Mercurial > hg > xemacs-beta
view lisp/cl-seq.el @ 826:6728e641994e
[xemacs-hg @ 2002-05-05 11:30:15 by ben]
syntax cache, 8-bit-format, lots of code cleanup
README.packages: Update info about --package-path.
i.c: Create an inheritable event and pass it on to XEmacs, so that ^C
can be handled properly. Intercept ^C and signal the event.
"Stop Build" in VC++ now works.
bytecomp-runtime.el: Doc string changes.
compat.el: Some attempts to redo this to
make it truly useful and fix the "multiple versions interacting
with each other" problem. Not yet done. Currently doesn't work.
files.el: Use with-obsolete-variable to avoid warnings in new revert-buffer code.
xemacs.mak: Split up CFLAGS into a version without flags specifying the C
library. The problem seems to be that minitar depends on zlib,
which depends specifically on libc.lib, not on any of the other C
libraries. Unless you compile with libc.lib, you get errors --
specifically, no _errno in the other libraries, which must make it
something other than an int. (#### But this doesn't seem to obtain
in XEmacs, which also uses zlib, and can be linked with any of the
C libraries. Maybe zlib is used differently and doesn't need
errno, or maybe XEmacs provides an int errno; ... I don't
understand.
Makefile.in.in: Fix so that packages are around when testing.
abbrev.c, alloc.c, buffer.c, buffer.h, bytecode.c, callint.c, casefiddle.c, casetab.c, casetab.h, charset.h, chartab.c, chartab.h, cmds.c, console-msw.h, console-stream.c, console-x.c, console.c, console.h, data.c, device-msw.c, device.c, device.h, dialog-msw.c, dialog-x.c, dired-msw.c, dired.c, doc.c, doprnt.c, dumper.c, editfns.c, elhash.c, emacs.c, eval.c, event-Xt.c, event-gtk.c, event-msw.c, event-stream.c, events.c, events.h, extents.c, extents.h, faces.c, file-coding.c, file-coding.h, fileio.c, fns.c, font-lock.c, frame-gtk.c, frame-msw.c, frame-x.c, frame.c, frame.h, glade.c, glyphs-gtk.c, glyphs-msw.c, glyphs-msw.h, glyphs-x.c, glyphs.c, glyphs.h, gui-msw.c, gui-x.c, gui.h, gutter.h, hash.h, indent.c, insdel.c, intl-win32.c, intl.c, keymap.c, lisp-disunion.h, lisp-union.h, lisp.h, lread.c, lrecord.h, lstream.c, lstream.h, marker.c, menubar-gtk.c, menubar-msw.c, menubar-x.c, menubar.c, minibuf.c, mule-ccl.c, mule-charset.c, mule-coding.c, mule-wnnfns.c, nas.c, objects-msw.c, objects-x.c, opaque.c, postgresql.c, print.c, process-nt.c, process-unix.c, process.c, process.h, profile.c, rangetab.c, redisplay-gtk.c, redisplay-msw.c, redisplay-output.c, redisplay-x.c, redisplay.c, redisplay.h, regex.c, regex.h, scrollbar-msw.c, search.c, select-x.c, specifier.c, specifier.h, symbols.c, symsinit.h, syntax.c, syntax.h, syswindows.h, tests.c, text.c, text.h, tooltalk.c, ui-byhand.c, ui-gtk.c, unicode.c, win32.c, window.c: Another big Ben patch.
-- FUNCTIONALITY CHANGES:
add partial support for 8-bit-fixed, 16-bit-fixed, and
32-bit-fixed formats. not quite done yet. (in particular, needs
functions to actually convert the buffer.) NOTE: lots of changes
to regex.c here. also, many new *_fmt() inline funs that take an
Internal_Format argument.
redo syntax cache code. make the cache per-buffer; keep the cache
valid across calls to functions that use it. also keep it valid
across insertions/deletions and extent changes, as much as is
possible. eliminate the junky regex-reentrancy code by passing in
the relevant lisp info to the regex routines as local vars.
add general mechanism in extents code for signalling extent changes.
fix numerous problems with the case-table implementation; yoshiki
never properly transferred many algorithms from old-style to
new-style case tables.
redo char tables to support a default argument, so that mapping
only occurs over changed args. change many chartab functions to
accept Lisp_Object instead of Lisp_Char_Table *.
comment out the code in font-lock.c by default, because
font-lock.el no longer uses it. we should consider eliminating it
entirely.
Don't output bell as ^G in console-stream when not a TTY.
add -mswindows-termination-handle to interface with i.c, so we can
properly kill a build.
add more error-checking to buffer/string macros.
add some additional buffer_or_string_() funs.
-- INTERFACE CHANGES AFFECTING MORE CODE:
switch the arguments of write_c_string and friends to be
consistent with write_fmt_string, which must have printcharfun
first.
change BI_* macros to BYTE_* for increased clarity; similarly for
bi_* local vars.
change VOID_TO_LISP to be a one-argument function. eliminate
no-longer-needed CVOID_TO_LISP.
-- char/string macro changes:
rename MAKE_CHAR() to make_emchar() for slightly less confusion
with make_char(). (The former generates an Emchar, the latter a
Lisp object. Conceivably we should rename make_char() -> wrap_char()
and similarly for make_int(), make_float().)
Similar changes for other *CHAR* macros -- we now consistently use
names with `emchar' whenever we are working with Emchars. Any
remaining name with just `char' always refers to a Lisp object.
rename macros with XSTRING_* to string_* except for those that
reference actual fields in the Lisp_String object, following
conventions used elsewhere.
rename set_string_{data,length} macros (the only ones to work with
a Lisp_String_* instead of a Lisp_Object) to set_lispstringp_*
to make the difference clear.
try to be consistent about caps vs. lowercase in macro/inline-fun
names for chars and such, which wasn't the case before. we now
reserve caps either for XFOO_ macros that reference object fields
(e.g. XSTRING_DATA) or for things that have non-function semantics,
e.g. directly modifying an arg (BREAKUP_EMCHAR) or evaluating an
arg (any arg) more than once. otherwise, use lowercase.
here is a summary of most of the macros/inline funs changed by all
of the above changes:
BYTE_*_P -> byte_*_p
XSTRING_BYTE -> string_byte
set_string_data/length -> set_lispstringp_data/length
XSTRING_CHAR_LENGTH -> string_char_length
XSTRING_CHAR -> string_emchar
INTBYTE_FIRST_BYTE_P -> intbyte_first_byte_p
INTBYTE_LEADING_BYTE_P -> intbyte_leading_byte_p
charptr_copy_char -> charptr_copy_emchar
LEADING_BYTE_* -> leading_byte_*
CHAR_* -> EMCHAR_*
*_CHAR_* -> *_EMCHAR_*
*_CHAR -> *_EMCHAR
CHARSET_BY_ -> charset_by_*
BYTE_SHIFT_JIS* -> byte_shift_jis*
BYTE_BIG5* -> byte_big5*
REP_BYTES_BY_FIRST_BYTE -> rep_bytes_by_first_byte
char_to_unicode -> emchar_to_unicode
valid_char_p -> valid_emchar_p
Change intbyte_strcmp -> qxestrcmp_c (duplicated functionality).
