view src/floatfns.c @ 510:5bdbc721d46a

[xemacs-hg @ 2001-05-06 08:33:35 by ben] implement printing the selection when it's selected. force redisplay when set-charset-ccl-program called. if bytecomp or byte-optimize need recompiling, then load the .el version of them first, recompile them, and reload the .elc versions to recompile everything else (so we won't be waiting until the cows come home).
author ben
date Sun, 06 May 2001 08:33:41 +0000
parents 576fb035e263
children 183866b06e0b
line wrap: on
line source

/* Primitive operations on floating point for XEmacs Lisp interpreter.
   Copyright (C) 1988, 1993, 1994 Free Software Foundation, Inc.

This file is part of XEmacs.

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* Synched up with: FSF 19.30. */

/* ANSI C requires only these float functions:
   acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
   frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.

   Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
   Define HAVE_CBRT if you have cbrt().
   Define HAVE_RINT if you have rint().
   If you don't define these, then the appropriate routines will be simulated.

   Define HAVE_MATHERR if on a system supporting the SysV matherr() callback.
   (This should happen automatically.)

   Define FLOAT_CHECK_ERRNO if the float library routines set errno.
   This has no effect if HAVE_MATHERR is defined.

   Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
   (What systems actually do this?  Let me know. -jwz)

   Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
   either setting errno, or signalling SIGFPE/SIGILL.  Otherwise, domain and
   range checking will happen before calling the float routines.  This has
   no effect if HAVE_MATHERR is defined (since matherr will be called when
   a domain error occurs).
 */

#include <config.h>
#include "lisp.h"
#include "syssignal.h"

#ifdef LISP_FLOAT_TYPE

/* Need to define a differentiating symbol -- see sysfloat.h */
#define THIS_FILENAME floatfns
#include "sysfloat.h"

/* The code uses emacs_rint, so that it works to undefine HAVE_RINT
   if `rint' exists but does not work right.  */
#ifdef HAVE_RINT
#define emacs_rint rint
#else
static double
emacs_rint (double x)
{
  double r = floor (x + 0.5);
  double diff = fabs (r - x);
  /* Round to even and correct for any roundoff errors.  */
  if (diff >= 0.5 && (diff > 0.5 || r != 2.0 * floor (r / 2.0)))
    r += r < x ? 1.0 : -1.0;
  return r;
}
#endif

/* Nonzero while executing in floating point.
   This tells float_error what to do.  */
static int in_float;

/* If an argument is out of range for a mathematical function,
   here is the actual argument value to use in the error message.  */
static Lisp_Object float_error_arg, float_error_arg2;
static const char *float_error_fn_name;

/* Evaluate the floating point expression D, recording NUM
   as the original argument for error messages.
   D is normally an assignment expression.
   Handle errors which may result in signals or may set errno.

   Note that float_error may be declared to return void, so you can't
   just cast the zero after the colon to (SIGTYPE) to make the types
   check properly.  */
#ifdef FLOAT_CHECK_ERRNO
#define IN_FLOAT(d, name, num)				\
  do {							\
    float_error_arg = num;				\
    float_error_fn_name = name;				\
    in_float = 1; errno = 0; (d); in_float = 0;		\
    if (errno != 0) in_float_error ();			\
  } while (0)
#define IN_FLOAT2(d, name, num, num2)			\
  do {							\
    float_error_arg = num;				\
    float_error_arg2 = num2;				\
    float_error_fn_name = name;				\
    in_float = 2; errno = 0; (d); in_float = 0;		\
    if (errno != 0) in_float_error ();			\
  } while (0)
#else
#define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
#define IN_FLOAT2(d, name, num, num2) (in_float = 2, (d), in_float = 0)
#endif


#define arith_error(op,arg) \
  Fsignal (Qarith_error, list2 (build_string (op), arg))
#define range_error(op,arg) \
  Fsignal (Qrange_error, list2 (build_string (op), arg))
#define range_error2(op,a1,a2) \
  Fsignal (Qrange_error, list3 (build_string (op), a1, a2))
#define domain_error(op,arg) \
  Fsignal (Qdomain_error, list2 (build_string (op), arg))
#define domain_error2(op,a1,a2) \
  Fsignal (Qdomain_error, list3 (build_string (op), a1, a2))


