Mercurial > hg > xemacs-beta
view src/floatfns.c @ 878:64f38afaab2d
[xemacs-hg @ 2002-06-23 22:03:32 by youngs]
2002-06-22 Ville Skyttä <ville.skytta@xemacs.org>
* subr.el (add-to-list): Sync with GNU Emacs 21.2, adding the
"&optional append" argument.
author | youngs |
---|---|
date | Sun, 23 Jun 2002 22:03:33 +0000 |
parents | 943eaba38521 |
children | c925bacdda60 |
line wrap: on
line source
/* Primitive operations on floating point for XEmacs Lisp interpreter. Copyright (C) 1988, 1993, 1994 Free Software Foundation, Inc. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: FSF 19.30. */ /* ANSI C requires only these float functions: acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod, frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh. Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh. Define HAVE_CBRT if you have cbrt(). Define HAVE_RINT if you have rint(). If you don't define these, then the appropriate routines will be simulated. Define HAVE_MATHERR if on a system supporting the SysV matherr() callback. (This should happen automatically.) Define FLOAT_CHECK_ERRNO if the float library routines set errno. This has no effect if HAVE_MATHERR is defined. Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL. (What systems actually do this? Let me know. -jwz) Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by either setting errno, or signalling SIGFPE/SIGILL. Otherwise, domain and range checking will happen before calling the float routines. This has no effect if HAVE_MATHERR is defined (since matherr will be called when a domain error occurs). */ #include <config.h> #include "lisp.h" #include "syssignal.h" #ifdef LISP_FLOAT_TYPE #include "sysfloat.h" /* The code uses emacs_rint, so that it works to undefine HAVE_RINT if `rint' exists but does not work right. */ #ifdef HAVE_RINT #define emacs_rint rint #else static double emacs_rint (double x) { double r = floor (x + 0.5); double diff = fabs (r - x); /* Round to even and correct for any roundoff errors. */ if (diff >= 0.5 && (diff > 0.5 || r != 2.0 * floor (r / 2.0))) r += r < x ? 1.0 : -1.0; return r; } #endif /* Nonzero while executing in floating point. This tells float_error what to do. */ static int in_float; /* If an argument is out of range for a mathematical function, here is the actual argument value to use in the error message. */ static Lisp_Object float_error_arg, float_error_arg2; static const char *float_error_fn_name; /* Evaluate the floating point expression D, recording NUM as the original argument for error messages. D is normally an assignment expression. Handle errors which may result in signals or may set errno. Note that float_error may be declared to return void, so you can't just cast the zero after the colon to (SIGTYPE) to make the types check properly. */ #ifdef FLOAT_CHECK_ERRNO #define IN_FLOAT(d, name, num) \ do { \ float_error_arg = num; \ float_error_fn_name = name; \ in_float = 1; errno = 0; (d); in_float = 0; \ if (errno != 0) in_float_error (); \ } while (0) #define IN_FLOAT2(d, name, num, num2) \ do { \ float_error_arg = num; \ float_error_arg2 = num2; \ float_error_fn_name = name; \ in_float = 2; errno = 0; (d); in_float = 0; \ if (errno != 0) in_float_error (); \ } while (0) #else #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0) #define IN_FLOAT2(d, name, num, num2) (in_float = 2, (d), in_float = 0) #endif #define arith_error(op,arg) \ Fsignal (Qarith_error, list2 (build_msg_string (op), arg)) #define range_error(op,arg) \ Fsignal (Qrange_error, list2 (build_msg_string (op), arg)) #define range_error2(op,a1,a2) \ Fsignal (Qrange_error, list3 (build_msg_string (op), a1, a2)) #define domain_error(op,arg) \ Fsignal (Qdomain_error, list2 (build_msg_string (op), arg)) #define domain_error2(op,a1,a2) \ Fsignal (Qdomain_error, list3 (build_msg_string (op), a1, a2)) /* Convert float to Lisp Integer if it fits, else signal a range error using the given arguments. */ static Lisp_Object float_to_int (double x, const char *name, Lisp_Object num, Lisp_Object num2) { if (x >= ((EMACS_INT) 1 << (VALBITS-1)) || x <= - ((EMACS_INT) 1 << (VALBITS-1)) - (EMACS_INT) 1) { if (!UNBOUNDP (num2)) range_error2 (name, num, num2); else range_error (name, num); } return (make_int ((EMACS_INT) x)); } static void in_float_error (void) { switch (errno) { case 0: break; case EDOM: if (in_float == 2) domain_error2 (float_error_fn_name, float_error_arg, float_error_arg2); else domain_error (float_error_fn_name, float_error_arg); break; case ERANGE: range_error (float_error_fn_name, float_error_arg); break; default: arith_error (float_error_fn_name, float_error_arg); break; } } static Lisp_Object mark_float (Lisp_Object obj) { return Qnil; } static int float_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) { return (extract_float (obj1) == extract_float (obj2)); } static Hashcode float_hash (Lisp_Object obj, int depth) { /* mod the value down to 32-bit range */ /* #### change for 64-bit machines */ return (unsigned long) fmod (extract_float (obj), 4e9); } static const struct lrecord_description float_description[] = { { XD_END } }; DEFINE_BASIC_LRECORD_IMPLEMENTATION ("float", float, mark_float, print_float, 0, float_equal, float_hash, float_description, Lisp_Float); /* Extract a Lisp number as a `double', or signal an error. */ double extract_float (Lisp_Object num) { if (FLOATP (num)) return XFLOAT_DATA (num); if (INTP (num)) return (double) XINT (num); return extract_float (wrong_type_argument (Qnumberp, num)); } #endif /* LISP_FLOAT_TYPE */ /* Trig functions. */ #ifdef LISP_FLOAT_TYPE DEFUN ("acos", Facos, 1, 1, 0, /* Return the inverse cosine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 1.0 || d < -1.0) domain_error ("acos", number); #endif IN_FLOAT (d = acos (d), "acos", number); return make_float (d); } DEFUN ("asin", Fasin, 1, 1, 0, /* Return the inverse sine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 1.0 || d < -1.0) domain_error ("asin", number); #endif IN_FLOAT (d = asin (d), "asin", number); return make_float (d); } DEFUN ("atan", Fatan, 1, 2, 0, /* Return the inverse tangent of NUMBER. If optional second argument NUMBER2 is provided, return atan2 (NUMBER, NUMBER2). */ (number, number2)) { double d = extract_float (number); if (NILP (number2)) IN_FLOAT (d = atan (d), "atan", number); else { double d2 = extract_float (number2); #ifdef FLOAT_CHECK_DOMAIN if (d == 0.0 && d2 == 0.0) domain_error2 ("atan", number, number2); #endif IN_FLOAT2 (d = atan2 (d, d2), "atan", number, number2); } return make_float (d); } DEFUN ("cos", Fcos, 1, 1, 0, /* Return the cosine of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = cos (d), "cos", number); return make_float (d); } DEFUN ("sin", Fsin, 1, 1, 0, /* Return the sine of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = sin (d), "sin", number); return make_float (d); } DEFUN ("tan", Ftan, 1, 1, 0, /* Return the tangent of NUMBER. */ (number)) { double d = extract_float (number); double c = cos (d); #ifdef FLOAT_CHECK_DOMAIN if (c == 0.0) domain_error ("tan", number); #endif IN_FLOAT (d = (sin (d) / c), "tan", number); return make_float (d); } #endif /* LISP_FLOAT_TYPE (trig functions) */ /* Bessel functions */ #if 0 /* Leave these out unless we find there's a reason for them. */ /* #ifdef LISP_FLOAT_TYPE */ DEFUN ("bessel-j0", Fbessel_j0, 1, 1, 0, /* Return the bessel function j0 of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = j0 (d), "bessel-j0", number); return make_float (d); } DEFUN ("bessel-j1", Fbessel_j1, 1, 1, 0, /* Return the bessel function j1 of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = j1 (d), "bessel-j1", number); return make_float (d); } DEFUN ("bessel-jn", Fbessel_jn, 2, 2, 0, /* Return the order N bessel function output jn of NUMBER. The first number (the order) is truncated to an integer. */ (number1, number2)) { int i1 = extract_float (number1); double f2 = extract_float (number2); IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", number1); return make_float (f2); } DEFUN ("bessel-y0", Fbessel_y0, 1, 1, 0, /* Return the bessel function y0 of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = y0 (d), "bessel-y0", number); return make_float (d); } DEFUN ("bessel-y1", Fbessel_y1, 1, 1, 0, /* Return the bessel function y1 of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = y1 (d), "bessel-y0", number); return make_float (d); } DEFUN ("bessel-yn", Fbessel_yn, 2, 2, 0, /* Return the order N bessel function output yn of NUMBER. The first number (the order) is truncated to an integer. */ (number1, number2)) { int i1 = extract_float (number1); double f2 = extract_float (number2); IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", number1); return make_float (f2); } #endif /* 0 (bessel functions) */ /* Error functions. */ #if 0 /* Leave these out unless we see they are worth having. */ /* #ifdef LISP_FLOAT_TYPE */ DEFUN ("erf", Ferf, 1, 1, 0, /* Return the mathematical error function of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = erf (d), "erf", number); return make_float (d); } DEFUN ("erfc", Ferfc, 1, 1, 0, /* Return the complementary error function of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = erfc (d), "erfc", number); return make_float (d); } DEFUN ("log-gamma", Flog_gamma, 1, 1, 0, /* Return the log gamma of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = lgamma (d), "log-gamma", number); return make_float (d); } #endif /* 0 (error functions) */ /* Root and Log functions. */ #ifdef LISP_FLOAT_TYPE DEFUN ("exp", Fexp, 1, 1, 0, /* Return the exponential base e of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 709.7827) /* Assume IEEE doubles here */ range_error ("exp", number); else if (d < -709.0) return make_float (0.0); else #endif IN_FLOAT (d = exp (d), "exp", number); return make_float (d); } #endif /* LISP_FLOAT_TYPE */ DEFUN ("expt", Fexpt, 2, 2, 0, /* Return the exponential NUMBER1 ** NUMBER2. */ (number1, number2)) { if (INTP (number1) && /* common lisp spec */ INTP (number2)) /* don't promote, if both are ints */ { EMACS_INT retval; EMACS_INT x = XINT (number1); EMACS_INT y = XINT (number2); if (y < 0) { if (x == 1) retval = 1; else if (x == -1) retval = (y & 1) ? -1 : 1; else retval = 0; } else { retval = 1; while (y > 0) { if (y & 1) retval *= x; x *= x; y = (EMACS_UINT) y >> 1; } } return make_int (retval); } #ifdef LISP_FLOAT_TYPE { double f1 = extract_float (number1); double f2 = extract_float (number2); /* Really should check for overflow, too */ if (f1 == 0.0 && f2 == 0.0) f1 = 1.0; # ifdef FLOAT_CHECK_DOMAIN else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2))) domain_error2 ("expt", number1, number2); # endif /* FLOAT_CHECK_DOMAIN */ IN_FLOAT2 (f1 = pow (f1, f2), "expt", number1, number2); return make_float (f1); } #else CHECK_INT_OR_FLOAT (number1); CHECK_INT_OR_FLOAT (number2); return Fexpt (number1, number2); #endif /* LISP_FLOAT_TYPE */ } #ifdef LISP_FLOAT_TYPE DEFUN ("log", Flog, 1, 2, 0, /* Return the natural logarithm of NUMBER. If second optional argument BASE is given, return the logarithm of NUMBER using that base. */ (number, base)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d <= 0.0) domain_error2 ("log", number, base); #endif if (NILP (base)) IN_FLOAT (d = log (d), "log", number); else { double b = extract_float (base); #ifdef FLOAT_CHECK_DOMAIN if (b <= 0.0 || b == 1.0) domain_error2 ("log", number, base); #endif if (b == 10.0) IN_FLOAT2 (d = log10 (d), "log", number, base); else IN_FLOAT2 (d = (log (d) / log (b)), "log", number, base); } return make_float (d); } DEFUN ("log10", Flog10, 1, 1, 0, /* Return the logarithm base 10 of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d <= 0.0) domain_error ("log10", number); #endif IN_FLOAT (d = log10 (d), "log10", number); return make_float (d); } DEFUN ("sqrt", Fsqrt, 1, 1, 0, /* Return the square root of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d < 0.0) domain_error ("sqrt", number); #endif IN_FLOAT (d = sqrt (d), "sqrt", number); return make_float (d); } DEFUN ("cube-root", Fcube_root, 1, 1, 0, /* Return the cube root of NUMBER. */ (number)) { double d = extract_float (number); #ifdef HAVE_CBRT IN_FLOAT (d = cbrt (d), "cube-root", number); #else if (d >= 0.0) IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", number); else IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", number); #endif return make_float (d); } #endif /* LISP_FLOAT_TYPE */ /* Inverse trig functions. */ #ifdef LISP_FLOAT_TYPE /* #if 0 Not clearly worth adding... */ DEFUN ("acosh", Facosh, 1, 1, 0, /* Return the inverse hyperbolic cosine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d < 1.0) domain_error ("acosh", number); #endif #ifdef HAVE_INVERSE_HYPERBOLIC IN_FLOAT (d = acosh (d), "acosh", number); #else IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", number); #endif return make_float (d); } DEFUN ("asinh", Fasinh, 1, 1, 0, /* Return the inverse hyperbolic sine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef HAVE_INVERSE_HYPERBOLIC IN_FLOAT (d = asinh (d), "asinh", number); #else IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", number); #endif return make_float (d); } DEFUN ("atanh", Fatanh, 1, 1, 0, /* Return the inverse hyperbolic tangent of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d >= 1.0 || d <= -1.0) domain_error ("atanh", number); #endif #ifdef HAVE_INVERSE_HYPERBOLIC IN_FLOAT (d = atanh (d), "atanh", number); #else IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", number); #endif return make_float (d); } DEFUN ("cosh", Fcosh, 1, 1, 0, /* Return the hyperbolic cosine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 710.0 || d < -710.0) range_error ("cosh", number); #endif IN_FLOAT (d = cosh (d), "cosh", number); return make_float (d); } DEFUN ("sinh", Fsinh, 1, 1, 0, /* Return the hyperbolic sine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 710.0 || d < -710.0) range_error ("sinh", number); #endif IN_FLOAT (d = sinh (d), "sinh", number); return make_float (d); } DEFUN ("tanh", Ftanh, 1, 1, 0, /* Return the hyperbolic tangent of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = tanh (d), "tanh", number); return make_float (d); } #endif /* LISP_FLOAT_TYPE (inverse trig functions) */ /* Rounding functions */ DEFUN ("abs", Fabs, 1, 1, 0, /* Return the absolute value of NUMBER. */ (number)) { #ifdef LISP_FLOAT_TYPE if (FLOATP (number)) { IN_FLOAT (number = make_float (fabs (XFLOAT_DATA (number))), "abs", number); return number; } #endif /* LISP_FLOAT_TYPE */ if (INTP (number)) return (XINT (number) >= 0) ? number : make_int (- XINT (number)); return Fabs (wrong_type_argument (Qnumberp, number)); } #ifdef LISP_FLOAT_TYPE DEFUN ("float", Ffloat, 1, 1, 0, /* Return the floating point number numerically equal to NUMBER. */ (number)) { if (INTP (number)) return make_float ((double) XINT (number)); if (FLOATP (number)) /* give 'em the same float back */ return number; return Ffloat (wrong_type_argument (Qnumberp, number)); } #endif /* LISP_FLOAT_TYPE */ #ifdef LISP_FLOAT_TYPE DEFUN ("logb", Flogb, 1, 1, 0, /* Return largest integer <= the base 2 log of the magnitude of NUMBER. This is the same as the exponent of a float. */ (number)) { double f = extract_float (number); if (f == 0.0) return make_int (- (EMACS_INT)(((EMACS_UINT) 1) << (VALBITS - 1))); /* most-negative-fixnum */ #ifdef HAVE_LOGB { Lisp_Object val; IN_FLOAT (val = make_int ((EMACS_INT) logb (f)), "logb", number); return val; } #else #ifdef HAVE_FREXP { int exqp; IN_FLOAT (frexp (f, &exqp), "logb", number); return make_int (exqp - 1); } #else { int i; double d; EMACS_INT val; if (f < 0.0) f = -f; val = -1; while (f < 0.5) { for (i = 1, d = 0.5; d * d >= f; i += i) d *= d; f /= d; val -= i; } while (f >= 1.0) { for (i = 1, d = 2.0; d * d <= f; i += i) d *= d; f /= d; val += i; } return make_int (val); } #endif /* ! HAVE_FREXP */ #endif /* ! HAVE_LOGB */ } #endif /* LISP_FLOAT_TYPE */ DEFUN ("ceiling", Fceiling, 1, 1, 0, /* Return the smallest integer no less than NUMBER. (Round toward +inf.) */ (number)) { #ifdef LISP_FLOAT_TYPE if (FLOATP (number)) { double d; IN_FLOAT ((d = ceil (XFLOAT_DATA (number))), "ceiling", number); return (float_to_int (d, "ceiling", number, Qunbound)); } #endif /* LISP_FLOAT_TYPE */ if (INTP (number)) return number; return Fceiling (wrong_type_argument (Qnumberp, number)); } DEFUN ("floor", Ffloor, 1, 2, 0, /* Return the largest integer no greater than NUMBER. (Round towards -inf.) With optional second argument DIVISOR, return the largest integer no greater than NUMBER/DIVISOR. */ (number, divisor)) { CHECK_INT_OR_FLOAT (number); if (! NILP (divisor)) { EMACS_INT i1, i2; CHECK_INT_OR_FLOAT (divisor); #ifdef LISP_FLOAT_TYPE if (FLOATP (number) || FLOATP (divisor)) { double f1 = extract_float (number); double f2 = extract_float (divisor); if (f2 == 0) Fsignal (Qarith_error, Qnil); IN_FLOAT2 (f1 = floor (f1 / f2), "floor", number, divisor); return float_to_int (f1, "floor", number, divisor); } #endif /* LISP_FLOAT_TYPE */ i1 = XINT (number); i2 = XINT (divisor); if (i2 == 0) Fsignal (Qarith_error, Qnil); /* With C's /, the result is implementation-defined if either operand is negative, so use only nonnegative operands. */ i1 = (i2 < 0 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2)) : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2)); return (make_int (i1)); } #ifdef LISP_FLOAT_TYPE if (FLOATP (number)) { double d; IN_FLOAT ((d = floor (XFLOAT_DATA (number))), "floor", number); return (float_to_int (d, "floor", number, Qunbound)); } #endif /* LISP_FLOAT_TYPE */ return number; } DEFUN ("round", Fround, 1, 1, 0, /* Return the nearest integer to NUMBER. */ (number)) { #ifdef LISP_FLOAT_TYPE if (FLOATP (number)) { double d; /* Screw the prevailing rounding mode. */ IN_FLOAT ((d = emacs_rint (XFLOAT_DATA (number))), "round", number); return (float_to_int (d, "round", number, Qunbound)); } #endif /* LISP_FLOAT_TYPE */ if (INTP (number)) return number; return Fround (wrong_type_argument (Qnumberp, number)); } DEFUN ("truncate", Ftruncate, 1, 1, 0, /* Truncate a floating point number to an integer. Rounds the value toward zero. */ (number)) { #ifdef LISP_FLOAT_TYPE if (FLOATP (number)) return float_to_int (XFLOAT_DATA (number), "truncate", number, Qunbound); #endif /* LISP_FLOAT_TYPE */ if (INTP (number)) return number; return Ftruncate (wrong_type_argument (Qnumberp, number)); } /* Float-rounding functions. */ #ifdef LISP_FLOAT_TYPE /* #if 1 It's not clear these are worth adding... */ DEFUN ("fceiling", Ffceiling, 1, 1, 0, /* Return the smallest integer no less than NUMBER, as a float. \(Round toward +inf.\) */ (number)) { double d = extract_float (number); IN_FLOAT (d = ceil (d), "fceiling", number); return make_float (d); } DEFUN ("ffloor", Fffloor, 1, 1, 0, /* Return the largest integer no greater than NUMBER, as a float. \(Round towards -inf.