-- INTERFACE CHANGES AFFECTING LESS CODE:
use DECLARE_INLINE_HEADER in various places.
remove '#ifdef emacs' from XEmacs-only files.
eliminate CHAR_TABLE_VALUE(), which duplicated the functionality
of get_char_table().
add BUFFER_TEXT_LOOP to simplify iterations over buffer text.
define typedefs for signed and unsigned types of fixed sizes
(INT_32_BIT, UINT_32_BIT, etc.).
create ALIGN_FOR_TYPE as a higher-level interface onto ALIGN_SIZE;
fix code to use it.
add charptr_emchar_len to return the text length of the character
pointed to by a ptr; use it in place of
charcount_to_bytecount(..., 1). add emchar_len to return the text
length of a given character.
add types Bytexpos and Charxpos to generalize Bytebpos/Bytecount
and Charbpos/Charcount, in code (particularly, the extents code
and redisplay code) that works with either kind of index. rename
redisplay struct params with names such as `charbpos' to
e.g. `charpos' when they are e.g. a Charxpos, not a Charbpos.
eliminate xxDEFUN in place of DEFUN; no longer necessary with
changes awhile back to doc.c.
split up big ugly combined list of EXFUNs in lisp.h on a
file-by-file basis, since other prototypes are similarly split.
rewrite some "*_UNSAFE" macros as inline funs and eliminate the
_UNSAFE suffix.
move most string code from lisp.h to text.h; the string code and
text.h code is now intertwined in such a fashion that they need
to be in the same place and partially interleaved. (you can't
create forward references for inline funs)
automated/lisp-tests.el, automated/symbol-tests.el, automated/test-harness.el: Fix test harness to output FAIL messages to stderr when in
batch mode.
Fix up some problems in lisp-tests/symbol-tests that were
causing spurious failures.
author | ben |
---|---|
date | Sun, 05 May 2002 11:33:57 +0000 |
parents | 023b83f4e54b |
children | 393039450288 |
line wrap: on
line source
;;; cl-seq.el --- Common Lisp extensions for XEmacs Lisp (part three) ;; Copyright (C) 1993 Free Software Foundation, Inc. ;; Author: Dave Gillespie <daveg@synaptics.com> ;; Maintainer: XEmacs Development Team ;; Version: 2.02 ;; Keywords: extensions, dumped ;; This file is part of XEmacs. ;; XEmacs is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 2, or (at your option) ;; any later version. ;; XEmacs is distributed in the hope that it will be useful, but ;; WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;; General Public License for more details. ;; You should have received a copy of the GNU General Public License ;; along with XEmacs; see the file COPYING. If not, write to the Free ;; Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA ;; 02111-1307, USA. ;;; Synched up with: FSF 19.34. ;;; Commentary: ;; This file is dumped with XEmacs. ;; These are extensions to Emacs Lisp that provide a degree of ;; Common Lisp compatibility, beyond what is already built-in ;; in Emacs Lisp. ;; ;; This package was written by Dave Gillespie; it is a complete ;; rewrite of Cesar Quiroz's original cl.el package of December 1986. ;; ;; This package works with Emacs 18, Emacs 19, and Lucid Emacs 19. ;; ;; Bug reports, comments, and suggestions are welcome! ;; This file contains the Common Lisp sequence and list functions ;; which take keyword arguments. ;; See cl.el for Change Log. ;;; Code: (or (memq 'cl-19 features) (error "Tried to load `cl-seq' before `cl'!")) ;;; We define these here so that this file can compile without having ;;; loaded the cl.el file already. (defmacro cl-push (x place) (list 'setq place (list 'cons x place))) (defmacro cl-pop (place) (list 'car (list 'prog1 place (list 'setq place (list 'cdr place))))) ;;; Keyword parsing. This is special-cased here so that we can compile ;;; this file independent from cl-macs. (defmacro cl-parsing-keywords (kwords other-keys &rest body) "Helper macro for functions with keyword arguments. This is a temporary solution, until keyword arguments are natively supported. Declare your function ending with (... &rest cl-keys), then wrap the function body in a call to `cl-parsing-keywords'. KWORDS is a list of keyword definitions. Each definition should be either a keyword or a list (KEYWORD DEFAULT-VALUE). In the former case, the default value is nil. The keywords are available in BODY as the name of the keyword, minus its initial colon and prepended with `cl-'. OTHER-KEYS specifies other keywords that are accepted but ignored. It is either the value 't' (ignore all other keys, equivalent to the &allow-other-keys argument declaration in Common Lisp) or a list in the same format as KWORDS. If keywords are given that are not in KWORDS and not allowed by OTHER-KEYS, an error will normally be signalled; but the caller can override this by specifying a non-nil value for the keyword :allow-other-keys (which defaults to t)." (cons 'let* (cons (mapcar (function (lambda (x) (let* ((var (if (consp x) (car x) x)) (mem (list 'car (list 'cdr (list 'memq (list 'quote var) 'cl-keys))))) (if (eq var ':test-not) (setq mem (list 'and mem (list 'setq 'cl-test mem) t))) (if (eq var ':if-not) (setq mem (list 'and mem (list 'setq 'cl-if mem) t))) (list (intern (format "cl-%s" (substring (symbol-name var) 1))) (if (consp x) (list 'or mem (car (cdr x))) mem))))) kwords) (append (and (not (eq other-keys t)) (list (list 'let '((cl-keys-temp cl-keys)) (list 'while 'cl-keys-temp (list 