/* Convert float to Lisp Integer if it fits, else signal a range
   error using the given arguments.  */
static Lisp_Object
float_to_int (double x, const char *name, Lisp_Object num, Lisp_Object num2)
{
  if (x >= ((EMACS_INT) 1 << (VALBITS-1))
      || x <= - ((EMACS_INT) 1 << (VALBITS-1)) - (EMACS_INT) 1)
  {
    if (!UNBOUNDP (num2))
      range_error2 (name, num, num2);
    else
      range_error (name, num);
  }
  return (make_int ((EMACS_INT) x));
}


static void
in_float_error (void)
{
  switch (errno)
  {
  case 0:
    break;
  case EDOM:
    if (in_float == 2)
      domain_error2 (float_error_fn_name, float_error_arg, float_error_arg2);
    else
      domain_error (float_error_fn_name, float_error_arg);
    break;
  case ERANGE:
    range_error (float_error_fn_name, float_error_arg);
    break;
  default:
    arith_error (float_error_fn_name, float_error_arg);
    break;
  }
}


static Lisp_Object
mark_float (Lisp_Object obj)
{
  return Qnil;
}

static int
float_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
{
  return (extract_float (obj1) == extract_float (obj2));
}

static unsigned long
float_hash (Lisp_Object obj, int depth)
{
  /* mod the value down to 32-bit range */
  /* #### change for 64-bit machines */
  return (unsigned long) fmod (extract_float (obj), 4e9);
}

static const struct lrecord_description float_description[] = {
  { XD_END }
};

DEFINE_BASIC_LRECORD_IMPLEMENTATION ("float", float,
				     mark_float, print_float, 0, float_equal,
				     float_hash, float_description,
				     Lisp_Float);

/* Extract a Lisp number as a `double', or signal an error.  */

double
extract_float (Lisp_Object num)
{
  if (FLOATP (num))
    return XFLOAT_DATA (num);

  if (INTP (num))
    return (double) XINT (num);

  return extract_float (wrong_type_argument (Qnumberp, num));
}
#endif /* LISP_FLOAT_TYPE */


/* Trig functions.  */
#ifdef LISP_FLOAT_TYPE

DEFUN ("acos", Facos, 1, 1, 0, /*
Return the inverse cosine of NUMBER.
*/
       (number))
{
  double d = extract_float (number);
#ifdef FLOAT_CHECK_DOMAIN
  if (d > 1.0 || d < -1.0)
    domain_error ("acos", number);
#endif
  IN_FLOAT (d = acos (d), "acos", number);
  return make_float (d);
}

DEFUN ("asin", Fasin, 1, 1, 0, /*
Return the inverse sine of NUMBER.
*/
       (number))
{
  double d = extract_float (number);
#ifdef FLOAT_CHECK_DOMAIN
  if (d > 1.0 || d < -1.0)
    domain_error ("asin", number);
#endif
  IN_FLOAT (d = asin (d), "asin", number);
  return make_float (d);
}

DEFUN ("atan", Fatan, 1, 2, 0, /*
Return the inverse tangent of NUMBER.
If optional second argument NUMBER2 is provided,
return atan2 (NUMBER, NUMBER2).
*/
       (number, number2))
{
  double d = extract_float (number);

  if (NILP (number2))
    IN_FLOAT (d = atan (d), "atan", number);
  else
    {
      double d2 = extract_float (number2);
#ifdef FLOAT_CHECK_DOMAIN
      if (d == 0.0 && d2 == 0.0)
	domain_error2 ("atan", number, number2);
#endif
      IN_FLOAT2 (d = atan2 (d, d2), "atan", number, number2);
    }
  return make_float (d);
}

DEFUN ("cos", Fcos, 1, 1, 0, /*
Return the cosine of NUMBER.
*/
       (number))
{
  double d = extract_float (number);
  IN_FLOAT (d = cos (d), "cos", number);
  return make_float (d);
}

DEFUN ("sin", Fsin, 1, 1, 0, /*
Return the sine of NUMBER.
*/
       (number))
{
  double d = extract_float (number);
  IN_FLOAT (d = sin (d), "sin", number);
  return make_float (d);
}

DEFUN ("tan", Ftan, 1, 1, 0, /*
Return the tangent of NUMBER.
*/
       (number))
{
  double d = extract_float (number);
  double c = cos (d);
#ifdef FLOAT_CHECK_DOMAIN
  if (c == 0.0)
    domain_error ("tan", number);
#endif
  IN_FLOAT (d = (sin (d) / c), "tan", number);
  return make_float (d);
}
#endif /* LISP_FLOAT_TYPE (trig functions) */