\) */ (number)) { double d = extract_float (number); IN_FLOAT (d = floor (d), "ffloor", number); return make_float (d); } DEFUN ("fround", Ffround, 1, 1, 0, /* Return the nearest integer to NUMBER, as a float. */ (number)) { double d = extract_float (number); IN_FLOAT (d = emacs_rint (d), "fround", number); return make_float (d); } DEFUN ("ftruncate", Fftruncate, 1, 1, 0, /* Truncate a floating point number to an integral float value. Rounds the value toward zero. */ (number)) { double d = extract_float (number); if (d >= 0.0) IN_FLOAT (d = floor (d), "ftruncate", number); else IN_FLOAT (d = ceil (d), "ftruncate", number); return make_float (d); } #endif /* LISP_FLOAT_TYPE (float-rounding functions) */ #ifdef LISP_FLOAT_TYPE #ifdef FLOAT_CATCH_SIGILL static SIGTYPE float_error (int signo) { if (! in_float) fatal_error_signal (signo); EMACS_REESTABLISH_SIGNAL (signo, arith_error); EMACS_UNBLOCK_SIGNAL (signo); in_float = 0; /* Was Fsignal(), but it just doesn't make sense for an error occurring inside a signal handler to be restartable, considering that anything could happen when the error is signaled and trapped and considering the asynchronous nature of signal handlers. */ signal_error (Qarith_error, 0, float_error_arg); } /* Another idea was to replace the library function `infnan' where SIGILL is signaled. */ #endif /* FLOAT_CATCH_SIGILL */ /* In C++, it is impossible to determine what type matherr expects without some more configure magic. We shouldn't be using matherr anyways - it's a non-standard SYSVism. */ #if defined (HAVE_MATHERR) && !defined(__cplusplus) int matherr (struct exception *x) { Lisp_Object args; if (! in_float) /* Not called from emacs-lisp float routines; do the default thing. */ return 0; /* if (!strcmp (x->name, "pow")) x->name = "expt"; */ args = Fcons (build_string (x->name), Fcons (make_float (x->arg1), ((in_float == 2) ? Fcons (make_float (x->arg2), Qnil) : Qnil))); switch (x->type) { case DOMAIN: Fsignal (Qdomain_error, args); break; case SING: Fsignal (Qsingularity_error, args); break; case OVERFLOW: Fsignal (Qoverflow_error, args); break; case UNDERFLOW: Fsignal (Qunderflow_error, args); break; default: Fsignal (Qarith_error, args); break; } return 1; /* don't set errno or print a message */ } #endif /* HAVE_MATHERR */ #endif /* LISP_FLOAT_TYPE */ void init_floatfns_very_early (void) { #ifdef LISP_FLOAT_TYPE # ifdef FLOAT_CATCH_SIGILL EMACS_SIGNAL (SIGILL, float_error); # endif in_float = 0; #endif /* LISP_FLOAT_TYPE */ } void syms_of_floatfns (void) { INIT_LRECORD_IMPLEMENTATION (float); /* Trig functions. */ #ifdef LISP_FLOAT_TYPE DEFSUBR (Facos); DEFSUBR (Fasin); DEFSUBR (Fatan); DEFSUBR (Fcos); DEFSUBR (Fsin); DEFSUBR (Ftan); #endif /* LISP_FLOAT_TYPE */ /* Bessel functions */ #if 0 DEFSUBR (Fbessel_y0); DEFSUBR (Fbessel_y1); DEFSUBR (Fbessel_yn); DEFSUBR (Fbessel_j0); DEFSUBR (Fbessel_j1); DEFSUBR (Fbessel_jn); #endif /* 0 */ /* Error functions. */ #if 0 DEFSUBR (Ferf); DEFSUBR (Ferfc); DEFSUBR (Flog_gamma); #endif /* 0 */ /* Root and Log functions. */ #ifdef LISP_FLOAT_TYPE DEFSUBR (Fexp); #endif /* LISP_FLOAT_TYPE */ DEFSUBR (Fexpt); #ifdef LISP_FLOAT_TYPE DEFSUBR (Flog); DEFSUBR (Flog10); DEFSUBR (Fsqrt); DEFSUBR (Fcube_root); #endif /* LISP_FLOAT_TYPE */ /* Inverse trig functions. */ #ifdef LISP_FLOAT_TYPE DEFSUBR (Facosh); DEFSUBR (Fasinh); DEFSUBR (Fatanh); DEFSUBR (Fcosh); DEFSUBR (Fsinh); DEFSUBR (Ftanh); #endif /* LISP_FLOAT_TYPE */ /* Rounding functions */ DEFSUBR (Fabs); #ifdef LISP_FLOAT_TYPE DEFSUBR (Ffloat); DEFSUBR (Flogb); #endif /* LISP_FLOAT_TYPE */ DEFSUBR (Fceiling); DEFSUBR (Ffloor); DEFSUBR (Fround); DEFSUBR (Ftruncate); /* Float-rounding functions. */ #ifdef LISP_FLOAT_TYPE DEFSUBR (Ffceiling); DEFSUBR (Fffloor); DEFSUBR (Ffround); DEFSUBR (Fftruncate); #endif /* LISP_FLOAT_TYPE */ } void vars_of_floatfns (void) { #ifdef LISP_FLOAT_TYPE Fprovide (intern ("lisp-float-type")); #endif }