view src/marker.c @ 826:6728e641994e

[xemacs-hg @ 2002-05-05 11:30:15 by ben] syntax cache, 8-bit-format, lots of code cleanup README.packages: Update info about --package-path. i.c: Create an inheritable event and pass it on to XEmacs, so that ^C can be handled properly. Intercept ^C and signal the event. "Stop Build" in VC++ now works. bytecomp-runtime.el: Doc string changes. compat.el: Some attempts to redo this to make it truly useful and fix the "multiple versions interacting with each other" problem. Not yet done. Currently doesn't work. files.el: Use with-obsolete-variable to avoid warnings in new revert-buffer code. xemacs.mak: Split up CFLAGS into a version without flags specifying the C library. The problem seems to be that minitar depends on zlib, which depends specifically on libc.lib, not on any of the other C libraries. Unless you compile with libc.lib, you get errors -- specifically, no _errno in the other libraries, which must make it something other than an int. (#### But this doesn't seem to obtain in XEmacs, which also uses zlib, and can be linked with any of the C libraries. Maybe zlib is used differently and doesn't need errno, or maybe XEmacs provides an int errno; ... I don't understand. Makefile.in.in: Fix so that packages are around when testing. abbrev.c, alloc.c, buffer.c, buffer.h, bytecode.c, callint.c, casefiddle.c, casetab.c, casetab.h, charset.h, chartab.c, chartab.h, cmds.c, console-msw.h, console-stream.c, console-x.c, console.c, console.h, data.c, device-msw.c, device.c, device.h, dialog-msw.c, dialog-x.c, dired-msw.c, dired.c, doc.c, doprnt.c, dumper.c, editfns.c, elhash.c, emacs.c, eval.c, event-Xt.c, event-gtk.c, event-msw.c, event-stream.c, events.c, events.h, extents.c, extents.h, faces.c, file-coding.c, file-coding.h, fileio.c, fns.c, font-lock.c, frame-gtk.c, frame-msw.c, frame-x.c, frame.c, frame.h, glade.c, glyphs-gtk.c, glyphs-msw.c, glyphs-msw.h, glyphs-x.c, glyphs.c, glyphs.h, gui-msw.c, gui-x.c, gui.h, gutter.h, hash.h, indent.c, insdel.c, intl-win32.c, intl.c, keymap.c, lisp-disunion.h, lisp-union.h, lisp.h, lread.c, lrecord.h, lstream.c, lstream.h, marker.c, menubar-gtk.c, menubar-msw.c, menubar-x.c, menubar.c, minibuf.c, mule-ccl.c, mule-charset.c, mule-coding.c, mule-wnnfns.c, nas.c, objects-msw.c, objects-x.c, opaque.c, postgresql.c, print.c, process-nt.c, process-unix.c, process.c, process.h, profile.c, rangetab.c, redisplay-gtk.c, redisplay-msw.c, redisplay-output.c, redisplay-x.c, redisplay.c, redisplay.h, regex.c, regex.h, scrollbar-msw.c, search.c, select-x.c, specifier.c, specifier.h, symbols.c, symsinit.h, syntax.c, syntax.h, syswindows.h, tests.c, text.c, text.h, tooltalk.c, ui-byhand.c, ui-gtk.c, unicode.c, win32.c, window.c: Another big Ben patch. -- FUNCTIONALITY CHANGES: add partial support for 8-bit-fixed, 16-bit-fixed, and 32-bit-fixed formats. not quite done yet. (in particular, needs functions to actually convert the buffer.) NOTE: lots of changes to regex.c here. also, many new *_fmt() inline funs that take an Internal_Format argument. redo syntax cache code. make the cache per-buffer; keep the cache valid across calls to functions that use it. also keep it valid across insertions/deletions and extent changes, as much as is possible. eliminate the junky regex-reentrancy code by passing in the relevant lisp info to the regex routines as local vars. add general mechanism in extents code for signalling extent changes. fix numerous problems with the case-table implementation; yoshiki never properly transferred many algorithms from old-style to new-style case tables. redo char tables to support a default argument, so that mapping only occurs over changed args. change many chartab functions to accept Lisp_Object instead of Lisp_Char_Table *. comment out the code in font-lock.c by default, because font-lock.el no longer uses it. we should consider eliminating it entirely. Don't output bell as ^G in console-stream when not a TTY. add -mswindows-termination-handle to interface with i.c, so we can properly kill a build. add more error-checking to buffer/string macros. add some additional buffer_or_string_() funs. -- INTERFACE CHANGES AFFECTING MORE CODE: switch the arguments of