Mercurial > hg > xemacs-beta
view src/line-number.c @ 826:6728e641994e
[xemacs-hg @ 2002-05-05 11:30:15 by ben]
syntax cache, 8-bit-format, lots of code cleanup
README.packages: Update info about --package-path.
i.c: Create an inheritable event and pass it on to XEmacs, so that ^C
can be handled properly. Intercept ^C and signal the event.
"Stop Build" in VC++ now works.
bytecomp-runtime.el: Doc string changes.
compat.el: Some attempts to redo this to
make it truly useful and fix the "multiple versions interacting
with each other" problem. Not yet done. Currently doesn't work.
files.el: Use with-obsolete-variable to avoid warnings in new revert-buffer code.
xemacs.mak: Split up CFLAGS into a version without flags specifying the C
library. The problem seems to be that minitar depends on zlib,
which depends specifically on libc.lib, not on any of the other C
libraries. Unless you compile with libc.lib, you get errors --
specifically, no _errno in the other libraries, which must make it
something other than an int. (#### But this doesn't seem to obtain
in XEmacs, which also uses zlib, and can be linked with any of the
C libraries. Maybe zlib is used differently and doesn't need
errno, or maybe XEmacs provides an int errno; ... I don't
understand.
Makefile.in.in: Fix so that packages are around when testing.
abbrev.c, alloc.c, buffer.c, buffer.h, bytecode.c, callint.c, casefiddle.c, casetab.c, casetab.h, charset.h, chartab.c, chartab.h, cmds.c, console-msw.h, console-stream.c, console-x.c, console.c, console.h, data.c, device-msw.c, device.c, device.h, dialog-msw.c, dialog-x.c, dired-msw.c, dired.c, doc.c, doprnt.c, dumper.c, editfns.c, elhash.c, emacs.c, eval.c, event-Xt.c, event-gtk.c, event-msw.c, event-stream.c, events.c, events.h, extents.c, extents.h, faces.c, file-coding.c, file-coding.h, fileio.c, fns.c, font-lock.c, frame-gtk.c, frame-msw.c, frame-x.c, frame.c, frame.h, glade.c, glyphs-gtk.c, glyphs-msw.c, glyphs-msw.h, glyphs-x.c, glyphs.c, glyphs.h, gui-msw.c, gui-x.c, gui.h, gutter.h, hash.h, indent.c, insdel.c, intl-win32.c, intl.c, keymap.c, lisp-disunion.h, lisp-union.h, lisp.h, lread.c, lrecord.h, lstream.c, lstream.h, marker.c, menubar-gtk.c, menubar-msw.c, menubar-x.c, menubar.c, minibuf.c, mule-ccl.c, mule-charset.c, mule-coding.c, mule-wnnfns.c, nas.c, objects-msw.c, objects-x.c, opaque.c, postgresql.c, print.c, process-nt.c, process-unix.c, process.c, process.h, profile.c, rangetab.c, redisplay-gtk.c, redisplay-msw.c, redisplay-output.c, redisplay-x.c, redisplay.c, redisplay.h, regex.c, regex.h, scrollbar-msw.c, search.c, select-x.c, specifier.c, specifier.h, symbols.c, symsinit.h, syntax.c, syntax.h, syswindows.h, tests.c, text.c, text.h, tooltalk.c, ui-byhand.c, ui-gtk.c, unicode.c, win32.c, window.c: Another big Ben patch.
