Mercurial > hg > xemacs-beta
view src/floatfns.c @ 826:6728e641994e
[xemacs-hg @ 2002-05-05 11:30:15 by ben]
syntax cache, 8-bit-format, lots of code cleanup
README.packages: Update info about --package-path.
i.c: Create an inheritable event and pass it on to XEmacs, so that ^C
can be handled properly. Intercept ^C and signal the event.
"Stop Build" in VC++ now works.
bytecomp-runtime.el: Doc string changes.
compat.el: Some attempts to redo this to
make it truly useful and fix the "multiple versions interacting
with each other" problem. Not yet done. Currently doesn't work.
files.el: Use with-obsolete-variable to avoid warnings in new revert-buffer code.
xemacs.mak: Split up CFLAGS into a version without flags specifying the C
library. The problem seems to be that minitar depends on zlib,
which depends specifically on libc.lib, not on any of the other C
libraries. Unless you compile with libc.lib, you get errors --
specifically, no _errno in the other libraries, which must make it
something other than an int. (#### But this doesn't seem to obtain
in XEmacs, which also uses zlib, and can be linked with any of the
C libraries. Maybe zlib is used differently and doesn't need
errno, or maybe XEmacs provides an int errno; ... I don't
understand.
Makefile.in.in: Fix so that packages are around when testing.
abbrev.c, alloc.c, buffer.c, buffer.h, bytecode.c, callint.c, casefiddle.c, casetab.c, casetab.h, charset.h, chartab.c, chartab.h, cmds.c, console-msw.h, console-stream.c, console-x.c, console.c, console.h, data.c, device-msw.c, device.c, device.h, dialog-msw.c, dialog-x.c, dired-msw.c, dired.c, doc.c, doprnt.c, dumper.c, editfns.c, elhash.c, emacs.c, eval.c, event-Xt.c, event-gtk.c, event-msw.c, event-stream.c, events.c, events.h, extents.c, extents.h, faces.c, file-coding.c, file-coding.h, fileio.c, fns.c, font-lock.c, frame-gtk.c, frame-msw.c, frame-x.c, frame.c, frame.h, glade.c, glyphs-gtk.c, glyphs-msw.c, glyphs-msw.h, glyphs-x.c, glyphs.c, glyphs.h, gui-msw.c, gui-x.c, gui.h, gutter.h, hash.h, indent.c, insdel.c, intl-win32.c, intl.c, keymap.c, lisp-disunion.h, lisp-union.h, lisp.h, lread.c, lrecord.h, lstream.c, lstream.h, marker.c, menubar-gtk.c, menubar-msw.c, menubar-x.c, menubar.c, minibuf.c, mule-ccl.c, mule-charset.c, mule-coding.c, mule-wnnfns.c, nas.c, objects-msw.c, objects-x.c, opaque.c, postgresql.c, print.c, process-nt.c, process-unix.c, process.c, process.h, profile.c, rangetab.c, redisplay-gtk.c, redisplay-msw.c, redisplay-output.c, redisplay-x.c, redisplay.c, redisplay.h, regex.c, regex.h, scrollbar-msw.c, search.c, select-x.c, specifier.c, specifier.h, symbols.c, symsinit.h, syntax.c, syntax.h, syswindows.h, tests.c, text.c, text.h, tooltalk.c, ui-byhand.c, ui-gtk.c, unicode.c, win32.c, window.c: Another big Ben patch.
-- FUNCTIONALITY CHANGES:
add partial support for 8-bit-fixed, 16-bit-fixed, and
32-bit-fixed formats. not quite done yet. (in particular, needs
functions to actually convert the buffer.) NOTE: lots of changes
to regex.c here. also, many new *_fmt() inline funs that take an
Internal_Format argument.
redo syntax cache code. make the cache per-buffer; keep the cache
valid across calls to functions that use it. also keep it valid
across insertions/deletions and extent changes, as much as is
possible. eliminate the junky regex-reentrancy code by passing in
the relevant lisp info to the regex routines as local vars.
add general mechanism in extents code for signalling extent changes.
fix numerous problems with the case-table implementation; yoshiki
never properly transferred many algorithms from old-style to
new-style case tables.
redo char tables to support a default argument, so that mapping
only occurs over changed args. change many chartab functions to
accept Lisp_Object instead of Lisp_Char_Table *.
comment out the code in font-lock.c by default, because
font-lock.el no longer uses it. we should consider eliminating it
entirely.