/* Bessel functions */
#if 0 /* Leave these out unless we find there's a reason for them.  */
/* #ifdef LISP_FLOAT_TYPE */

DEFUN ("bessel-j0", Fbessel_j0, 1, 1, 0, /*
Return the bessel function j0 of NUMBER.
*/
       (number))
{
  double d = extract_float (number);
  IN_FLOAT (d = j0 (d), "bessel-j0", number);
  return make_float (d);
}

DEFUN ("bessel-j1", Fbessel_j1, 1, 1, 0, /*
Return the bessel function j1 of NUMBER.
*/
       (number))
{
  double d = extract_float (number);
  IN_FLOAT (d = j1 (d), "bessel-j1", number);
  return make_float (d);
}

DEFUN ("bessel-jn", Fbessel_jn, 2, 2, 0, /*
Return the order N bessel function output jn of NUMBER.
The first number (the order) is truncated to an integer.
*/
       (number1, number2))
{
  int i1 = extract_float (number1);
  double f2 = extract_float (number2);

  IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", number1);
  return make_float (f2);
}

DEFUN ("bessel-y0", Fbessel_y0, 1, 1, 0, /*
Return the bessel function y0 of NUMBER.
*/
       (number))
{
  double d = extract_float (number);
  IN_FLOAT (d = y0 (d), "bessel-y0", number);
  return make_float (d);
}

DEFUN ("bessel-y1", Fbessel_y1, 1, 1, 0, /*
Return the bessel function y1 of NUMBER.
*/
       (number))
{
  double d = extract_float (number);
  IN_FLOAT (d = y1 (d), "bessel-y0", number);
  return make_float (d);
}

DEFUN ("bessel-yn", Fbessel_yn, 2, 2, 0, /*
Return the order N bessel function output yn of NUMBER.
The first number (the order) is truncated to an integer.
*/
       (number1, number2))
{
  int i1 = extract_float (number1);
  double f2 = extract_float (number2);

  IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", number1);
  return make_float (f2);
}

#endif /* 0 (bessel functions) */

/* Error functions. */
#if 0 /* Leave these out unless we see they are worth having.  */
/* #ifdef LISP_FLOAT_TYPE */

DEFUN ("erf", Ferf, 1, 1, 0, /*
Return the mathematical error function of NUMBER.
*/
       (number))
{
  double d = extract_float (number);
  IN_FLOAT (d = erf (d), "erf", number);
  return make_float (d);
}

DEFUN ("erfc", Ferfc, 1, 1, 0, /*
Return the complementary error function of NUMBER.
*/
       (number))
{
  double d = extract_float (number);
  IN_FLOAT (d = erfc (d), "erfc", number);
  return make_float (d);
}

DEFUN ("log-gamma", Flog_gamma, 1, 1, 0, /*
Return the log gamma of NUMBER.
*/
       (number))
{
  double d = extract_float (number);
  IN_FLOAT (d = lgamma (d), "log-gamma", number);
  return make_float (d);
}

#endif /* 0 (error functions) */


/* Root and Log functions. */

#ifdef LISP_FLOAT_TYPE
DEFUN ("exp", Fexp, 1, 1, 0, /*
Return the exponential base e of NUMBER.
*/
       (number))
{
  double d = extract_float (number);
#ifdef FLOAT_CHECK_DOMAIN
  if (d > 709.7827)   /* Assume IEEE doubles here */
    range_error ("exp", number);
  else if (d < -709.0)
    return make_float (0.0);
  else
#endif
    IN_FLOAT (d = exp (d), "exp", number);
  return make_float (d);
}
#endif /* LISP_FLOAT_TYPE */


DEFUN ("expt", Fexpt, 2, 2, 0, /*
Return the exponential NUMBER1 ** NUMBER2.
*/
       (number1, number2))
{
  if (INTP (number1) && /* common lisp spec */
      INTP (number2)) /* don't promote, if both are ints */
    {
      EMACS_INT retval;
      EMACS_INT x = XINT (number1);
      EMACS_INT y = XINT (number2);

      if (y < 0)
	{
	  if (x == 1)
	    retval = 1;
	  else if (x == -1)
	    retval = (y & 1) ? -1 : 1;
	  else
	    retval = 0;
	}
      else
	{
	  retval = 1;
	  while (y > 0)
	    {
	      if (y & 1)
		retval *= x;
	      x *= x;
	      y = (EMACS_UINT) y >> 1;
	    }
	}
      return make_int (retval);
    }