'or (list 'memq '(car cl-keys-temp) (list 'quote (mapcar (function (lambda (x) (if (consp x) (car x) x))) (append kwords other-keys)))) '(car (cdr (memq (quote :allow-other-keys) cl-keys))) '(error "Bad keyword argument %s" (car cl-keys-temp))) '(setq cl-keys-temp (cdr (cdr cl-keys-temp))))))) body)))) (put 'cl-parsing-keywords 'lisp-indent-function 2) (put 'cl-parsing-keywords 'edebug-form-spec '(sexp sexp &rest form)) (defmacro cl-check-key (x) (list 'if 'cl-key (list 'funcall 'cl-key x) x)) (defmacro cl-check-test-nokey (item x) (list 'cond (list 'cl-test (list 'eq (list 'not (list 'funcall 'cl-test item x)) 'cl-test-not)) (list 'cl-if (list 'eq (list 'not (list 'funcall 'cl-if x)) 'cl-if-not)) (list 't (list 'if (list 'numberp item) (list 'equal item x) (list 'eq item x))))) (defmacro cl-check-test (item x) (list 'cl-check-test-nokey item (list 'cl-check-key x))) (defmacro cl-check-match (x y) (setq x (list 'cl-check-key x) y (list 'cl-check-key y)) (list 'if 'cl-test (list 'eq (list 'not (list 'funcall 'cl-test x y)) 'cl-test-not) (list 'if (list 'numberp x) (list 'equal x y) (list 'eq x y)))) (put 'cl-check-key 'edebug-form-spec 'edebug-forms) (put 'cl-check-test 'edebug-form-spec 'edebug-forms) (put 'cl-check-test-nokey 'edebug-form-spec 'edebug-forms) (put 'cl-check-match 'edebug-form-spec 'edebug-forms) (defvar cl-test) (defvar cl-test-not) (defvar cl-if) (defvar cl-if-not) (defvar cl-key) (defun reduce (cl-func cl-seq &rest cl-keys) "Reduce two-argument FUNCTION across SEQUENCE. Keywords supported: :start :end :from-end :initial-value :key" (cl-parsing-keywords (:from-end (:start 0) :end :initial-value :key) () (or (listp cl-seq) (setq cl-seq (append cl-seq nil))) (setq cl-seq (subseq cl-seq cl-start cl-end)) (if cl-from-end (setq cl-seq (nreverse cl-seq))) (let ((cl-accum (cond ((memq ':initial-value cl-keys) cl-initial-value) (cl-seq (cl-check-key (cl-pop cl-seq))) (t (funcall cl-func))))) (if cl-from-end (while cl-seq (setq cl-accum (funcall cl-func (cl-check-key (cl-pop cl-seq)) cl-accum))) (while cl-seq (setq cl-accum (funcall cl-func cl-accum (cl-check-key (cl-pop cl-seq)))))) cl-accum))) (defun fill (seq item &rest cl-keys) "Fill the elements of SEQ with ITEM. Keywords supported: :start :end" (cl-parsing-keywords ((:start 0) :end) () (if (listp seq) (let ((p (nthcdr cl-start seq)) (n (if cl-end (- cl-end cl-start) 8000000))) (while (and p (>= (setq n (1- n)) 0)) (setcar p item) (setq p (cdr p)))) (or cl-end (setq cl-end (length seq))) (if (and (= cl-start 0) (= cl-end (length seq))) (fillarray seq item) (while (< cl-start cl-end) (aset seq cl-start item) (setq cl-start (1+ cl-start))))) seq)) (defun replace (cl-seq1 cl-seq2 &rest cl-keys) "Replace the elements of SEQ1 with the elements of SEQ2. SEQ1 is destructively modified, then returned. Keywords supported: :start1 :end1 :start2 :end2" (cl-parsing-keywords ((:start1 0) :end1 (:start2 0) :end2) () (if (and (eq cl-seq1 cl-seq2) (<= cl-start2 cl-start1)) (or (= cl-start1 cl-start2) (let* ((cl-len (length cl-seq1)) (cl-n (min (- (or cl-end1 cl-len) cl-start1) (- (or cl-end2 cl-len) cl-start2)))) (while (>= (setq cl-n (1- cl-n)) 0) (cl-set-elt cl-seq1 (+ cl-start1 cl-n) (elt cl-seq2 (+ cl-start2 cl-n)))))) (if (listp cl-seq1) (let ((cl-p1 (nthcdr cl-start1 cl-seq1)) (cl-n1 (if cl-end1 (- cl-end1 cl-start1) 4000000))) (if (listp cl-seq2) (let ((cl-p2 (nthcdr cl-start2 cl-seq2)) (cl-n (min cl-n1 (if cl-end2 (- cl-end2 cl-start2) 4000000)))) (while (and cl-p1 cl-p2 (>= (setq cl-n (1- cl-n)) 0)) (setcar cl-p1 (car cl-p2)) (setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2)))) (setq cl-end2 (min (or cl-end2 (length cl-seq2)) (+ cl-start2 cl-n1))) (while (and cl-p1 (< cl-start2 cl-end2)) (setcar cl-p1 (aref cl-seq2 cl-start2)) (setq cl-p1 (cdr cl-p1) cl-start2 (1+ cl-start2))))) (setq cl-end1 (min (or cl-end1 (length cl-seq1)) (+ cl-start1 (- (or cl-end2 (length cl-seq2)) cl-start2)))) (if (listp cl-seq2) (let ((cl-p2 (nthcdr cl-start2 cl-seq2))) (while (< cl-start1 cl-end1) (aset cl-seq1 cl-start1 (car cl-p2)) (setq cl-p2 (cdr cl-p2) cl-start1 (1+ cl-start1)))) (while (< cl-start1 cl-end1) (aset cl-seq1 cl-start1 (aref cl-seq2 cl-start2)) (setq cl-start2 (1+ cl-start2) cl-start1 (1+ cl-start1)))))) cl-seq1)) (defun remove* (cl-item cl-seq &rest cl-keys) "Remove all occurrences of ITEM in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. Keywords supported: :test :test-not :key :count :start :end :from-end" (cl-parsing-keywords (:test :test-not :key :if :if-not :count :from-end (:start 0) :end) () (if (<= (or cl-count (setq cl-count 8000000)) 0) cl-seq (if (or (nlistp cl-seq) (and cl-from-end (< cl-count 4000000))) (let ((cl-i (cl-position cl-item cl-seq cl-start cl-end cl-from-end))) (if cl-i (let ((cl-res (apply 'delete* cl-item (append cl-seq nil) (append (if cl-from-end (list ':end (1+ cl-i)) (list ':start cl-i)) cl-keys)))) (if (listp cl-seq) cl-res (if (stringp cl-seq) (concat cl-res) (vconcat cl-res)))) cl-seq)) (setq cl-end (- (or cl-end 8000000) cl-start)) (if (= cl-start 0) (while (and cl-seq (> cl-end 0) (cl-check-test cl-item (car cl-seq)) (setq cl-end (1- cl-end) cl-seq (cdr cl-seq)) (> (setq cl-count (1- cl-count)) 0)))) (if (and (> cl-count 0) (> cl-end 0)) (let ((cl-p (if (> cl-start 0) (nthcdr cl-start cl-seq) (setq cl-end (1- cl-end)) (cdr cl-seq)))) (while (and