Don't output bell as ^G in console-stream when not a TTY.
add -mswindows-termination-handle to interface with i.c, so we can
properly kill a build.
add more error-checking to buffer/string macros.
add some additional buffer_or_string_() funs.
-- INTERFACE CHANGES AFFECTING MORE CODE:
switch the arguments of write_c_string and friends to be
consistent with write_fmt_string, which must have printcharfun
first.
change BI_* macros to BYTE_* for increased clarity; similarly for
bi_* local vars.
change VOID_TO_LISP to be a one-argument function. eliminate
no-longer-needed CVOID_TO_LISP.
-- char/string macro changes:
rename MAKE_CHAR() to make_emchar() for slightly less confusion
with make_char(). (The former generates an Emchar, the latter a
Lisp object. Conceivably we should rename make_char() -> wrap_char()
and similarly for make_int(), make_float().)
Similar changes for other *CHAR* macros -- we now consistently use
names with `emchar' whenever we are working with Emchars. Any
remaining name with just `char' always refers to a Lisp object.
rename macros with XSTRING_* to string_* except for those that
reference actual fields in the Lisp_String object, following
conventions used elsewhere.
rename set_string_{data,length} macros (the only ones to work with
a Lisp_String_* instead of a Lisp_Object) to set_lispstringp_*
to make the difference clear.
try to be consistent about caps vs. lowercase in macro/inline-fun
names for chars and such, which wasn't the case before. we now
reserve caps either for XFOO_ macros that reference object fields
(e.g. XSTRING_DATA) or for things that have non-function semantics,
e.g. directly modifying an arg (BREAKUP_EMCHAR) or evaluating an
arg (any arg) more than once. otherwise, use lowercase.
here is a summary of most of the macros/inline funs changed by all
of the above changes:
BYTE_*_P -> byte_*_p
XSTRING_BYTE -> string_byte
set_string_data/length -> set_lispstringp_data/length
XSTRING_CHAR_LENGTH -> string_char_length
XSTRING_CHAR -> string_emchar
INTBYTE_FIRST_BYTE_P -> intbyte_first_byte_p
INTBYTE_LEADING_BYTE_P -> intbyte_leading_byte_p
charptr_copy_char -> charptr_copy_emchar
LEADING_BYTE_* -> leading_byte_*
CHAR_* -> EMCHAR_*
*_CHAR_* -> *_EMCHAR_*
*_CHAR -> *_EMCHAR
CHARSET_BY_ -> charset_by_*
BYTE_SHIFT_JIS* -> byte_shift_jis*
BYTE_BIG5* -> byte_big5*
REP_BYTES_BY_FIRST_BYTE -> rep_bytes_by_first_byte
char_to_unicode -> emchar_to_unicode
valid_char_p -> valid_emchar_p
Change intbyte_strcmp -> qxestrcmp_c (duplicated functionality).
-- INTERFACE CHANGES AFFECTING LESS CODE:
use DECLARE_INLINE_HEADER in various places.
remove '#ifdef emacs' from XEmacs-only files.
eliminate CHAR_TABLE_VALUE(), which duplicated the functionality
of get_char_table().
add BUFFER_TEXT_LOOP to simplify iterations over buffer text.
define typedefs for signed and unsigned types of fixed sizes
(INT_32_BIT, UINT_32_BIT, etc.).
create ALIGN_FOR_TYPE as a higher-level interface onto ALIGN_SIZE;
fix code to use it.
add charptr_emchar_len to return the text length of the character
pointed to by a ptr; use it in place of
charcount_to_bytecount(..., 1). add emchar_len to return the text
length of a given character.
add types Bytexpos and Charxpos to generalize Bytebpos/Bytecount
and Charbpos/Charcount, in code (particularly, the extents code
and redisplay code) that works with either kind of index. rename
redisplay struct params with names such as `charbpos' to
e.g. `charpos' when they are e.g. a Charxpos, not a Charbpos.
eliminate xxDEFUN in place of DEFUN; no longer necessary with
changes awhile back to doc.c.
split up big ugly combined list of EXFUNs in lisp.h on a
file-by-file basis, since other prototypes are similarly split.
rewrite some "*_UNSAFE" macros as inline funs and eliminate the
_UNSAFE suffix.
move most string code from lisp.h to text.h; the string code and
text.h code is now intertwined in such a fashion that they need
to be in the same place and partially interleaved. (you can't
create forward references for inline funs)
automated/lisp-tests.el, automated/symbol-tests.el, automated/test-harness.el: Fix test harness to output FAIL messages to stderr when in
batch mode.