#ifdef LISP_FLOAT_TYPE
  {
    double f1 = extract_float (number1);
    double f2 = extract_float (number2);
    /* Really should check for overflow, too */
    if (f1 == 0.0 && f2 == 0.0)
      f1 = 1.0;
# ifdef FLOAT_CHECK_DOMAIN
    else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2)))
      domain_error2 ("expt", number1, number2);
# endif /* FLOAT_CHECK_DOMAIN */
    IN_FLOAT2 (f1 = pow (f1, f2), "expt", number1, number2);
    return make_float (f1);
  }
#else
  CHECK_INT_OR_FLOAT (number1);
  CHECK_INT_OR_FLOAT (number2);
  return Fexpt (number1, number2);
#endif /* LISP_FLOAT_TYPE */
}

#ifdef LISP_FLOAT_TYPE
DEFUN ("log", Flog, 1, 2, 0, /*
Return the natural logarithm of NUMBER.
If second optional argument BASE is given, return the logarithm of
NUMBER using that base.
*/
       (number, base))
{
  double d = extract_float (number);
#ifdef FLOAT_CHECK_DOMAIN
  if (d <= 0.0)
    domain_error2 ("log", number, base);
#endif
  if (NILP (base))
    IN_FLOAT (d = log (d), "log", number);
  else
    {
      double b = extract_float (base);
#ifdef FLOAT_CHECK_DOMAIN
      if (b <= 0.0 || b == 1.0)
	domain_error2 ("log", number, base);
#endif
      if (b == 10.0)
	IN_FLOAT2 (d = log10 (d), "log", number, base);
      else
	IN_FLOAT2 (d = (log (d) / log (b)), "log", number, base);
    }
  return make_float (d);
}


DEFUN ("log10", Flog10, 1, 1, 0, /*
Return the logarithm base 10 of NUMBER.
*/
       (number))
{
  double d = extract_float (number);
#ifdef FLOAT_CHECK_DOMAIN
  if (d <= 0.0)
    domain_error ("log10", number);
#endif
  IN_FLOAT (d = log10 (d), "log10", number);
  return make_float (d);
}


DEFUN ("sqrt", Fsqrt, 1, 1, 0, /*
Return the square root of NUMBER.
*/
       (number))
{
  double d = extract_float (number);
#ifdef FLOAT_CHECK_DOMAIN
  if (d < 0.0)
    domain_error ("sqrt", number);
#endif
  IN_FLOAT (d = sqrt (d), "sqrt", number);
  return make_float (d);
}


DEFUN ("cube-root", Fcube_root, 1, 1, 0, /*
Return the cube root of NUMBER.
*/
       (number))
{
  double d = extract_float (number);
#ifdef HAVE_CBRT
  IN_FLOAT (d = cbrt (d), "cube-root", number);
#else
  if (d >= 0.0)
    IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", number);
  else
    IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", number);
#endif
  return make_float (d);
}
#endif /* LISP_FLOAT_TYPE */


/* Inverse trig functions. */
#ifdef LISP_FLOAT_TYPE
/* #if 0  Not clearly worth adding...  */

DEFUN ("acosh", Facosh, 1, 1, 0, /*
Return the inverse hyperbolic cosine of NUMBER.
*/
       (number))
{
  double d = extract_float (number);
#ifdef FLOAT_CHECK_DOMAIN
  if (d < 1.0)
    domain_error ("acosh", number);
#endif
#ifdef HAVE_INVERSE_HYPERBOLIC
  IN_FLOAT (d = acosh (d), "acosh", number);
#else
  IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", number);
#endif
  return make_float (d);
}

DEFUN ("asinh", Fasinh, 1, 1, 0, /*
Return the inverse hyperbolic sine of NUMBER.
*/
       (number))
{
  double d = extract_float (number);
#ifdef HAVE_INVERSE_HYPERBOLIC
  IN_FLOAT (d = asinh (d), "asinh", number);
#else
  IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", number);
#endif
  return make_float (d);
}

