Mercurial > hg > xemacs-beta
view modules/README @ 5776:65d65b52d608
Pass character count from coding systems to buffer insertion code.
src/ChangeLog addition:
2014-01-16 Aidan Kehoe <kehoea@parhasard.net>
Pass character count information from the no-conversion and
unicode coding systems to the buffer insertion code, making
#'find-file on large buffers a little snappier (if
ERROR_CHECK_TEXT is not defined).
* file-coding.c:
* file-coding.c (coding_character_tell): New.
* file-coding.c (conversion_coding_stream_description): New.
* file-coding.c (no_conversion_convert):
Update characters_seen when decoding.
* file-coding.c (no_conversion_character_tell): New.
* file-coding.c (lstream_type_create_file_coding): Create the
no_conversion type with data.
* file-coding.c (coding_system_type_create):
Make the character_tell method available here.
* file-coding.h:
* file-coding.h (struct coding_system_methods):
Add a new character_tell() method, passing charcount information
from the coding systems to the buffer code, avoiding duplicate
bytecount-to-charcount work especially with large buffers.
* fileio.c (Finsert_file_contents_internal):
Update this to pass charcount information to
buffer_insert_string_1(), if that is available from the lstream code.
* insdel.c:
* insdel.c (buffer_insert_string_1):
Add a new CCLEN argument, giving the character count of the string
to insert. It can be -1 to indicate that te function should work
it out itself using bytecount_to_charcount(), as it used to.
* insdel.c (buffer_insert_raw_string_1):
* insdel.c (buffer_insert_lisp_string_1):
* insdel.c (buffer_insert_ascstring_1):
* insdel.c (buffer_insert_emacs_char_1):
* insdel.c (buffer_insert_from_buffer_1):
* insdel.c (buffer_replace_char):
Update these functions to use the new calling convention.
* insdel.h:
* insdel.h (buffer_insert_string):
Update this header to reflect the new buffer_insert_string_1()
argument.
* lstream.c (Lstream_character_tell): New.
Return the number of characters *read* and seen by the consumer so
far, taking into account the unget buffer, and buffered reading.
* lstream.c (Lstream_unread):
Update unget_character_count here as appropriate.
* lstream.c (Lstream_rewind):
Reset unget_character_count here too.
* lstream.h:
* lstream.h (struct lstream):
Provide the character_tell method, add a new field,
unget_character_count, giving the number of characters ever passed
to Lstream_unread().
Declare Lstream_character_tell().
Make Lstream_ungetc(), which happens to be unused, an inline
function rather than a macro, in the course of updating it to
modify unget_character_count.
* print.c (output_string):
Use the new argument to buffer_insert_string_1().
* tests.c:
* tests.c (Ftest_character_tell):
New test function.
* tests.c (syms_of_tests):
Make it available.
* unicode.c:
* unicode.c (struct unicode_coding_stream):
* unicode.c (unicode_character_tell):
New method.
* unicode.c (unicode_convert):
Update the character counter as appropriate.
* unicode.c (coding_system_type_create_unicode):
Make the character_tell method available.
author | Aidan Kehoe <kehoea@parhasard.net> |
---|---|
date | Thu, 16 Jan 2014 16:27:52 +0000 |
parents | da1365dd3f07 |
children |
line wrap: on
line source
This file is part of XEmacs. XEmacs is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs. If not, see <http://www.gnu.org/licenses/>. This directory contains a number of XEmacs dynamic modules. These modules can be loaded directly with the command 'M-x load-module'. However, the preferred method of loading a module is to issue a "(require 'module-name)" command to the Lisp interpreter. This will store information so that a later "(unload-feature 'module-name)" can succeed. To compile one of these modules, simply enter the desired directory, type 'configure', and then 'make'. If you are building the module for an installed XEmacs, then 'make install' will place the module in the appropriate directory for XEmacs to find it later (assuming you have permission to write to that directory). A subsequent 'load-module' or 'require' will then load the module, as described above. Each of these demonstrates different features and limitations of the XEmacs module loading technology. For a complete discussion on XEmacs dynamic modules, please consult the XEmacs Module Writers Guide, which can be found in the ../info directory. For those wanting to get started with module writing, please see the 'sample' directory. It contains two subdirectories: internal and external. The 'internal' subdirectory contains the framework needed to migrate some core piece of XEmacs functionality into code that can either be compiled into the core or built as a separate module. The 'external' subdirectory contains the somewhat simpler framework needed to build a module separately from XEmacs. These should be considered starting places for module writing.