- a buffer, or nil if the cache has not been set up -- the value in that buffer -- the element (a cons) from the buffer's local_var_alist, or nil if there is no local value in the buffer These slots are called CURRENT-BUFFER, CURRENT-VALUE, and CURRENT-ALIST-ELEMENT, respectively. If we want to examine or set the value in BUFFER and CURRENT-BUFFER equals BUFFER, we just examine or set CURRENT-VALUE. Otherwise, we store CURRENT-VALUE value into CURRENT-ALIST-ELEMENT (or maybe into DEFAULT-VALUE), then find the appropriate alist element for BUFFER and set up CURRENT-ALIST-ELEMENT. Then we set CURRENT-VALUE out of that element (or maybe out of DEFAULT-VALUE), and store BUFFER into CURRENT-BUFFER. If we are setting the variable and the current buffer does not have an alist entry for this variable, an alist entry is created. Note that CURRENT-BUFFER's local_var_alist value for this variable might be out-of-date (the correct value is stored in CURRENT-VALUE). Similarly, if CURRENT-BUFFER sees the default value, then DEFAULT-VALUE might be out-of-date. Note that CURRENT-VALUE (but not DEFAULT-VALUE) can be a forwarding pointer. Each time it is examined or set, forwarding must be done. */ Lisp_Object default_value; Lisp_Object current_value; Lisp_Object current_buffer; Lisp_Object current_alist_element; }; DECLARE_LRECORD (symbol_value_buffer_local, struct symbol_value_buffer_local); #define XSYMBOL_VALUE_BUFFER_LOCAL(x) \ XRECORD (x, symbol_value_buffer_local, struct symbol_value_buffer_local) #define SYMBOL_VALUE_BUFFER_LOCAL_P(x) RECORDP (x, symbol_value_buffer_local) /* 3. symbol-value-lisp-magic */ enum lisp_magic_handler { MAGIC_HANDLER_GET_VALUE, MAGIC_HANDLER_SET_VALUE, MAGIC_HANDLER_BOUND_PREDICATE, MAGIC_HANDLER_MAKE_UNBOUND, MAGIC_HANDLER_LOCAL_PREDICATE, MAGIC_HANDLER_MAKE_LOCAL, MAGIC_HANDLER_MAX }; struct symbol_value_lisp_magic { struct symbol_value_magic magic; Lisp_Object handler[MAGIC_HANDLER_MAX]; Lisp_Object harg[MAGIC_HANDLER_MAX]; Lisp_Object shadowed; }; DECLARE_LRECORD (symbol_value_lisp_magic, struct symbol_value_lisp_magic); #define XSYMBOL_VALUE_LISP_MAGIC(x) \ XRECORD (x, symbol_value_lisp_magic, struct symbol_value_lisp_magic) #define SYMBOL_VALUE_LISP_MAGIC_P(x) RECORDP (x, symbol_value_lisp_magic) /* 4. symbol-value-varalias */ struct symbol_value_varalias { struct symbol_value_magic magic; Lisp_Object aliasee; Lisp_Object shadowed; }; DECLARE_LRECORD (symbol_value_varalias, struct symbol_value_varalias); #define XSYMBOL_VALUE_VARALIAS(x) \ XRECORD (x, symbol_value_varalias, struct symbol_value_varalias) #define SYMBOL_VALUE_VARALIAS_P(x) RECORDP (x, symbol_value_varalias) #define symbol_value_varalias_aliasee(m) ((m)->aliasee) #define symbol_value_varalias_shadowed(m) ((m)->shadowed) /* To define a Lisp primitive function using a C function `Fname', do this: DEFUN ("name, Fname, ...); // at top level in foo.c DEFSUBR (Fname); // in syms_of_foo(); */ void defsubr (Lisp_Subr *); #define DEFSUBR(Fname) defsubr (&S##Fname) /* To define a Lisp primitive macro using a C function `Fname', do this: DEFUN ("name, Fname, ...); // at top level in foo.c DEFSUBR_MACRO (Fname); // in syms_of_foo(); */ void defsubr_macro (Lisp_Subr *); #define DEFSUBR_MACRO(Fname) defsubr_macro (&S##Fname) void defsymbol_massage_name (Lisp_Object *location, const char *name); void defsymbol_massage_name_nodump (Lisp_Object *location, const char *name); void defsymbol_massage_multiword_predicate (Lisp_Object *location, const char *name); void defsymbol_massage_multiword_predicate_nodump (Lisp_Object *location, const char *name); void defsymbol (Lisp_Object *location, const char *name); void defsymbol_nodump (Lisp_Object *location, const char *name); /* Defining symbols: (1) A standard symbol is defined with DEFSYMBOL. That means that the symbol's print name can be derived from the symbol's variable name by removing the initial Q and replacing underscores with hyphens. (2) A keyword symbol is defined with DEFKEYWORD. That means that the symbol's print name can be derived from the symbol's variable name by removing the initial Q and replacing underscores with hyphens, except that the initial underscore, which comes directly after the Q, is replaced by a colon. (3) DEFSYMBOL_MULTIWORD_PREDICATE is used for the predicates that are associated with a particular type of Lisp Object. Because of the limitations of C macros, they're always given a predicate symbol whose C name simply appends `p' to the type name, modulo hyphen/ underscore