cl-p (> cl-end 0) (not (cl-check-test cl-item (car cl-p)))) (setq cl-p (cdr cl-p) cl-end (1- cl-end))) (if (and cl-p (> cl-end 0)) (nconc (ldiff cl-seq cl-p) (if (= cl-count 1) (cdr cl-p) (and (cdr cl-p) (apply 'delete* cl-item (copy-sequence (cdr cl-p)) ':start 0 ':end (1- cl-end) ':count (1- cl-count) cl-keys)))) cl-seq)) cl-seq))))) (defun remove-if (cl-pred cl-list &rest cl-keys) "Remove all items satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. Keywords supported: :key :count :start :end :from-end" (apply 'remove* nil cl-list ':if cl-pred cl-keys)) (defun remove-if-not (cl-pred cl-list &rest cl-keys) "Remove all items not satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. Keywords supported: :key :count :start :end :from-end" (apply 'remove* nil cl-list ':if-not cl-pred cl-keys)) (defun delete* (cl-item cl-seq &rest cl-keys) "Remove all occurrences of ITEM in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. Keywords supported: :test :test-not :key :count :start :end :from-end" (cl-parsing-keywords (:test :test-not :key :if :if-not :count :from-end (:start 0) :end) () (if (<= (or cl-count (setq cl-count 8000000)) 0) cl-seq (if (listp cl-seq) (if (and cl-from-end (< cl-count 4000000)) (let (cl-i) (while (and (>= (setq cl-count (1- cl-count)) 0) (setq cl-i (cl-position cl-item cl-seq cl-start cl-end cl-from-end))) (if (= cl-i 0) (setq cl-seq (cdr cl-seq)) (let ((cl-tail (nthcdr (1- cl-i) cl-seq))) (setcdr cl-tail (cdr (cdr cl-tail))))) (setq cl-end cl-i)) cl-seq) (setq cl-end (- (or cl-end 8000000) cl-start)) (if (= cl-start 0) (progn (while (and cl-seq (> cl-end 0) (cl-check-test cl-item (car cl-seq)) (setq cl-end (1- cl-end) cl-seq (cdr cl-seq)) (> (setq cl-count (1- cl-count)) 0))) (setq cl-end (1- cl-end))) (setq cl-start (1- cl-start))) (if (and (> cl-count 0) (> cl-end 0)) (let ((cl-p (nthcdr cl-start cl-seq))) (while (and (cdr cl-p) (> cl-end 0)) (if (cl-check-test cl-item (car (cdr cl-p))) (progn (setcdr cl-p (cdr (cdr cl-p))) (if (= (setq cl-count (1- cl-count)) 0) (setq cl-end 1))) (setq cl-p (cdr cl-p))) (setq cl-end (1- cl-end))))) cl-seq) (apply 'remove* cl-item cl-seq cl-keys))))) (defun delete-if (cl-pred cl-list &rest cl-keys) "Remove all items satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. Keywords supported: :key :count :start :end :from-end" (apply 'delete* nil cl-list ':if cl-pred cl-keys)) (defun delete-if-not (cl-pred cl-list &rest cl-keys) "Remove all items not satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. Keywords supported: :key :count :start :end :from-end" (apply 'delete* nil cl-list ':if-not cl-pred cl-keys)) (or (and (fboundp 'delete) (subrp (symbol-function 'delete))) (defalias 'delete (function (lambda (x y) (delete* x y ':test 'equal))))) (defun remove (cl-item cl-seq) "Remove all occurrences of ITEM in SEQ, testing with `equal' This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. Also see: `remove*', `delete', `delete*'" (remove* cl-item cl-seq ':test 'equal)) (defun remq (cl-elt cl-list) "Remove all occurrences of ELT in LIST, comparing with `eq'. This is a non-destructive function; it makes a copy of LIST to avoid corrupting the original LIST. Also see: `delq', `delete', `delete*', `remove', `remove*'." (if (memq cl-elt cl-list) (delq cl-elt (copy-list cl-list)) cl-list)) (defun remove-duplicates (cl-seq &rest cl-keys) "Return a copy of SEQ with all duplicate elements removed. Keywords supported: :test :test-not :key :start :end :from-end" (cl-delete-duplicates cl-seq cl-keys t)) (defun delete-duplicates (cl-seq &rest cl-keys) "Remove all duplicate elements from SEQ (destructively). Keywords supported: :test :test-not :key :start :end :from-end" (cl-delete-duplicates cl-seq cl-keys nil)) (defun cl-delete-duplicates (cl-seq cl-keys cl-copy) (if (listp cl-seq) (cl-parsing-keywords (:test :test-not :key (:start 0) :end :from-end :if) () (if cl-from-end (let ((cl-p (nthcdr cl-start cl-seq)) cl-i) (setq cl-end (- (or cl-end (length cl-seq)) cl-start)) (while (> cl-end 1) (setq cl-i 0) (while (setq cl-i (cl-position (cl-check-key (car cl-p)) (cdr cl-p) cl-i (1- cl-end))) (if cl-copy (setq cl-seq (copy-sequence cl-seq) cl-p (nthcdr cl-start cl-seq) cl-copy nil)) (let ((cl-tail (nthcdr cl-i cl-p))) (setcdr cl-tail (cdr (cdr cl-tail)))) (setq cl-end (1- cl-end))) (setq cl-p (cdr cl-p) cl-end (1- cl-end) cl-start (1+ cl-start))) cl-seq) (setq cl-end (- (or cl-end (length cl-seq)) cl-start)) (while (and (cdr cl-seq) (= cl-start 0) (> cl-end 1) (cl-position (cl-check-key (car cl-seq)) (cdr cl-seq) 0 (1- cl-end))) (setq cl-seq (cdr cl-seq) cl-end (1- cl-end))) (let ((cl-p (if (> cl-start 0) (nthcdr (1- cl-start) cl-seq) (setq cl-end (1- cl-end) cl-start 1) cl-seq))) (while (and (cdr (cdr cl-p)) (> cl-end 1)) (if (cl-position (cl-check-key (car (cdr cl-p))) (cdr (cdr cl-p)) 0 (1- cl-end)) (progn (if cl-copy (setq cl-seq (copy-sequence cl-seq) cl-p (nthcdr (1- cl-start) cl-seq) cl-copy nil)) (setcdr cl-p (cdr (cdr cl-p)))) (setq cl-p (cdr cl-p))) (setq cl-end (1- cl-end) cl-start (1+ cl-start))) cl-seq))) (let ((cl-res (cl-delete-duplicates (append cl-seq nil) cl-keys nil))) (if (stringp cl-seq) (concat cl-res) (vconcat cl-res))))) (defun substitute (cl-new cl-old cl-seq &rest cl-keys) "Substitute NEW for OLD in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. Keywords supported: :test :test-not :key :count :start :end :from-end" (cl-parsing-keywords (:test :test-not :key :if :if-not :count (:start 0) :end :from-end) () (if (or (eq cl-old cl-new) (<= (or cl-count (setq cl-from-end nil cl-count 8000000)) 0)) cl-seq (let ((cl-i (cl-position cl-old cl-seq cl-start cl-end))) (if (not cl-i) cl-seq (setq cl-seq (copy-sequence cl-seq)) (or cl-from-end (progn (cl-set-elt cl-seq cl-i cl-new) (setq cl-i (1+ cl-i) cl-count (1- cl-count)))) (apply 'nsubstitute cl-new cl-old cl-seq ':count cl-count ':start cl-i cl-keys)))))) (defun substitute-if (cl-new cl-pred cl-list &rest cl-keys) "Substitute NEW for all items satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. Keywords supported: :key :count :start :end :from-end" (apply 'substitute cl-new nil cl-list ':if cl-pred cl-keys)) (defun substitute-if-not (cl-new cl-pred cl-list &rest cl-keys) "Substitute NEW for all items not satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. Keywords supported: :key :count :start :end :from-end" (apply 'substitute cl-new nil cl-list ':if-not cl-pred cl-keys)) (defun nsubstitute (cl-new cl-old cl-seq &rest cl-keys) "Substitute NEW for OLD in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. Keywords supported: :test :test-not :key :count :start :end :from-end" (cl-parsing-keywords (:test :test-not :key :if :if-not :count (:start 0) :end :from-end) () (or (eq cl-old cl-new) (<= (or cl-count (setq cl-count 8000000)) 0) (if (and (listp cl-seq) (or (not cl-from-end) (> cl-count 4000000))) (let ((cl-p (nthcdr cl-start cl-seq))) (setq cl-end (- (or cl-end 8000000) cl-start)) (while (and cl-p (> cl-end 0) (> cl-count 0)) (if (cl-check-test cl-old (car cl-p)) (progn (setcar cl-p cl-new) (setq cl-count (1- cl-count)))) (setq cl-p (cdr cl-p) cl-end (1- cl-end)))) (or cl-end (setq cl-end (length cl-seq))) (if cl-from-end (while (and (< cl-start cl-end) (> cl-count 0)) (setq cl-end (1- cl-end)) (if (cl-check-test cl-old (elt cl-seq cl-end)) (progn (cl-set-elt cl-seq cl-end cl-new) (setq cl-count (1- cl-count))))) (while (and (< cl-start cl-end) (> cl-count 0)) (if (cl-check-test cl-old (aref cl-seq cl-start)) (progn (aset cl-seq cl-start cl-new) (setq cl-count (1- cl-count)))) (setq cl-start (1+ cl-start)))))) cl-seq)) (defun nsubstitute-if (cl-new cl-pred cl-list &rest cl-keys) "Substitute NEW for all items satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. Keywords supported: :key :count :start :end :from-end" (apply 'nsubstitute cl-new nil cl-list ':if cl-pred cl-keys)) (defun nsubstitute-if-not (cl-new cl-pred cl-list &rest cl-keys) "Substitute NEW for all items not satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. Keywords supported: :key :count :start :end :from-end" (apply 'nsubstitute cl-new nil cl-list ':if-not cl-pred cl-keys)) (defun find (cl-item cl-seq &rest cl-keys) "Find the first occurrence of ITEM in LIST. Return the matching ITEM, or nil if not found. Keywords supported: :test :test-not :key :start :end :from-end" (let ((cl-pos (apply 'position cl-item cl-seq cl-keys))) (and cl-pos (elt cl-seq cl-pos)))) (defun find-if (cl-pred cl-list &rest cl-keys) "Find the first item satisfying PREDICATE in LIST. Return the matching ITEM, or nil if not found. Keywords supported: :key :start :end :from-end" (apply 'find nil cl-list ':if cl-pred cl-keys)) (defun find-if-not (cl-pred cl-list &rest cl-keys) "Find the first item not satisfying PREDICATE in LIST. Return the matching ITEM, or nil if not found. Keywords supported: :key :start :end :from-end" (apply 'find nil cl-list ':if-not cl-pred cl-keys)) (defun position (cl-item cl-seq &rest cl-keys) "Find the first occurrence of ITEM in LIST. Return the index of the matching item, or nil if not found. Keywords supported: :test :test-not :key :start :end :from-end" (cl-parsing-keywords (:test :test-not :key :if :if-not (:start 0) :end :from-end) () (cl-position cl-item cl-seq cl-start cl-end cl-from-end))) (defun cl-position (cl-item cl-seq cl-start &optional cl-end cl-from-end) (if (listp cl-seq) (let ((cl-p (nthcdr cl-start cl-seq))) (or cl-end (setq cl-end 8000000)) (let ((cl-res nil)) (while (and cl-p (< cl-start cl-end) (or (not cl-res) cl-from-end)) (if (cl-check-test cl-item (car cl-p)) (setq cl-res cl-start)) (setq cl-p (cdr cl-p) cl-start (1+ cl-start))) cl-res)) (or cl-end (setq cl-end (length cl-seq))) (if cl-from-end (progn (while (and (>= (setq cl-end (1- cl-end)) cl-start) (not (cl-check-test cl-item (aref cl-seq cl-end))))) (and (>= cl-end cl-start) cl-end)) (while (and (< cl-start cl-end) (not (cl-check-test cl-item (aref cl-seq cl-start)))) (setq cl-start (1+ cl-start))) (and (< cl-start cl-end) cl-start)))) (defun position-if (cl-pred cl-list &rest cl-keys) "Find the first item satisfying PREDICATE in LIST. Return the index of the matching item, or nil if not found. Keywords supported: :key :start :end :from-end" (apply 'position nil cl-list ':if cl-pred cl-keys)) (defun position-if-not (cl-pred cl-list &rest cl-keys) "Find the first item not satisfying PREDICATE in LIST. Return the index of the matching item, or nil if not found. Keywords supported: :key :start :end :from-end" (apply 'position nil cl-list ':if-not cl-pred cl-keys)) (defun count (cl-item cl-seq &rest cl-keys) "Count the number of occurrences of ITEM in LIST. Keywords supported: :test :test-not :key :start :end" (cl-parsing-keywords (:test :test-not :key :if :if-not (:start 0) :end) () (let ((cl-count 0) cl-x) (or cl-end (setq cl-end (length cl-seq))) (if (consp cl-seq) (setq cl-seq (nthcdr cl-start cl-seq))) (while (< cl-start cl-end) (setq cl-x (if (consp cl-seq) (cl-pop cl-seq) (aref cl-seq cl-start))) (if (cl-check-test cl-item cl-x) (setq cl-count (1+ cl-count))) (setq cl-start (1+ cl-start))) cl-count))) (defun count-if (cl-pred cl-list &rest cl-keys) "Count the number of items satisfying PREDICATE in LIST. Keywords supported: :key :start :end" (apply 'count nil cl-list ':if cl-pred cl-keys)) (defun count-if-not (cl-pred cl-list &rest cl-keys) "Count the number of items not satisfying PREDICATE in LIST. Keywords supported: :key :start :end" (apply 'count nil cl-list ':if-not cl-pred cl-keys)) (defun mismatch (cl-seq1 cl-seq2 &rest cl-keys) "Compare SEQ1 with SEQ2, return index of first mismatching element. Return nil if the sequences match. If one sequence is a prefix of the other, the return value indicates the end of the shorted sequence. Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end" (cl-parsing-keywords (:test :test-not :key :from-end (:start1 0) :end1 (:start2 0) :end2) () (or cl-end1 (setq cl-end1 (length cl-seq1))) (or cl-end2 (setq cl-end2 (length cl-seq2))) (if cl-from-end (progn (while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2) (cl-check-match (elt cl-seq1 (1- cl-end1)) (elt cl-seq2 (1- cl-end2)))) (setq cl-end1 (1- cl-end1) cl-end2 (1- cl-end2))) (and (or (< cl-start1 cl-end1) (< cl-start2 cl-end2)) (1- cl-end1))) (let ((cl-p1 (and (listp cl-seq1) (nthcdr cl-start1 cl-seq1))) (cl-p2 (and (listp cl-seq2) (nthcdr cl-start2 cl-seq2)))) (while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2) (cl-check-match (if cl-p1 (car cl-p1) (aref cl-seq1 cl-start1)) (if cl-p2 (car cl-p2) (aref cl-seq2 cl-start2)))) (setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2) cl-start1 (1+ cl-start1) cl-start2 (1+ cl-start2))) (and (or (< cl-start1 cl-end1) (< cl-start2 cl-end2)) cl-start1))))) (defun search (cl-seq1 cl-seq2 &rest cl-keys) "Search for SEQ1 as a subsequence of SEQ2. Return the index of the leftmost element of the first match found; return nil if there are no matches. Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end" (cl-parsing-keywords (:test :test-not :key :from-end (:start1 0) :end1 (:start2 0) :end2) () (or cl-end1 (setq cl-end1 (length cl-seq1))) (or cl-end2 (setq cl-end2 (length cl-seq2))) (if (>= cl-start1 cl-end1) (if cl-from-end cl-end2 cl-start2) (let* ((cl-len (- cl-end1 cl-start1)) (cl-first (cl-check-key (elt cl-seq1 cl-start1))) (cl-if nil) cl-pos) (setq cl-end2 (- cl-end2 (1- cl-len))) (while (and (< cl-start2 cl-end2) (setq cl-pos (cl-position cl-first cl-seq2 cl-start2 cl-end2 cl-from-end)) (apply 'mismatch cl-seq1 cl-seq2 ':start1 (1+ cl-start1) ':end1 cl-end1 ':start2 (1+ cl-pos) ':end2 (+ cl-pos cl-len) ':from-end nil cl-keys)) (if cl-from-end (setq cl-end2 cl-pos) (setq cl-start2 (1+ cl-pos)))) (and (< cl-start2 cl-end2) cl-pos))))) (defun sort* (cl-seq cl-pred &rest cl-keys) "Sort the argument SEQUENCE according to PREDICATE. This is a destructive function; it reuses the storage of SEQUENCE if possible. Keywords supported: :key" (if (nlistp cl-seq) (replace cl-seq (apply 'sort* (append cl-seq nil) cl-pred cl-keys)) (cl-parsing-keywords (:key) () (if (memq cl-key '(nil identity)) (sort cl-seq cl-pred) (sort cl-seq (function (lambda (cl-x cl-y) (funcall cl-pred (funcall cl-key cl-x) (funcall cl-key cl-y))))))))) (defun stable-sort (cl-seq cl-pred &rest cl-keys) "Sort the argument SEQUENCE stably according to PREDICATE. This is a destructive function; it reuses the storage of SEQUENCE if possible. Keywords supported: :key" (apply 'sort* cl-seq cl-pred cl-keys)) (defun merge (cl-type cl-seq1 cl-seq2 cl-pred &rest cl-keys) "Destructively merge the two sequences to produce a new sequence. TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument sequences, and PRED is a `less-than' predicate on the elements. Keywords supported: :key" (or (listp cl-seq1) (setq cl-seq1 (append cl-seq1 nil))) (or (listp cl-seq2) (setq cl-seq2 (append cl-seq2 nil))) (cl-parsing-keywords (:key) () (let ((cl-res nil)) (while (and cl-seq1 cl-seq2) (if (funcall cl-pred (cl-check-key (car cl-seq2)) (cl-check-key (car cl-seq1))) (cl-push (cl-pop cl-seq2) cl-res) (cl-push (cl-pop cl-seq1) cl-res))) (coerce (nconc (nreverse cl-res) cl-seq1 cl-seq2) cl-type)))) ;;; See compiler macro in cl-macs.el (defun member* (cl-item cl-list &rest cl-keys) "Find the first occurrence of ITEM in LIST. Return the sublist of LIST whose car is ITEM. Keywords supported: :test :test-not :key" (if cl-keys (cl-parsing-keywords (:test :test-not :key :if :if-not) () (while (and cl-list (not (cl-check-test cl-item (car cl-list)))) (setq cl-list (cdr cl-list))) cl-list) (if (and (numberp cl-item) (not (integerp cl-item))) (member cl-item cl-list) (memq cl-item cl-list)))) (defun member-if (cl-pred cl-list &rest cl-keys) "Find the first item satisfying PREDICATE in LIST. Return the sublist of LIST whose car matches. Keywords supported: :key" (apply 'member* nil cl-list ':if cl-pred cl-keys)) (defun member-if-not (cl-pred cl-list &rest cl-keys) "Find the first item not satisfying PREDICATE in LIST. Return the sublist of LIST whose car