Fix up some problems in lisp-tests/symbol-tests that were
causing spurious failures.
author | ben |
---|---|
date | Sun, 05 May 2002 11:33:57 +0000 |
parents | 943eaba38521 |
children | c925bacdda60 |
line wrap: on
line source
/* Primitive operations on floating point for XEmacs Lisp interpreter. Copyright (C) 1988, 1993, 1994 Free Software Foundation, Inc. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: FSF 19.30. */ /* ANSI C requires only these float functions: acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod, frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh. Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh. Define HAVE_CBRT if you have cbrt(). Define HAVE_RINT if you have rint(). If you don't define these, then the appropriate routines will be simulated. Define HAVE_MATHERR if on a system supporting the SysV matherr() callback. (This should happen automatically.) Define FLOAT_CHECK_ERRNO if the float library routines set errno. This has no effect if HAVE_MATHERR is defined. Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL. (What systems actually do this? Let me know. -jwz) Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by either setting errno, or signalling SIGFPE/SIGILL. Otherwise, domain and range checking will happen before calling the float routines. This has no effect if HAVE_MATHERR is defined (since matherr will be called when a domain error occurs). */ #include <config.h> #include "lisp.h" #include "syssignal.h" #ifdef LISP_FLOAT_TYPE #include "sysfloat.h" /* The code uses emacs_rint, so that it works to undefine HAVE_RINT if `rint' exists but does not work right. */ #ifdef HAVE_RINT #define emacs_rint rint #else static double emacs_rint (double x) { double r = floor (x + 0.5); double diff = fabs (r - x); /* Round to even and correct for any roundoff errors. */ if (diff >= 0.5 && (diff > 0.5 || r != 2.0 * floor (r / 2.0))) r += r < x ? 1.0 : -1.0; return r; } #endif /* Nonzero while executing in floating point. This tells float_error what to do. */ static int in_float; /* If an argument is out of range for a mathematical function, here is the actual argument value to use in the error message. */ static Lisp_Object float_error_arg, float_error_arg2; static const char *float_error_fn_name; /* Evaluate the floating point expression D, recording NUM as the original argument for error messages. D is normally an assignment expression. Handle errors which may result in signals or may set errno. Note that float_error may be declared to return void, so you can't just cast the zero after the colon to (SIGTYPE) to make the types check properly. */ #ifdef FLOAT_CHECK_ERRNO #define IN_FLOAT(d, name, num) \ do { \ float_error_arg = num; \ float_error_fn_name = name; \ in_float = 1; errno = 0; (d); in_float = 0; \ if (errno != 0) in_float_error (); \ } while (0) #define IN_FLOAT2(d, name, num, num2) \ do { \ float_error_arg = num; \ float_error_arg2 = num2; \ float_error_fn_name = name; \ in_float = 2; errno = 0; (d); in_float = 0; \ if (errno != 0) in_float_error (); \ } while (0) #else #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0) #define IN_FLOAT2(d, name, num, num2) (in_float = 2, (d), in_float = 0) #endif #define arith_error(op,arg) \ Fsignal (Qarith_error, list2 (build_msg_string (op), arg)) #define range_error(op,arg) \ Fsignal (Qrange_error, list2 (build_msg_string (op), arg)) #define range_error2(op,a1,a2) \ Fsignal (Qrange_error, list3 (build_msg_string (op), a1, a2)) #define domain_error(op,arg) \ Fsignal (Qdomain_error, list2 (build_msg_string (op), arg)) #define domain_error2(op,a1,a2) \ Fsignal (Qdomain_error, list3 (build_msg_string (op), a1, a2)) /* Convert float to Lisp Integer if it fits, else signal a range error using the given arguments. */ static Lisp_Object float_to_int (double x, const char *name, Lisp_Object num, Lisp_Object num2) { if (x >= ((EMACS_INT) 1 << (VALBITS-1)) || x <= - ((EMACS_INT) 1 << (VALBITS-1)) - (EMACS_INT) 1) { if (!UNBOUNDP (num2)) range_error2 (name, num, num2); else range_error (name, num); } return (make_int ((EMACS_INT) x)); } static void in_float_error (void) { switch (errno) { case 0: break; case EDOM: if (in_float == 2) domain_error2 (float_error_fn_name, float_error_arg, float_error_arg2); else domain_error (float_error_fn_name, float_error_arg); break; case ERANGE: range_error (float_error_fn_name, float_error_arg); break; default: arith_error (float_error_fn_name, float_error_arg); break; } } static Lisp_Object mark_float (Lisp_Object obj) { return Qnil; } static int float_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) { return (extract_float (obj1) == extract_float (obj2)); } static Hashcode float_hash (Lisp_Object obj, int depth) { /* mod the value down to 32-bit range */ /* #### change for 64-bit machines */ return (unsigned long) fmod (extract_float (obj), 4e9); } static const struct lrecord_description float_description[] = { { XD_END } }; DEFINE_BASIC_LRECORD_IMPLEMENTATION ("float", float, mark_float, print_float, 0, float_equal, float_hash, float_description, Lisp_Float); /* Extract a Lisp number as a `double', or signal an error. */ double extract_float (Lisp_Object num) { if (FLOATP (num)) return XFLOAT_DATA (num); if (INTP (num)) return (double) XINT (num); return extract_float (wrong_type_argument (Qnumberp, num)); } #endif /* LISP_FLOAT_TYPE */ /* Trig functions. */ #ifdef LISP_FLOAT_TYPE DEFUN ("acos", Facos, 1, 1, 0, /* Return the inverse cosine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 1.0 || d < -1.0) domain_error ("acos", number); #endif IN_FLOAT (d = acos (d), "acos", number); return make_float (d); } DEFUN ("asin", Fasin, 1, 1, 0, /* Return the inverse sine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 1.0 || d < -1.0) domain_error ("asin", number); #endif IN_FLOAT (d = asin (d), "asin", number); return make_float (d); } DEFUN ("atan", Fatan, 1, 2, 0, /* Return the inverse tangent of NUMBER. If optional second argument NUMBER2 is provided, return atan2 (NUMBER, NUMBER2). */ (number, number2)) { double d = extract_float (number); if (NILP (number2)) IN_FLOAT (d = atan (d), "atan", number); else { double d2 = extract_float (number2); #ifdef FLOAT_CHECK_DOMAIN if (d == 0.0 && d2 == 0.0) domain_error2 ("atan", number, number2); #endif IN_FLOAT2 (d = atan2 (d, d2), "atan", number, number2); } return make_float (d); } DEFUN ("cos", Fcos, 1, 1, 0, /* Return the cosine of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = cos (d), "cos", number); return make_float (d); } DEFUN ("sin", Fsin, 1, 1, 0, /* Return the sine of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = sin (d), "sin", number); return make_float (d); } DEFUN ("tan", Ftan, 1, 1, 0, /* Return the tangent of NUMBER. */ (number)) { double d = extract_float (number); double c = cos (d); #ifdef FLOAT_CHECK_DOMAIN if (c == 0.0) domain_error ("tan", number); #endif IN_FLOAT (d = (sin (d) / c), "tan", number); return make_float (d); } #endif /* LISP_FLOAT_TYPE (trig functions) */ /* Bessel functions */ #if 0 /* Leave these out unless we find there's a reason for them. */ /* #ifdef LISP_FLOAT_TYPE */ DEFUN ("bessel-j0", Fbessel_j0, 1, 1, 0, /* Return the bessel function j0 of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = j0 (d), "bessel-j0", number); return make_float (d); } DEFUN ("bessel-j1", Fbessel_j1, 1, 1, 0, /* Return the bessel function j1 of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = j1 (d), "bessel-j1", number); return make_float (d); } DEFUN ("bessel-jn", Fbessel_jn, 2, 2, 