conversion. Properly, however, the Lisp name should have `-p' if there is more than one word in the type name. DEFSYMBOL_MULTIWORD_PREDICATE is for these weird symbols -- the C name as supplied to the macro should end with a `p' with no underscore before it, and the macro will insert a hyphen there in the Lisp name. (4) In case you have some weird symbol where the equivalence between the C and Lisp names is more complicated (e.g. the Lisp symbol has non-alphabetic, non-numeric characters in it), you can just call defsymbol() (the lowercase version) directly. */ #define DEFSYMBOL(name) defsymbol_massage_name (&name, #name) #define DEFSYMBOL_NO_DUMP(name) defsymbol_massage_name_nodump (&name, #name) #define DEFSYMBOL_MULTIWORD_PREDICATE(name) \ defsymbol_massage_multiword_predicate (&name, #name) #define DEFSYMBOL_MULTIWORD_PREDICATE_NO_DUMP(name) \ defsymbol_massage_multiword_predicate_nodump (&name, #name) void defkeyword (Lisp_Object *location, const char *name); void defkeyword_massage_name (Lisp_Object *location, const char *name); #define DEFKEYWORD(name) defkeyword_massage_name (&name, #name) void deferror (Lisp_Object *symbol, const char *name, const char *message, Lisp_Object inherits_from); void deferror_massage_name (Lisp_Object *symbol, const char *name, const char *message, Lisp_Object inherits_from); void deferror_massage_name_and_message (Lisp_Object *symbol, const char *name, Lisp_Object inherits_from); #define DEFERROR(name, message, inherits_from) \ deferror_massage_name (&name, #name, message, inherits_from) /* In this case, the error message is the same as the name, modulo some prettifying */ #define DEFERROR_STANDARD(name, inherits_from) \ deferror_massage_name_and_message (&name, #name, inherits_from) /* Macros we use to define forwarded Lisp variables. These are used in the syms_of_FILENAME functions. */ void defvar_magic (const char *symbol_name, const struct symbol_value_forward *magic); #define DEFVAR_SYMVAL_FWD(lname, c_location, forward_type, magicfun) \ do \ { \ static const struct symbol_value_forward I_hate_C = \ { /* struct symbol_value_forward */ \ { /* struct symbol_value_magic */ \ { /* struct lcrecord_header */ \ { /* struct lrecord_header */ \ lrecord_type_symbol_value_forward, /* lrecord_type_index */ \ 1, /* mark bit */ \ 1, /* c_readonly bit */ \ 1 /* lisp_readonly bit */ \ }, \ 0, /* next */ \ 0, /* uid */ \ 0 /* free */ \ }, \ c_location, \ forward_type \ }, \ magicfun \ }; \ defvar_magic ((lname), &I_hate_C); \ } while (0) #define DEFVAR_SYMVAL_FWD_INT(lname, c_location, forward_type, magicfun) \ do \ { \ DEFVAR_SYMVAL_FWD (lname, c_location, forward_type, magicfun); \ dump_add_opaque_int (c_location); \ } while (0) #define DEFVAR_SYMVAL_FWD_FIXNUM(lname, c_location, forward_type, magicfun) \ do \ { \ DEFVAR_SYMVAL_FWD (lname, c_location, forward_type, magicfun); \ dump_add_opaque_fixnum (c_location); \ } while (0) #define DEFVAR_SYMVAL_FWD_OBJECT(lname, c_location, forward_type, magicfun) \ do \ { \ DEFVAR_SYMVAL_FWD (lname, c_location, forward_type, magicfun); \ { \ Lisp_Object *DSF_location = c_location; /* Type check */ \ staticpro (DSF_location); \ if (EQ (*DSF_location, Qnull_pointer)) *DSF_location = Qnil; \ } \ } while (0) #define DEFVAR_LISP(lname, c_location) \ DEFVAR_SYMVAL_FWD_OBJECT (lname, c_location, SYMVAL_OBJECT_FORWARD, 0) #define DEFVAR_CONST_LISP(lname, c_location) \ DEFVAR_SYMVAL_FWD_OBJECT (lname, c_location, SYMVAL_CONST_OBJECT_FORWARD, 0) #define DEFVAR_SPECIFIER(lname, c_location) \ DEFVAR_SYMVAL_FWD_OBJECT (lname, c_location, SYMVAL_CONST_SPECIFIER_FORWARD, 0) #define DEFVAR_INT(lname, c_location) \ DEFVAR_SYMVAL_FWD_FIXNUM (lname, c_location, SYMVAL_FIXNUM_FORWARD, 0) #define DEFVAR_CONST_INT(lname, c_location) \ DEFVAR_SYMVAL_FWD_FIXNUM (lname, c_location, SYMVAL_CONST_FIXNUM_FORWARD, 0) #define DEFVAR_BOOL(lname, c_location) \ DEFVAR_SYMVAL_FWD_INT (lname, c_location, SYMVAL_BOOLEAN_FORWARD, 0) #define DEFVAR_CONST_BOOL(lname, c_location) \ DEFVAR_SYMVAL_FWD_INT (lname, c_location, SYMVAL_CONST_BOOLEAN_FORWARD, 0) #define DEFVAR_LISP_MAGIC(lname, c_location, magicfun) \ DEFVAR_SYMVAL_FWD_OBJECT (lname, c_location, SYMVAL_OBJECT_FORWARD, magicfun) #define DEFVAR_INT_MAGIC(lname, c_location, magicfun) \ DEFVAR_SYMVAL_FWD_FIXNUM (lname, c_location, SYMVAL_FIXNUM_FORWARD, magicfun) #define DEFVAR_BOOL_MAGIC(lname, c_location, magicfun) \ DEFVAR_SYMVAL_FWD_INT (lname, c_location, SYMVAL_BOOLEAN_FORWARD, magicfun) void flush_all_buffer_local_cache (void); #endif /* INCLUDED_symeval_h_ */