-- FUNCTIONALITY CHANGES:
add partial support for 8-bit-fixed, 16-bit-fixed, and
32-bit-fixed formats. not quite done yet. (in particular, needs
functions to actually convert the buffer.) NOTE: lots of changes
to regex.c here. also, many new *_fmt() inline funs that take an
Internal_Format argument.
redo syntax cache code. make the cache per-buffer; keep the cache
valid across calls to functions that use it. also keep it valid
across insertions/deletions and extent changes, as much as is
possible. eliminate the junky regex-reentrancy code by passing in
the relevant lisp info to the regex routines as local vars.
add general mechanism in extents code for signalling extent changes.
fix numerous problems with the case-table implementation; yoshiki
never properly transferred many algorithms from old-style to
new-style case tables.
redo char tables to support a default argument, so that mapping
only occurs over changed args. change many chartab functions to
accept Lisp_Object instead of Lisp_Char_Table *.
comment out the code in font-lock.c by default, because
font-lock.el no longer uses it. we should consider eliminating it
entirely.
Don't output bell as ^G in console-stream when not a TTY.
add -mswindows-termination-handle to interface with i.c, so we can
properly kill a build.
add more error-checking to buffer/string macros.
add some additional buffer_or_string_() funs.
-- INTERFACE CHANGES AFFECTING MORE CODE:
switch the arguments of write_c_string and friends to be
consistent with write_fmt_string, which must have printcharfun
first.
change BI_* macros to BYTE_* for increased clarity; similarly for
bi_* local vars.
change VOID_TO_LISP to be a one-argument function. eliminate
no-longer-needed CVOID_TO_LISP.
-- char/string macro changes:
rename MAKE_CHAR() to make_emchar() for slightly less confusion
with make_char(). (The former generates an Emchar, the latter a
Lisp object. Conceivably we should rename make_char() -> wrap_char()
and similarly for make_int(), make_float().)
Similar changes for other *CHAR* macros -- we now consistently use
names with `emchar' whenever we are working with Emchars. Any
remaining name with just `char' always refers to a Lisp object.
rename macros with XSTRING_* to string_* except for those that
reference actual fields in the Lisp_String object, following
conventions used elsewhere.
rename set_string_{data,length} macros (the only ones to work with
a Lisp_String_* instead of a Lisp_Object) to set_lispstringp_*
to make the difference clear.
try to be consistent about caps vs. lowercase in macro/inline-fun
names for chars and such, which wasn't the case before. we now
reserve caps either for XFOO_ macros that reference object fields
(e.g. XSTRING_DATA) or for things that have non-function semantics,
e.g. directly modifying an arg (BREAKUP_EMCHAR) or evaluating an
arg (any arg) more than once. otherwise, use lowercase.
here is a summary of most of the macros/inline funs changed by all
of the above changes:
BYTE_*_P -> byte_*_p
XSTRING_BYTE -> string_byte
set_string_data/length -> set_lispstringp_data/length
XSTRING_CHAR_LENGTH -> string_char_length
XSTRING_CHAR -> string_emchar
INTBYTE_FIRST_BYTE_P -> intbyte_first_byte_p
INTBYTE_LEADING_BYTE_P -> intbyte_leading_byte_p
charptr_copy_char -> charptr_copy_emchar
LEADING_BYTE_* -> leading_byte_*
CHAR_* -> EMCHAR_*
*_CHAR_* -> *_EMCHAR_*
*_CHAR -> *_EMCHAR
CHARSET_BY_ -> charset_by_*
BYTE_SHIFT_JIS* -> byte_shift_jis*
BYTE_BIG5* -> byte_big5*
REP_BYTES_BY_FIRST_BYTE -> rep_bytes_by_first_byte
char_to_unicode -> emchar_to_unicode
valid_char_p -> valid_emchar_p
Change intbyte_strcmp -> qxestrcmp_c (duplicated functionality).