write_c_string and friends to be consistent with write_fmt_string, which must have printcharfun first. change BI_* macros to BYTE_* for increased clarity; similarly for bi_* local vars. change VOID_TO_LISP to be a one-argument function. eliminate no-longer-needed CVOID_TO_LISP. -- char/string macro changes: rename MAKE_CHAR() to make_emchar() for slightly less confusion with make_char(). (The former generates an Emchar, the latter a Lisp object. Conceivably we should rename make_char() -> wrap_char() and similarly for make_int(), make_float().) Similar changes for other *CHAR* macros -- we now consistently use names with `emchar' whenever we are working with Emchars. Any remaining name with just `char' always refers to a Lisp object. rename macros with XSTRING_* to string_* except for those that reference actual fields in the Lisp_String object, following conventions used elsewhere. rename set_string_{data,length} macros (the only ones to work with a Lisp_String_* instead of a Lisp_Object) to set_lispstringp_* to make the difference clear. try to be consistent about caps vs. lowercase in macro/inline-fun names for chars and such, which wasn't the case before. we now reserve caps either for XFOO_ macros that reference object fields (e.g. XSTRING_DATA) or for things that have non-function semantics, e.g. directly modifying an arg (BREAKUP_EMCHAR) or evaluating an arg (any arg) more than once. otherwise, use lowercase. here is a summary of most of the macros/inline funs changed by all of the above changes: BYTE_*_P -> byte_*_p XSTRING_BYTE -> string_byte set_string_data/length -> set_lispstringp_data/length XSTRING_CHAR_LENGTH -> string_char_length XSTRING_CHAR -> string_emchar INTBYTE_FIRST_BYTE_P -> intbyte_first_byte_p INTBYTE_LEADING_BYTE_P -> intbyte_leading_byte_p charptr_copy_char -> charptr_copy_emchar LEADING_BYTE_* -> leading_byte_* CHAR_* -> EMCHAR_* *_CHAR_* -> *_EMCHAR_* *_CHAR -> *_EMCHAR CHARSET_BY_ -> charset_by_* BYTE_SHIFT_JIS* -> byte_shift_jis* BYTE_BIG5* -> byte_big5* REP_BYTES_BY_FIRST_BYTE -> rep_bytes_by_first_byte char_to_unicode -> emchar_to_unicode valid_char_p -> valid_emchar_p Change intbyte_strcmp -> qxestrcmp_c (duplicated functionality). -- INTERFACE CHANGES AFFECTING LESS CODE: use DECLARE_INLINE_HEADER in various places. remove '#ifdef emacs' from XEmacs-only files. eliminate CHAR_TABLE_VALUE(), which duplicated the functionality of get_char_table(). add BUFFER_TEXT_LOOP to simplify iterations over buffer text. define typedefs for signed and unsigned types of fixed sizes (INT_32_BIT, UINT_32_BIT, etc.). create ALIGN_FOR_TYPE as a higher-level interface onto ALIGN_SIZE; fix code to use it. add charptr_emchar_len to return the text length of the character pointed to by a ptr; use it in place of charcount_to_bytecount(..., 1). add emchar_len to return the text length of a given character. add types Bytexpos and Charxpos to generalize Bytebpos/Bytecount and Charbpos/Charcount, in code (particularly, the extents code and redisplay code) that works with either kind of index. rename redisplay struct params with names such as `charbpos' to e.g. `charpos' when they are e.g. a Charxpos, not a Charbpos. eliminate xxDEFUN in place of DEFUN; no longer necessary with changes awhile back to doc.c. split up big ugly combined list of EXFUNs in lisp.h on a file-by-file basis, since other prototypes are similarly split. rewrite some "*_UNSAFE" macros as inline funs and eliminate the _UNSAFE suffix. move most string code from lisp.h to text.h; the string code and text.h code is now intertwined in such a fashion that they need to be in the same place and partially interleaved. (you can't create forward references for inline funs) automated/lisp-tests.el, automated/symbol-tests.el, automated/test-harness.el: Fix test harness to output FAIL messages to stderr when in batch mode. Fix up some problems in lisp-tests/symbol-tests that were causing spurious failures.
author ben
date Sun, 05 May 2002 11:33:57 +0000
parents a5954632b187
children 1e4e42de23d5
line wrap: on
line source

/* Markers: examining, setting and killing.
   Copyright (C) 1985, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
   Copyright (C) 2002 Ben Wing.