matches. Keywords supported: :key" (apply 'member* nil cl-list ':if-not cl-pred cl-keys)) (defun cl-adjoin (cl-item cl-list &rest cl-keys) (if (cl-parsing-keywords (:key) t (apply 'member* (cl-check-key cl-item) cl-list cl-keys)) cl-list (cons cl-item cl-list))) ;;; See compiler macro in cl-macs.el (defun assoc* (cl-item cl-alist &rest cl-keys) "Find the first item whose car matches ITEM in LIST. Keywords supported: :test :test-not :key" (if cl-keys (cl-parsing-keywords (:test :test-not :key :if :if-not) () (while (and cl-alist (or (not (consp (car cl-alist))) (not (cl-check-test cl-item (car (car cl-alist)))))) (setq cl-alist (cdr cl-alist))) (and cl-alist (car cl-alist))) (if (and (numberp cl-item) (not (integerp cl-item))) (assoc cl-item cl-alist) (assq cl-item cl-alist)))) (defun assoc-if (cl-pred cl-list &rest cl-keys) "Find the first item whose car satisfies PREDICATE in LIST. Keywords supported: :key" (apply 'assoc* nil cl-list ':if cl-pred cl-keys)) (defun assoc-if-not (cl-pred cl-list &rest cl-keys) "Find the first item whose car does not satisfy PREDICATE in LIST. Keywords supported: :key" (apply 'assoc* nil cl-list ':if-not cl-pred cl-keys)) (defun rassoc* (cl-item cl-alist &rest cl-keys) "Find the first item whose cdr matches ITEM in LIST. Keywords supported: :test :test-not :key" (if (or cl-keys (numberp cl-item)) (cl-parsing-keywords (:test :test-not :key :if :if-not) () (while (and cl-alist (or (not (consp (car cl-alist))) (not (cl-check-test cl-item (cdr (car cl-alist)))))) (setq cl-alist (cdr cl-alist))) (and cl-alist (car cl-alist))) (rassq cl-item cl-alist))) (defun rassoc-if (cl-pred cl-list &rest cl-keys) "Find the first item whose cdr satisfies PREDICATE in LIST. Keywords supported: :key" (apply 'rassoc* nil cl-list ':if cl-pred cl-keys)) (defun rassoc-if-not (cl-pred cl-list &rest cl-keys) "Find the first item whose cdr does not satisfy PREDICATE in LIST. Keywords supported: :key" (apply 'rassoc* nil cl-list ':if-not cl-pred cl-keys)) (defun union (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-union operation. The result list contains all items that appear in either LIST1 or LIST2. This is a non-destructive function; it makes a copy of the data if necessary to avoid corrupting the original LIST1 and LIST2. Keywords supported: :test :test-not :key" (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1) ((equal cl-list1 cl-list2) cl-list1) (t (or (>= (length cl-list1) (length cl-list2)) (setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1)))) (while cl-list2 (if (or cl-keys (numberp (car cl-list2))) (setq cl-list1 (apply 'adjoin (car cl-list2) cl-list1 cl-keys)) (or (memq (car cl-list2) cl-list1) (cl-push (car cl-list2) cl-list1))) (cl-pop cl-list2)) cl-list1))) (defun nunion (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-union operation. The result list contains all items that appear in either LIST1 or LIST2. This is a destructive function; it reuses the storage of LIST1 and LIST2 whenever possible. Keywords supported: :test :test-not :key" (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1) (t (apply 'union cl-list1 cl-list2 cl-keys)))) (defun intersection (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-intersection operation. The result list contains all items that appear in both LIST1 and LIST2. This is a non-destructive function; it makes a copy of the data if necessary to avoid corrupting the original LIST1 and LIST2. Keywords supported: :test :test-not :key" (and cl-list1 cl-list2 (if (equal cl-list1 cl-list2) cl-list1 (cl-parsing-keywords (:key) (:test :test-not) (let ((cl-res nil)) (or (>= (length cl-list1) (length cl-list2)) (setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1)))) (while cl-list2 (if (if (or cl-keys (numberp (car cl-list2))) (apply 'member* (cl-check-key (car cl-list2)) cl-list1 cl-keys) (memq (car cl-list2) cl-list1)) (cl-push (car cl-list2) cl-res)) (cl-pop cl-list2)) cl-res))))) (defun nintersection (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-intersection operation. The result list contains all items that appear in both LIST1 and LIST2. This is a destructive function; it reuses the storage of LIST1 and LIST2 whenever possible. Keywords supported: :test :test-not :key" (and cl-list1 cl-list2 (apply 'intersection cl-list1 cl-list2 cl-keys))) (defun set-difference (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-difference operation. The result list contains all items that appear in LIST1 but not LIST2. This is a non-destructive function; it makes a copy of the data if necessary to avoid corrupting the original LIST1 and LIST2. Keywords supported: :test :test-not :key" (if (or (null cl-list1) (null cl-list2)) cl-list1 (cl-parsing-keywords (:key) (:test :test-not) (let ((cl-res nil)) (while cl-list1 (or (if (or cl-keys (numberp (car cl-list1))) (apply 'member* (cl-check-key (car cl-list1)) cl-list2 cl-keys) (memq (car cl-list1) cl-list2)) (cl-push (car cl-list1) cl-res)) (cl-pop cl-list1)) cl-res)))) (defun nset-difference (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-difference operation. The result list contains all items that appear in LIST1 but not LIST2. This is a destructive function; it reuses the storage of LIST1 and LIST2 whenever possible. Keywords supported: :test :test-not :key" (if (or (null cl-list1) (null cl-list2)) cl-list1 (apply 'set-difference cl-list1 cl-list2 cl-keys))) (defun set-exclusive-or (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-exclusive-or operation. The result list contains all items that appear in exactly one of LIST1, LIST2. This is a non-destructive function; it makes a copy of the data if necessary to avoid corrupting the original LIST1 and LIST2. Keywords supported: :test :test-not :key" (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1) ((equal cl-list1 cl-list2) nil) (t (append (apply 'set-difference cl-list1 cl-list2 cl-keys) (apply 'set-difference cl-list2 cl-list1 cl-keys))))) (defun nset-exclusive-or (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-exclusive-or operation. The result list contains all items that appear in exactly one of LIST1, LIST2. This is a destructive function; it reuses the storage of LIST1 and LIST2 whenever possible. Keywords supported: :test :test-not :key" (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1) ((equal cl-list1 cl-list2) nil) (t (nconc (apply 'nset-difference cl-list1 cl-list2 cl-keys) (apply 'nset-difference cl-list2 cl-list1 cl-keys))))) (defun subsetp (cl-list1 cl-list2 &rest cl-keys) "True if LIST1 is a subset of LIST2. I.e., if every element of LIST1 also appears in LIST2. Keywords supported: :test :test-not :key" (cond ((null cl-list1) t) ((null cl-list2) nil) ((equal cl-list1 cl-list2) t) (t (cl-parsing-keywords (:key) (:test :test-not) (while (and cl-list1 (apply 'member* (cl-check-key (car cl-list1)) cl-list2 cl-keys)) (cl-pop cl-list1)) (null cl-list1))))) (defun subst-if (cl-new cl-pred cl-tree &rest cl-keys) "Substitute NEW for elements matching PREDICATE in TREE (non-destructively). Return a copy of TREE with all matching elements replaced by NEW. Keywords supported: :key" (apply 'sublis (list (cons nil cl-new)) cl-tree ':if cl-pred cl-keys)) (defun subst-if-not (cl-new cl-pred cl-tree &rest cl-keys) "Substitute NEW for elts not matching PREDICATE in TREE (non-destructively). Return a copy of TREE with all non-matching elements replaced by NEW. Keywords supported: :key" (apply 'sublis (list (cons nil cl-new)) cl-tree ':if-not cl-pred cl-keys)) (defun nsubst (cl-new cl-old cl-tree &rest cl-keys) "Substitute NEW for OLD everywhere in TREE (destructively). Any element of TREE which is `eql' to OLD is changed to NEW (via a call to `setcar'). Keywords supported: :test :test-not :key" (apply 'nsublis (list (cons cl-old cl-new)) cl-tree cl-keys)) (defun nsubst-if (cl-new cl-pred cl-tree &rest cl-keys) "Substitute NEW for elements matching PREDICATE in TREE (destructively). Any element of TREE which matches is changed to NEW (via a call to `setcar'). Keywords supported: :key" (apply 'nsublis (list (cons nil cl-new)) cl-tree ':if cl-pred cl-keys)) (defun nsubst-if-not (cl-new cl-pred cl-tree &rest cl-keys) "Substitute NEW for elements not matching PREDICATE in TREE (destructively). Any element of TREE which matches is changed to NEW (via a call to `setcar'). Keywords supported: :key" (apply 'nsublis (list (cons nil cl-new)) cl-tree ':if-not cl-pred cl-keys)) (defun sublis (cl-alist cl-tree &rest cl-keys) "Perform substitutions indicated by ALIST in TREE (non-destructively). Return a copy of TREE with all matching elements replaced. Keywords supported: :test :test-not :key" (cl-parsing-keywords (:test :test-not :key :if :if-not) () (cl-sublis-rec cl-tree))) (defvar cl-alist) (defun cl-sublis-rec (cl-tree) ; uses cl-alist/key/test*/if* (let ((cl-temp (cl-check-key cl-tree)) (cl-p cl-alist)) (while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp))) (setq cl-p (cdr cl-p))) (if cl-p (cdr (car cl-p)) (if (consp cl-tree) (let ((cl-a (cl-sublis-rec (car cl-tree))) (cl-d (cl-sublis-rec (cdr cl-tree)))) (if (and (eq cl-a (car cl-tree)) (eq cl-d (cdr cl-tree))) cl-tree (cons cl-a cl-d))) cl-tree)))) (defun nsublis (cl-alist cl-tree &rest cl-keys) "Perform substitutions indicated by ALIST in TREE (destructively). Any matching element of TREE is changed via a call to `setcar'. Keywords supported: :test :test-not :key" (cl-parsing-keywords (:test :test-not :key :if :if-not) () (let ((cl-hold (list cl-tree))) (cl-nsublis-rec cl-hold) (car cl-hold)))) (defun cl-nsublis-rec (cl-tree) ; uses cl-alist/temp/p/key/test*/if* (while (consp cl-tree) (let ((cl-temp (cl-check-key (car cl-tree))) (cl-p cl-alist)) (while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp))) (setq cl-p (cdr cl-p))) (if cl-p (setcar cl-tree (cdr (car cl-p))) (if (consp (car cl-tree)) (cl-nsublis-rec (car cl-tree)))) (setq cl-temp (cl-check-key (cdr cl-tree)) cl-p cl-alist) (while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp))) (setq cl-p (cdr cl-p))) (if cl-p (progn (setcdr cl-tree (cdr (car cl-p))) (setq cl-tree nil)) (setq cl-tree (cdr cl-tree)))))) (defun tree-equal (cl-x cl-y &rest cl-keys) "Return t if trees X and Y have `eql' leaves. Atoms are compared by `eql'; cons cells are compared recursively. Keywords supported: :test :test-not :key" (cl-parsing-keywords (:test :test-not :key) () (cl-tree-equal-rec cl-x cl-y))) (defun cl-tree-equal-rec (cl-x cl-y) (while (and (consp cl-x) (consp cl-y) (cl-tree-equal-rec (car cl-x) (car cl-y))) (setq cl-x (cdr cl-x) cl-y (cdr cl-y))) (and (not (consp cl-x)) (not (consp cl-y)) (cl-check-match cl-x cl-y))) (run-hooks 'cl-seq-load-hook) ;;; cl-seq.el ends here