-- INTERFACE CHANGES AFFECTING LESS CODE:
use DECLARE_INLINE_HEADER in various places.
remove '#ifdef emacs' from XEmacs-only files.
eliminate CHAR_TABLE_VALUE(), which duplicated the functionality
of get_char_table().
add BUFFER_TEXT_LOOP to simplify iterations over buffer text.
define typedefs for signed and unsigned types of fixed sizes
(INT_32_BIT, UINT_32_BIT, etc.).
create ALIGN_FOR_TYPE as a higher-level interface onto ALIGN_SIZE;
fix code to use it.
add charptr_emchar_len to return the text length of the character
pointed to by a ptr; use it in place of
charcount_to_bytecount(..., 1). add emchar_len to return the text
length of a given character.
add types Bytexpos and Charxpos to generalize Bytebpos/Bytecount
and Charbpos/Charcount, in code (particularly, the extents code
and redisplay code) that works with either kind of index. rename
redisplay struct params with names such as `charbpos' to
e.g. `charpos' when they are e.g. a Charxpos, not a Charbpos.
eliminate xxDEFUN in place of DEFUN; no longer necessary with
changes awhile back to doc.c.
split up big ugly combined list of EXFUNs in lisp.h on a
file-by-file basis, since other prototypes are similarly split.
rewrite some "*_UNSAFE" macros as inline funs and eliminate the
_UNSAFE suffix.
move most string code from lisp.h to text.h; the string code and
text.h code is now intertwined in such a fashion that they need
to be in the same place and partially interleaved. (you can't
create forward references for inline funs)
automated/lisp-tests.el, automated/symbol-tests.el, automated/test-harness.el: Fix test harness to output FAIL messages to stderr when in
batch mode.
Fix up some problems in lisp-tests/symbol-tests that were
causing spurious failures.
author | ben |
---|---|
date | Sun, 05 May 2002 11:33:57 +0000 |
parents | 943eaba38521 |
children | 804517e16990 |
line wrap: on
line source
/* Line number cache. Copyright (C) 1997 Free Software Foundation, Inc. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: Not in FSF. */ /* To calculate the line numbers, redisplay must count the newlines from a known position. This used to be BUF_BEGV, but this made the line numbering extremely slow for large buffers, because Emacs had to rescan the whole buffer at each redisplay. To make line numbering efficient, we maintain a buffer-local cache of recently used positions and their line numbers. The cache is implemented as a small ring of cache positions. A cache position is either nil or a cons of a buffer position (marker) and the corresponding line number. When calculating the line numbers, this cache is consulted if it would otherwise take too much time to count the newlines in the buffer (see the comment to buffer_line_number().) Insertion and deletions that contain/delete newlines invalidate the cached positions after the insertion point. This guarantees relatively fast line numbers caching (even in buffers where point moves a lot), and low memory usage. All of this is done only in the buffers where the cache is actually initialized -- i.e. where line-numbering is on, and you move the point farther than LINE_NUMBER_FAR from the beginning of buffer. In this sense, the cache is lazy -- if you don't use it, you don't pay for it. NOTE: line-number cache should not be confused with line-start cache. Line-start cache (a part of redisplay) works with the display lines, whereas this works with the buffer lines (literally counting the newlines). */ #include <config.h> #include "lisp.h" #include "buffer.h" #include "line-number.h" /* #### The following three values could stand more exploration for best performance. */ /* Size of the ring. The current code expects this to be a small number. If you make it larger, you should probably optimize the code below to keep it sorted. */ #define LINE_NUMBER_RING_SIZE 8 /* How