This file is part of XEmacs.

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* Synched up with: FSF 19.30. */

/* This file has been Mule-ized. */

/* Note that markers are currently kept in an unordered list.
   This means that marker operations may be inefficient if
   there are a bunch of markers in the buffer.  This probably
   won't have a significant impact on redisplay (which uses
   markers), but if it does, it wouldn't be too hard to change
   to an ordered gap array. (Just copy the code from extents.c.)
   */

#include <config.h>
#include "lisp.h"

#include "buffer.h"

static Lisp_Object
mark_marker (Lisp_Object obj)
{
  Lisp_Marker *marker = XMARKER (obj);
  Lisp_Object buf;
  /* DO NOT mark through the marker's chain.
     The buffer's markers chain does not preserve markers from gc;
     Instead, markers are removed from the chain when they are freed
     by gc.
   */
  if (!marker->buffer)
    return (Qnil);

  buf = wrap_buffer (marker->buffer);
  return (buf);
}

static void
print_marker (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag)
{
  Lisp_Marker *marker = XMARKER (obj);

  if (print_readably)
    printing_unreadable_object ("#<marker 0x%lx>", (long) marker);

  write_c_string (printcharfun, GETTEXT ("#<marker "));
  if (!marker->buffer)
    write_c_string (printcharfun, GETTEXT ("in no buffer"));
  else
    {
      write_fmt_string (printcharfun, "at %ld in ",
			(long) marker_position (obj));
      print_internal (marker->buffer->name, printcharfun, 0);
    }
  if (marker->insertion_type)
    write_c_string (printcharfun, " insertion-type=t");
  write_fmt_string (printcharfun, " 0x%lx>", (long) marker);
}

static int
marker_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
{
  Lisp_Marker *marker1 = XMARKER (obj1);
  Lisp_Marker *marker2 = XMARKER (obj2);

  return ((marker1->buffer == marker2->buffer) &&
	  (marker1->membpos == marker2->membpos ||
	  /* All markers pointing nowhere are equal */
	   !marker1->buffer));
}

static unsigned long
marker_hash (Lisp_Object obj, int depth)
{
  unsigned long hash = (unsigned long) XMARKER (obj)->buffer;
  if (hash)
    hash = HASH2 (hash, XMARKER (obj)->membpos);
  return hash;
}

static const struct lrecord_description marker_description[] = {
  { XD_LISP_OBJECT, offsetof (Lisp_Marker, next) },
  { XD_LISP_OBJECT, offsetof (Lisp_Marker, prev) },
  { XD_LISP_OBJECT, offsetof (Lisp_Marker, buffer) },
  { XD_END }
};

DEFINE_BASIC_LRECORD_IMPLEMENTATION ("marker", marker,
				     mark_marker, print_marker, 0,
				     marker_equal, marker_hash, marker_description,
				     Lisp_Marker);

/* Operations on markers. */

DEFUN ("marker-buffer", Fmarker_buffer, 1, 1, 0, /*
Return the buffer that MARKER points into, or nil if none.
Return nil if MARKER points into a dead buffer or doesn't point anywhere.
*/
       (marker))
{
  struct buffer *buf;
  CHECK_MARKER (marker);
  /* Return marker's buffer only if it is not dead.  */
  if ((buf = XMARKER (marker)->buffer) && BUFFER_LIVE_P (buf))
    {
      return wrap_buffer (buf);
    }
  return Qnil;
}

DEFUN ("marker-position", Fmarker_position, 1, 1, 0, /*
Return the position MARKER points at, as a character number.
Return `nil' if marker doesn't point anywhere.
*/
       (marker))
{
  CHECK_MARKER (marker);
  return XMARKER (marker)->buffer ? make_int (marker_position (marker)) : Qnil;
}