0, /* Return the order N bessel function output jn of NUMBER. The first number (the order) is truncated to an integer. */ (number1, number2)) { int i1 = extract_float (number1); double f2 = extract_float (number2); IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", number1); return make_float (f2); } DEFUN ("bessel-y0", Fbessel_y0, 1, 1, 0, /* Return the bessel function y0 of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = y0 (d), "bessel-y0", number); return make_float (d); } DEFUN ("bessel-y1", Fbessel_y1, 1, 1, 0, /* Return the bessel function y1 of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = y1 (d), "bessel-y0", number); return make_float (d); } DEFUN ("bessel-yn", Fbessel_yn, 2, 2, 0, /* Return the order N bessel function output yn of NUMBER. The first number (the order) is truncated to an integer. */ (number1, number2)) { int i1 = extract_float (number1); double f2 = extract_float (number2); IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", number1); return make_float (f2); } #endif /* 0 (bessel functions) */ /* Error functions. */ #if 0 /* Leave these out unless we see they are worth having. */ /* #ifdef LISP_FLOAT_TYPE */ DEFUN ("erf", Ferf, 1, 1, 0, /* Return the mathematical error function of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = erf (d), "erf", number); return make_float (d); } DEFUN ("erfc", Ferfc, 1, 1, 0, /* Return the complementary error function of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = erfc (d), "erfc", number); return make_float (d); } DEFUN ("log-gamma", Flog_gamma, 1, 1, 0, /* Return the log gamma of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = lgamma (d), "log-gamma", number); return make_float (d); } #endif /* 0 (error functions) */ /* Root and Log functions. */ #ifdef LISP_FLOAT_TYPE DEFUN ("exp", Fexp, 1, 1, 0, /* Return the exponential base e of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 709.7827) /* Assume IEEE doubles here */ range_error ("exp", number); else if (d < -709.0) return make_float (0.0); else #endif IN_FLOAT (d = exp (d), "exp", number); return make_float (d); } #endif /* LISP_FLOAT_TYPE */ DEFUN ("expt", Fexpt, 2, 2, 0, /* Return the exponential NUMBER1 ** NUMBER2. */ (number1, number2)) { if (INTP (number1) && /* common lisp spec */ INTP (number2)) /* don't promote, if both are ints */ { EMACS_INT retval; EMACS_INT x = XINT (number1); EMACS_INT y = XINT (number2); if (y < 0) { if (x == 1) retval = 1; else if (x == -1) retval = (y & 1) ? -1 : 1; else retval = 0; } else { retval = 1; while (y > 0) { if (y & 1) retval *= x; x *= x; y = (EMACS_UINT) y >> 1; } } return make_int (retval); } #ifdef LISP_FLOAT_TYPE { double f1 = extract_float (number1); double f2 = extract_float (number2); /* Really should check for overflow, too */ if (f1 == 0.0 && f2 == 0.0) f1 = 1.0; # ifdef FLOAT_CHECK_DOMAIN else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2))) domain_error2 ("expt", number1, number2); # endif /* FLOAT_CHECK_DOMAIN */ IN_FLOAT2 (f1 = pow (f1, f2), "expt", number1, number2); return make_float (f1); } #else CHECK_INT_OR_FLOAT (number1); CHECK_INT_OR_FLOAT (number2); return Fexpt (number1, number2); #endif /* LISP_FLOAT_TYPE */ } #ifdef LISP_FLOAT_TYPE DEFUN ("log", Flog, 1, 2, 0, /* Return the natural logarithm of NUMBER. If second optional argument BASE is given, return the logarithm of NUMBER using that base. */ (number, base)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d <= 0.0) domain_error2 ("log", number, base); #endif if (NILP (base)) IN_FLOAT (d = log (d), "log", number); else { double b = extract_float (base); #ifdef FLOAT_CHECK_DOMAIN if (b <= 0.0 || b == 1.0) domain_error2 ("log", number, base); #endif if (b == 10.0) IN_FLOAT2 (d = log10 (d), "log", number, base); else