much traversal has to be exceeded for two points to be considered "far" from each other. When two points are far, cache will be used. */ #define LINE_NUMBER_FAR 16384 /* How large a string has to be to give up searching it for newlines, before change. */ #define LINE_NUMBER_LARGE_STRING 256 /* To be used only when you *know* the cache has been allocated! */ #define LINE_NUMBER_RING(b) (XCAR ((b)->text->line_number_cache)) #define LINE_NUMBER_BEGV(b) (XCDR ((b)->text->line_number_cache)) /* Initialize the cache. Cache is (in pseudo-BNF): CACHE = nil | INITIALIZED-CACHE INITIALIZED-CACHE = cons (RING, BEGV-LINE) RING = vector (*RING-ELEMENT) RING-ELEMENT = nil | RING-PAIR RING-PAIR = cons (marker, integer) BEGV-LINE = integer Line number cache should never, ever, be visible to Lisp (because destructively modifying its elements can cause crashes.) Debug it using debug_print (current_buffer->text->last_number_cache). */ static void allocate_line_number_cache (struct buffer *b) { b->text->line_number_cache = Fcons (make_vector (LINE_NUMBER_RING_SIZE, Qnil), Qzero); narrow_line_number_cache (b); } /* Flag LINE_NUMBER_BEGV (b) as dirty. Do it only if the line number cache is already initialized. */ void narrow_line_number_cache (struct buffer *b) { if (NILP (b->text->line_number_cache)) return; if (BUF_BEG (b) == BUF_BEGV (b)) /* The is the case Fwiden and save_restriction_restore. Since we know the correct value, we can update it now. */ LINE_NUMBER_BEGV (b) = Qzero; else /* Calculating the line number of BUF_BEGV here is a bad idea, because there is absolutely no reason to do it before the next redisplay. We simply mark it as dirty instead. */ LINE_NUMBER_BEGV (b) = make_int (-1); } /* Invalidate the line number cache positions that lie after POS. */ static void invalidate_line_number_cache (struct buffer *b, Charbpos pos) { EMACS_INT i, j; Lisp_Object *ring = XVECTOR_DATA (LINE_NUMBER_RING (b)); for (i = 0; i < LINE_NUMBER_RING_SIZE; i++) { if (!CONSP (ring[i])) break; /* As the marker stays behind the insertions, this check might as well be `>'. However, Finsert_before_markers can advance the marker anyway, which bites in shell buffers. #### This forces recreation of the cached marker (and recalculation of newlines) every time a newline is inserted at point, which is way losing. Isn't there a way to make a marker impervious to Finsert_before_markers()?? Maybe I should convert the code to use extents. */ if (marker_position (XCAR (ring[i])) >= pos) { /* Get the marker out of the way. */ Fset_marker (XCAR (ring[i]), Qnil, Qnil); /* ...and shift the ring elements, up to the first nil. */ for (j = i; !NILP (ring[j]) && j < LINE_NUMBER_RING_SIZE - 1; j++) ring[j] = ring[j + 1]; ring[j] = Qnil; /* Must recheck position i. */ i--; } } } /* Invalidate the cache positions after POS, if the string to be inserted contains a newline. If the string is too large (larger than LINE_NUMBER_LARGE_STRING), invalidate the cache positions after POS without prior search. This will do nothing if the cache is uninitialized. */ void insert_invalidate_line_number_cache (struct buffer *b, Charbpos pos, const Intbyte *nonreloc, Bytecount length) { if (NILP (b->text->line_number_cache)) return; if (length > LINE_NUMBER_LARGE_STRING || /* We could also count how many newlines there are in the string and update the cache accordingly, but it would be too much work for too little gain. */ memchr ((void *)nonreloc, '\n', length)) invalidate_line_number_cache (b, pos); } /* Invalidate the cache positions after FROM, if the region to be deleted contains a newline. If the region-to-be-deleted is larger than LINE_NUMBER_LARGE_STRING, invalidate the cache positions after FROM without unconditionally. This will do nothing if the cache is uninitialized. */ void delete_invalidate_line_number_cache (struct