#if 0 /* useful debugging function */

static void
check_marker_circularities (struct buffer *buf)
{
  Lisp_Marker *tortoise, *hare;

  tortoise = BUF_MARKERS (buf);
  hare = tortoise;

  if (!tortoise)
    return;

  while (1)
    {
      assert (hare->buffer == buf);
      hare = hare->next;
      if (!hare)
        return;
      assert (hare->buffer == buf);
      hare = hare->next;
      if (!hare)
        return;
      tortoise = tortoise->next;
      assert (tortoise != hare);
    }
}

#endif

static Lisp_Object
set_marker_internal (Lisp_Object marker, Lisp_Object position,
		     Lisp_Object buffer, int restricted_p)
{
  Charbpos charno;
  struct buffer *b;
  Lisp_Marker *m;
  int point_p;

  CHECK_MARKER (marker);

  point_p = POINT_MARKER_P (marker);

  /* If position is nil or a marker that points nowhere,
     make this marker point nowhere.  */
  if (NILP (position) ||
      (MARKERP (position) && !XMARKER (position)->buffer))
    {
      if (point_p)
	invalid_operation ("Can't make point-marker point nowhere",
			   marker);
      if (XMARKER (marker)->buffer)
	unchain_marker (marker);
      return marker;
    }

  CHECK_INT_COERCE_MARKER (position);
  if (NILP (buffer))
    b = current_buffer;
  else
    {
      CHECK_BUFFER (buffer);
      b = XBUFFER (buffer);
      /* If buffer is dead, set marker to point nowhere.  */
      if (!BUFFER_LIVE_P (XBUFFER (buffer)))
	{
	  if (point_p)
	    invalid_operation
	      ("Can't move point-marker in a killed buffer", marker);
	  if (XMARKER (marker)->buffer)
	    unchain_marker (marker);
	  return marker;
	}
    }

  charno = XINT (position);
  m = XMARKER (marker);

  if (restricted_p)
    {
      if (charno < BUF_BEGV (b)) charno = BUF_BEGV (b);
      if (charno > BUF_ZV (b)) charno = BUF_ZV (b);
    }
  else
    {
      if (charno < BUF_BEG (b)) charno = BUF_BEG (b);
      if (charno > BUF_Z (b)) charno = BUF_Z (b);
    }

  if (point_p)
    {
#ifndef moving_point_by_moving_its_marker_is_a_bug
      BUF_SET_PT (b, charno);	/* this will move the marker */
#else  /* It's not a feature, so it must be a bug */
      invalid_operation ("DEBUG: attempt to move point via point-marker",
			 marker);
#endif
    }
  else
    {
      m->membpos = charbpos_to_membpos (b, charno);
    }

  if (m->buffer != b)
    {
      if (point_p)
	invalid_operation ("Can't change buffer of point-marker", marker);
      if (m->buffer != 0)
	unchain_marker (marker);
      m->buffer = b;
      marker_next (m) = BUF_MARKERS (b);
      marker_prev (m) = 0;
      if (BUF_MARKERS (b))
        marker_prev (BUF_MARKERS (b)) = m;
      BUF_MARKERS (b) = m;
    }

  return marker;
}


DEFUN ("set-marker", Fset_marker, 2, 3, 0, /*
Move MARKER to position POSITION in BUFFER.
POSITION can be a marker, an integer or nil.  If POSITION is an
integer, make MARKER point before the POSITIONth character in BUFFER.
If POSITION is nil, makes MARKER point nowhere.  Then it no longer
slows down editing in any buffer.  If POSITION is less than 1, move
MARKER to the beginning of BUFFER.  If POSITION is greater than the
size of BUFFER, move MARKER to the end of BUFFER.
BUFFER defaults to the current buffer.
If this marker was returned by (point-marker t), then changing its
position moves point.  You cannot change its buffer or make it point
nowhere.
The return value is MARKER.
*/
       (marker, position, buffer))
{
  return set_marker_internal (marker, position, buffer, 0);
}


/* This version of Fset_marker won't let the position
   be outside the visible part.  */
Lisp_Object
set_marker_restricted (Lisp_Object marker, Lisp_Object position,
		       Lisp_Object buffer)
{
  return set_marker_internal (marker, position, buffer, 1);
}