IN_FLOAT2 (d = (log (d) / log (b)), "log", number, base); } return make_float (d); } DEFUN ("log10", Flog10, 1, 1, 0, /* Return the logarithm base 10 of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d <= 0.0) domain_error ("log10", number); #endif IN_FLOAT (d = log10 (d), "log10", number); return make_float (d); } DEFUN ("sqrt", Fsqrt, 1, 1, 0, /* Return the square root of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d < 0.0) domain_error ("sqrt", number); #endif IN_FLOAT (d = sqrt (d), "sqrt", number); return make_float (d); } DEFUN ("cube-root", Fcube_root, 1, 1, 0, /* Return the cube root of NUMBER. */ (number)) { double d = extract_float (number); #ifdef HAVE_CBRT IN_FLOAT (d = cbrt (d), "cube-root", number); #else if (d >= 0.0) IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", number); else IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", number); #endif return make_float (d); } #endif /* LISP_FLOAT_TYPE */ /* Inverse trig functions. */ #ifdef LISP_FLOAT_TYPE /* #if 0 Not clearly worth adding... */ DEFUN ("acosh", Facosh, 1, 1, 0, /* Return the inverse hyperbolic cosine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d < 1.0) domain_error ("acosh", number); #endif #ifdef HAVE_INVERSE_HYPERBOLIC IN_FLOAT (d = acosh (d), "acosh", number); #else IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", number); #endif return make_float (d); } DEFUN ("asinh", Fasinh, 1, 1, 0, /* Return the inverse hyperbolic sine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef HAVE_INVERSE_HYPERBOLIC IN_FLOAT (d = asinh (d), "asinh", number); #else IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", number); #endif return make_float (d); } DEFUN ("atanh", Fatanh, 1, 1, 0, /* Return the inverse hyperbolic tangent of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d >= 1.0 || d <= -1.0) domain_error ("atanh", number); #endif #ifdef HAVE_INVERSE_HYPERBOLIC IN_FLOAT (d = atanh (d), "atanh", number); #else IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", number); #endif return make_float (d); } DEFUN ("cosh", Fcosh, 1, 1, 0, /* Return the hyperbolic cosine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 710.0 || d < -710.0) range_error ("cosh", number); #endif IN_FLOAT (d = cosh (d), "cosh", number); return make_float (d); } DEFUN ("sinh", Fsinh, 1, 1, 0, /* Return the hyperbolic sine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 710.0 || d < -710.0) range_error ("sinh", number); #endif IN_FLOAT (d = sinh (d), "sinh", number); return make_float (d); } DEFUN ("tanh", Ftanh, 1, 1, 0, /* Return the hyperbolic tangent of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = tanh (d), "tanh", number); return make_float (d); } #endif /* LISP_FLOAT_TYPE (inverse trig functions) */ /* Rounding functions */ DEFUN ("abs", Fabs, 1, 1, 0, /* Return the absolute value of NUMBER. */ (number)) { #ifdef LISP_FLOAT_TYPE if (FLOATP (number)) { IN_FLOAT (number = make_float (fabs (XFLOAT_DATA (number))), "abs", number); return number; } #endif /* LISP_FLOAT_TYPE */ if (INTP (number)) return (XINT (number) >= 0) ? number : make_int (- XINT (number)); return Fabs (wrong_type_argument (Qnumberp, number)); } #ifdef LISP_FLOAT_TYPE DEFUN ("float", Ffloat, 1, 1, 0, /* Return the floating point number numerically equal to NUMBER. */ (number)) { if (INTP (number)) return make_float ((double) XINT (number)); if (FLOATP (number)) /* give 'em the same float back */ return number; return Ffloat (wrong_type_argument (Qnumberp, number)); } #endif /* LISP_FLOAT_TYPE */ #ifdef LISP_FLOAT_TYPE DEFUN ("logb", Flogb, 1, 1, 0, /* Return largest integer <= the base 2 log of the magnitude of NUMBER. This is the same as the exponent of a float. */ (number)) { double f = extract_float (number); if (f == 0.0) return make_int (- (EMACS_INT)(((EMACS_UINT) 1) << (VALBITS - 1))); /* most-negative-fixnum */ #ifdef HAVE_LOGB { Lisp_Object val; IN_FLOAT (val = make_int ((EMACS_INT) logb (f)), "logb", number); return val; } #else #ifdef HAVE_FREXP { int exqp; IN_FLOAT (frexp (f, &exqp), "logb", number); return make_int (exqp - 1); } #else { int i; double d; EMACS_INT val; if (f < 0.0) f = -f; val = -1; while (f < 0.5) { for (i = 1, d = 0.5; d * d >= f; i += i) d *= d; f /= d; val -= i; } while (f >= 1.0) { for (i = 1, d = 2.0; d * d <= f; i += i) d *= d; f /= d; val += i; } return make_int (val); } #endif /* ! HAVE_FREXP */ #endif /* ! HAVE_LOGB */ } #endif /* LISP_FLOAT_TYPE */ DEFUN ("ceiling", Fceiling, 1, 1, 0, /* Return the smallest integer no less than NUMBER. (Round toward +inf.) */ (number)) { #ifdef LISP_FLOAT_TYPE if (FLOATP (number)) { double d; IN_FLOAT ((d = ceil (XFLOAT_DATA (number))), "ceiling", number); return (float_to_int (d, "ceiling", number, Qunbound)); } #endif /* LISP_FLOAT_TYPE */ if (INTP (number)) return number; return Fceiling (wrong_type_argument (Qnumberp, number)); } DEFUN ("floor", Ffloor, 1, 2, 0, /* Return the largest integer no greater than NUMBER. (Round towards -inf.) With optional second argument DIVISOR, return the largest integer no greater than NUMBER/DIVISOR. */ (number, divisor)) { CHECK_INT_OR_FLOAT (number); if (! NILP (divisor)) { EMACS_INT i1, i2; CHECK_INT_OR_FLOAT (divisor); #ifdef LISP_FLOAT_TYPE if (FLOATP (number) || FLOATP (divisor)) { double f1 = extract_float (number); double f2 = extract_float (divisor); if (f2 == 0) Fsignal (Qarith_error, Qnil); IN_FLOAT2 (f1 = floor (f1 / f2), "floor", number, divisor); return float_to_int (f1, "floor", number, divisor); } #endif /* LISP_FLOAT_TYPE */ i1 = XINT (number); i2 = XINT (divisor); if (i2 == 0) Fsignal (Qarith_error, Qnil); /* With C's /, the result is implementation-defined if either operand is negative, so use only nonnegative operands. */ i1 = (i2 < 0 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2)) : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2)); return (make_int (i1)); } #ifdef LISP_FLOAT_TYPE if (FLOATP (number)) { double d; IN_FLOAT ((d = floor (XFLOAT_DATA (number))), "floor", number); return (float_to_int (d, "floor", number, Qunbound)); } #endif /* LISP_FLOAT_TYPE */ return number; } DEFUN ("round", Fround, 1, 1, 0, /* Return the nearest integer to NUMBER. */ (number)) { #ifdef LISP_FLOAT_TYPE if (FLOATP (number)) { double d; /* Screw the prevailing rounding mode. */ IN_FLOAT ((d = emacs_rint (XFLOAT_DATA (number))), "round", number); return (float_to_int (d, "round", number, Qunbound)); } #endif /* LISP_FLOAT_TYPE */ if (INTP (number)) return number; return Fround (wrong_type_argument (Qnumberp, number)); } DEFUN ("truncate", Ftruncate, 1, 1, 0, /* Truncate a floating point number to an integer. Rounds the value toward zero. */ (number)) { #ifdef LISP_FLOAT_TYPE if (FLOATP (number)) return float_to_int (XFLOAT_DATA (number), "truncate", number, Qunbound); #endif /* LISP_FLOAT_TYPE */ if (INTP (number)) return number; return Ftruncate (wrong_type_argument (Qnumberp, number)); } /* Float-rounding functions. */ #ifdef LISP_FLOAT_TYPE /* #if 1 It's not clear these are worth adding... */ DEFUN ("fceiling", Ffceiling, 1, 1, 0, /* Return the smallest integer no less than NUMBER, as a float. \(Round toward +inf.\) */ (number)) { double d = extract_float (number); IN_FLOAT (d = ceil (d), "fceiling", number); return make_float (d); } DEFUN ("ffloor", Fffloor, 1, 1, 0, /* Return the largest integer no greater than NUMBER, as a float. \(Round towards -inf.