buffer *b, Charbpos from, Charbpos to) { if (NILP (b->text->line_number_cache)) return; if ((to - from) > LINE_NUMBER_LARGE_STRING) invalidate_line_number_cache (b, from); else { EMACS_INT shortage; scan_buffer (b, '\n', from, to, 1, &shortage, 0); if (!shortage) invalidate_line_number_cache (b, from); } } /* Get the nearest known position we know the line number of (i.e. BUF_BEGV, and cached positions). The return position will be either closer than BEG, or BEG. The line of this known position will be stored in LINE. *LINE should be initialized to the line number of BEG (normally, BEG will be BUF_BEGV, and *LINE will be XINT (LINE_NUMBER_BEGV). This will initialize the cache, if necessary. */ static void get_nearest_line_number (struct buffer *b, Charbpos *beg, Charbpos pos, EMACS_INT *line) { EMACS_INT i; Lisp_Object *ring = XVECTOR_DATA (LINE_NUMBER_RING (b)); Charcount length = pos - *beg; if (length < 0) length = -length; /* Find the ring entry closest to POS, if it is closer than BEG. */ for (i = 0; i < LINE_NUMBER_RING_SIZE && CONSP (ring[i]); i++) { Charbpos newpos = marker_position (XCAR (ring[i])); Charcount howfar = newpos - pos; if (howfar < 0) howfar = -howfar; if (howfar < length) { length = howfar; *beg = newpos; *line = XINT (XCDR (ring[i])); } } } /* Add a (POS . LINE) pair to the ring, and rotate it. */ static void add_position_to_cache (struct buffer *b, Charbpos pos, EMACS_INT line) { Lisp_Object *ring = XVECTOR_DATA (LINE_NUMBER_RING (b)); int i = LINE_NUMBER_RING_SIZE - 1; /* Set the last marker in the ring to point nowhere. */ if (CONSP (ring[i])) Fset_marker (XCAR (ring[i]), Qnil, Qnil); /* Rotate the ring... */ for (; i > 0; i--) ring[i] = ring[i - 1]; /* ...and update it. */ ring[0] = Fcons (Fset_marker (Fmake_marker (), make_int (pos), wrap_buffer (b)), make_int (line)); } /* Calculate the line number in buffer B at position POS. If CACHEP is non-zero, initialize and facilitate the line-number cache. The line number of the first line is 0. If narrowing is in effect, count the lines are counted from the beginning of the visible portion of the buffer. The cache works as follows: To calculate the line number, we need two positions: position of point (POS) and the position from which to count newlines (BEG). We start by setting BEG to BUF_BEGV. If this would require too much searching (i.e. pos - BUF_BEGV > LINE_NUMBER_FAR), try to find a closer position in the ring. If it is found, use that position for BEG, and increment the line number appropriately. If the calculation (with or without the cache lookup) required more than LINE_NUMBER_FAR characters of traversal, update the cache. */ EMACS_INT buffer_line_number (struct buffer *b, Charbpos pos, int cachep) { Charbpos beg = BUF_BEGV (b); EMACS_INT cached_lines = 0; EMACS_INT shortage, line; if ((pos > beg ? pos - beg : beg - pos) <= LINE_NUMBER_FAR) cachep = 0; if (cachep) { if (NILP (b->text->line_number_cache)) allocate_line_number_cache (b); /* If we don't know the line number of BUF_BEGV, calculate it now. */ if (XINT (LINE_NUMBER_BEGV (b)) == -1) { LINE_NUMBER_BEGV (b) = Qzero; /* #### This has a side-effect of changing the cache. */ LINE_NUMBER_BEGV (b) = make_int (buffer_line_number (b, BUF_BEGV (b), 1)); } cached_lines = XINT (LINE_NUMBER_BEGV (b)); get_nearest_line_number (b, &beg, pos, &cached_lines); } scan_buffer (b, '\n', beg, pos, pos > beg ? EMACS_INT_MAX : -EMACS_INT_MAX, &shortage, 0); line = EMACS_INT_MAX - shortage; if (beg > pos) line = -line; line += cached_lines; if (cachep) { /* If too far, update the cache. */ if ((pos > beg ? pos - beg : beg - pos) > LINE_NUMBER_FAR) add_position_to_cache (b, pos, line); /* Account for narrowing. If cache is not used, this is unnecessary, because we counted from BUF_BEGV anyway. */ line -= XINT (LINE_NUMBER_BEGV (b)); } return line; }