/* This is called during garbage collection,
   so we must be careful to ignore and preserve mark bits,
   including those in chain fields of markers.  */

void
unchain_marker (Lisp_Object m)
{
  Lisp_Marker *marker = XMARKER (m);
  struct buffer *b = marker->buffer;

  if (b == 0)
    return;

#ifdef ERROR_CHECK_STRUCTURES
  assert (BUFFER_LIVE_P (b));
#endif

  if (marker_next (marker))
    marker_prev (marker_next (marker)) = marker_prev (marker);
  if (marker_prev (marker))
    marker_next (marker_prev (marker)) = marker_next (marker);
  else
    BUF_MARKERS (b) = marker_next (marker);

#ifdef ERROR_CHECK_STRUCTURES
  assert (marker != XMARKER (b->point_marker));
#endif

  marker->buffer = 0;
}

Bytebpos
byte_marker_position (Lisp_Object marker)
{
  Lisp_Marker *m = XMARKER (marker);
  struct buffer *buf = m->buffer;
  Bytebpos pos;

  if (!buf)
    invalid_argument ("Marker does not point anywhere", Qunbound);

  /* FSF claims that marker indices could end up denormalized, i.e.
     in the gap.  This is way bogus if it ever happens, and means
     something fucked up elsewhere.  Since I've overhauled all this
     shit, I don't think this can happen.  In any case, the following
     macro has an assert() in it that will catch these denormalized
     positions. */
  pos = membpos_to_bytebpos (buf, m->membpos);

#ifdef ERROR_CHECK_TEXT
  if (pos < BYTE_BUF_BEG (buf) || pos > BYTE_BUF_Z (buf))
    abort ();
#endif

  return pos;
}

Charbpos
marker_position (Lisp_Object marker)
{
  struct buffer *buf = XMARKER (marker)->buffer;

  if (!buf)
    invalid_argument ("Marker does not point anywhere", Qunbound);

  return bytebpos_to_charbpos (buf, byte_marker_position (marker));
}

void
set_byte_marker_position (Lisp_Object marker, Bytebpos pos)
{
  Lisp_Marker *m = XMARKER (marker);
  struct buffer *buf = m->buffer;

  if (!buf)
    invalid_argument ("Marker does not point anywhere", Qunbound);

#ifdef ERROR_CHECK_TEXT
  if (pos < BYTE_BUF_BEG (buf) || pos > BYTE_BUF_Z (buf))
    abort ();
#endif

  m->membpos = bytebpos_to_membpos (buf, pos);
}

void
set_marker_position (Lisp_Object marker, Charbpos pos)
{
  struct buffer *buf = XMARKER (marker)->buffer;

  if (!buf)
    invalid_argument ("Marker does not point anywhere", Qunbound);

  set_byte_marker_position (marker, charbpos_to_bytebpos (buf, pos));
}

static Lisp_Object
copy_marker_1 (Lisp_Object marker, Lisp_Object type, int noseeum)
{
  REGISTER Lisp_Object new;

  while (1)
    {
      if (INTP (marker) || MARKERP (marker))
	{
	  if (noseeum)
	    new = noseeum_make_marker ();
	  else
	    new = Fmake_marker ();
	  Fset_marker (new, marker,
		       (MARKERP (marker) ? Fmarker_buffer (marker) : Qnil));
	  XMARKER (new)->insertion_type = !NILP (type);
	  return new;
	}
      else
	marker = wrong_type_argument (Qinteger_or_marker_p, marker);
    }

  RETURN_NOT_REACHED (Qnil) /* not reached */
}

DEFUN ("copy-marker", Fcopy_marker, 1, 2, 0, /*
Return a new marker pointing at the same place as MARKER-OR-INTEGER.
If MARKER-OR-INTEGER is an integer, return a new marker pointing
at that position in the current buffer.
Optional argument MARKER-TYPE specifies the insertion type of the new
marker; see `marker-insertion-type'.
*/
       (marker_or_integer, marker_type))
{
  return copy_marker_1 (marker_or_integer, marker_type, 0);
}

Lisp_Object
noseeum_copy_marker (Lisp_Object marker, Lisp_Object marker_type)
{
  return copy_marker_1 (marker, marker_type, 1);
}