\) */ (number)) { double d = extract_float (number); IN_FLOAT (d = floor (d), "ffloor", number); return make_float (d); } DEFUN ("fround", Ffround, 1, 1, 0, /* Return the nearest integer to NUMBER, as a float. */ (number)) { double d = extract_float (number); IN_FLOAT (d = emacs_rint (d), "fround", number); return make_float (d); } DEFUN ("ftruncate", Fftruncate, 1, 1, 0, /* Truncate a floating point number to an integral float value. Rounds the value toward zero. */ (number)) { double d = extract_float (number); if (d >= 0.0) IN_FLOAT (d = floor (d), "ftruncate", number); else IN_FLOAT (d = ceil (d), "ftruncate", number); return make_float (d); } #endif /* LISP_FLOAT_TYPE (float-rounding functions) */ #ifdef LISP_FLOAT_TYPE #ifdef FLOAT_CATCH_SIGILL static SIGTYPE float_error (int signo) { if (! in_float) fatal_error_signal (signo); EMACS_REESTABLISH_SIGNAL (signo, arith_error); EMACS_UNBLOCK_SIGNAL (signo); in_float = 0; /* Was Fsignal(), but it just doesn't make sense for an error occurring inside a signal handler to be restartable, considering that anything could happen when the error is signaled and trapped and considering the asynchronous nature of signal handlers. */ signal_error (Qarith_error, 0, float_error_arg); } /* Another idea was to replace the library function `infnan' where SIGILL is signaled. */ #endif /* FLOAT_CATCH_SIGILL */ /* In C++, it is impossible to determine what type matherr expects without some more configure magic. We shouldn't be using matherr anyways - it's a non-standard SYSVism. */ #if defined (HAVE_MATHERR) && !defined(__cplusplus) int matherr (struct exception *x) { Lisp_Object args; if (! in_float) /* Not called from emacs-lisp float routines; do the default thing. */ return 0; /* if (!strcmp (x->name, "pow")) x->name = "expt"; */ args = Fcons (build_string (x->name), Fcons (make_float (x->arg1), ((in_float == 2) ? Fcons (make_float (x->arg2), Qnil) : Qnil))); switch (x->type) { case DOMAIN: Fsignal (Qdomain_error, args); break; case SING: Fsignal (Qsingularity_error, args); break; case OVERFLOW: Fsignal (Qoverflow_error, args); break; case UNDERFLOW: Fsignal (Qunderflow_error, args); break; default: Fsignal (Qarith_error, args); break; } return 1; /* don't set errno or print a message */ } #endif /* HAVE_MATHERR */ #endif /* LISP_FLOAT_TYPE */ void init_floatfns_very_early (void) { #ifdef LISP_FLOAT_TYPE # ifdef FLOAT_CATCH_SIGILL EMACS_SIGNAL (SIGILL, float_error); # endif in_float = 0; #endif /* LISP_FLOAT_TYPE */ } void syms_of_floatfns (void) { INIT_LRECORD_IMPLEMENTATION (float); /* Trig functions. */ #ifdef LISP_FLOAT_TYPE DEFSUBR (Facos); DEFSUBR (Fasin); DEFSUBR (Fatan); DEFSUBR (Fcos); DEFSUBR (Fsin); DEFSUBR (Ftan); #endif /* LISP_FLOAT_TYPE */ /* Bessel functions */ #if 0 DEFSUBR (Fbessel_y0); DEFSUBR (Fbessel_y1); DEFSUBR (Fbessel_yn); DEFSUBR (Fbessel_j0); DEFSUBR (Fbessel_j1); DEFSUBR (Fbessel_jn); #endif /* 0 */ /* Error functions. */ #if 0 DEFSUBR (Ferf); DEFSUBR (Ferfc); DEFSUBR (Flog_gamma); #endif /* 0 */ /* Root and Log functions. */ #ifdef LISP_FLOAT_TYPE DEFSUBR (Fexp); #endif /* LISP_FLOAT_TYPE */ DEFSUBR (Fexpt); #ifdef LISP_FLOAT_TYPE DEFSUBR (Flog); DEFSUBR (Flog10); DEFSUBR (Fsqrt); DEFSUBR (Fcube_root); #endif /* LISP_FLOAT_TYPE */ /* Inverse trig functions. */ #ifdef LISP_FLOAT_TYPE DEFSUBR (Facosh); DEFSUBR (Fasinh); DEFSUBR (Fatanh); DEFSUBR (Fcosh); DEFSUBR (Fsinh); DEFSUBR (Ftanh); #endif /* LISP_FLOAT_TYPE */ /* Rounding functions */ DEFSUBR (Fabs); #ifdef LISP_FLOAT_TYPE DEFSUBR (Ffloat); DEFSUBR (Flogb); #endif /* LISP_FLOAT_TYPE */ DEFSUBR (Fceiling); DEFSUBR (Ffloor); DEFSUBR (Fround); DEFSUBR (Ftruncate); /* Float-rounding functions. */ #ifdef LISP_FLOAT_TYPE DEFSUBR (Ffceiling); DEFSUBR (Fffloor); DEFSUBR (Ffround); DEFSUBR (Fftruncate); #endif /* LISP_FLOAT_TYPE */ } void vars_of_floatfns (void) { #ifdef LISP_FLOAT_TYPE Fprovide (intern ("lisp-float-type")); #endif }