DEFUN ("marker-insertion-type", Fmarker_insertion_type, 1, 1, 0, /*
Return insertion type of MARKER: t if it stays after inserted text.
nil means the marker stays before text inserted there.
*/
       (marker))
{
  CHECK_MARKER (marker);
  return XMARKER (marker)->insertion_type ? Qt : Qnil;
}

DEFUN ("set-marker-insertion-type", Fset_marker_insertion_type, 2, 2, 0, /*
Set the insertion-type of MARKER to TYPE.
If TYPE is t, it means the marker advances when you insert text at it.
If TYPE is nil, it means the marker stays behind when you insert text at it.
*/
       (marker, type))
{
  CHECK_MARKER (marker);

  XMARKER (marker)->insertion_type = ! NILP (type);
  return type;
}

/* #### What is the possible use of this?  It looks quite useless to
   me, because there is no way to find *which* markers are positioned
   at POSITION.  Additional bogosity bonus: (buffer-has-markers-at
   (point)) will always return t because of the `point-marker'.  The
   same goes for the position of mark.  Bletch!

   Someone should discuss this with Stallman, but I don't have the
   stomach.  In fact, this function sucks so badly that I'm disabling
   it by default (although I've debugged it).  If you want to use it,
   use extents instead.  --hniksic */
#if 0
DEFUN ("buffer-has-markers-at", Fbuffer_has_markers_at, 1, 1, 0, /*
Return t if there are markers pointing at POSITION in the current buffer.
*/
       (position))
{
  Lisp_Marker *marker;
  Membpos pos;

  /* A small optimization trick: convert POS to membpos now, rather
     than converting every marker's memory index to charbpos.  */
  pos = bytebpos_to_membpos (current_buffer,
			  get_buffer_pos_byte (current_buffer, position,
					       GB_COERCE_RANGE));

  for (marker = BUF_MARKERS (current_buffer);
       marker;
       marker = marker_next (marker))
    {
      /* We use marker->membpos, so we don't have to go through the
         unwieldy operation of creating a Lisp_Object for
         marker_position() every time around.  */
      if (marker->membpos == pos)
	return Qt;
    }

  return Qnil;
}
#endif /* 0 */

#ifdef MEMORY_USAGE_STATS

int
compute_buffer_marker_usage (struct buffer *b, struct overhead_stats *ovstats)
{
  Lisp_Marker *m;
  int total = 0;
  int overhead;

  for (m = BUF_MARKERS (b); m; m = m->next)
    total += sizeof (Lisp_Marker);
  ovstats->was_requested += total;
  overhead = fixed_type_block_overhead (total);
  /* #### claiming this is all malloc overhead is not really right,
     but it has to go somewhere. */
  ovstats->malloc_overhead += overhead;
  return total + overhead;
}

#endif /* MEMORY_USAGE_STATS */


void
syms_of_marker (void)
{
  INIT_LRECORD_IMPLEMENTATION (marker);

  DEFSUBR (Fmarker_position);
  DEFSUBR (Fmarker_buffer);
  DEFSUBR (Fset_marker);
  DEFSUBR (Fcopy_marker);
  DEFSUBR (Fmarker_insertion_type);
  DEFSUBR (Fset_marker_insertion_type);
#if 0 /* FSFmacs crock */
  DEFSUBR (Fbuffer_has_markers_at);
#endif
}

void
init_buffer_markers (struct buffer *b)
{
  Lisp_Object buf = wrap_buffer (b);

  b->mark = Fmake_marker ();
  BUF_MARKERS (b) = 0;
  b->point_marker = Fmake_marker ();
  Fset_marker (b->point_marker,
	       /* For indirect buffers, point is already set.  */
	       b->base_buffer ? make_int (BUF_PT (b)) : make_int (1),
	       buf);
}

void
uninit_buffer_markers (struct buffer *b)
{
  /* Unchain all markers of this buffer
     and leave them pointing nowhere.  */
  REGISTER Lisp_Marker *m, *next;
  for (m = BUF_MARKERS (b); m; m = next)
    {
      m->buffer = 0;
      next = marker_next (m);
      marker_next (m) = 0;
      marker_prev (m) = 0;
    }
  BUF_MARKERS (b) = 0;
}