DEFUN ("atanh", Fatanh, 1, 1, 0, /*
Return the inverse hyperbolic tangent of NUMBER.
*/
       (number))
{
  double d = extract_float (number);
#ifdef FLOAT_CHECK_DOMAIN
  if (d >= 1.0 || d <= -1.0)
    domain_error ("atanh", number);
#endif
#ifdef HAVE_INVERSE_HYPERBOLIC
  IN_FLOAT (d = atanh (d), "atanh", number);
#else
  IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", number);
#endif
  return make_float (d);
}

DEFUN ("cosh", Fcosh, 1, 1, 0, /*
Return the hyperbolic cosine of NUMBER.
*/
       (number))
{
  double d = extract_float (number);
#ifdef FLOAT_CHECK_DOMAIN
  if (d > 710.0 || d < -710.0)
    range_error ("cosh", number);
#endif
  IN_FLOAT (d = cosh (d), "cosh", number);
  return make_float (d);
}

DEFUN ("sinh", Fsinh, 1, 1, 0, /*
Return the hyperbolic sine of NUMBER.
*/
       (number))
{
  double d = extract_float (number);
#ifdef FLOAT_CHECK_DOMAIN
  if (d > 710.0 || d < -710.0)
    range_error ("sinh", number);
#endif
  IN_FLOAT (d = sinh (d), "sinh", number);
  return make_float (d);
}

DEFUN ("tanh", Ftanh, 1, 1, 0, /*
Return the hyperbolic tangent of NUMBER.
*/
       (number))
{
  double d = extract_float (number);
  IN_FLOAT (d = tanh (d), "tanh", number);
  return make_float (d);
}
#endif /* LISP_FLOAT_TYPE (inverse trig functions) */

/* Rounding functions */

DEFUN ("abs", Fabs, 1, 1, 0, /*
Return the absolute value of NUMBER.
*/
       (number))
{
#ifdef LISP_FLOAT_TYPE
  if (FLOATP (number))
    {
      IN_FLOAT (number = make_float (fabs (XFLOAT_DATA (number))),
		"abs", number);
      return number;
    }
#endif /* LISP_FLOAT_TYPE */

  if (INTP (number))
    return (XINT (number) >= 0) ? number : make_int (- XINT (number));

  return Fabs (wrong_type_argument (Qnumberp, number));
}

#ifdef LISP_FLOAT_TYPE
DEFUN ("float", Ffloat, 1, 1, 0, /*
Return the floating point number numerically equal to NUMBER.
*/
       (number))
{
  if (INTP (number))
    return make_float ((double) XINT (number));

  if (FLOATP (number))		/* give 'em the same float back */
    return number;

  return Ffloat (wrong_type_argument (Qnumberp, number));
}
#endif /* LISP_FLOAT_TYPE */


#ifdef LISP_FLOAT_TYPE
DEFUN ("logb", Flogb, 1, 1, 0, /*
Return largest integer <= the base 2 log of the magnitude of NUMBER.
This is the same as the exponent of a float.
*/
       (number))
{
  double f = extract_float (number);

  if (f == 0.0)
    return make_int (- (EMACS_INT)(((EMACS_UINT) 1) << (VALBITS - 1))); /* most-negative-fixnum */
#ifdef HAVE_LOGB
  {
    Lisp_Object val;
    IN_FLOAT (val = make_int ((EMACS_INT) logb (f)), "logb", number);
    return val;
  }
#else
#ifdef HAVE_FREXP
  {
    int exqp;
    IN_FLOAT (frexp (f, &exqp), "logb", number);
    return make_int (exqp - 1);
  }
#else
  {
    int i;
    double d;
    EMACS_INT val;
    if (f < 0.0)
      f = -f;
    val = -1;
    while (f < 0.5)
      {
        for (i = 1, d = 0.5; d * d >= f; i += i)
          d *= d;
        f /= d;
        val -= i;
      }
    while (f >= 1.0)
      {
        for (i = 1, d = 2.0; d * d <= f; i += i)
          d *= d;
        f /= d;
        val += i;
      }
    return make_int (val);
  }
#endif /* ! HAVE_FREXP */
#endif /* ! HAVE_LOGB */
}
#endif /* LISP_FLOAT_TYPE */


DEFUN ("ceiling", Fceiling, 1, 1, 0, /*
Return the smallest integer no less than NUMBER.  (Round toward +inf.)
*/
       (number))
{
#ifdef LISP_FLOAT_TYPE
  if (FLOATP (number))
    {
      double d;
      IN_FLOAT ((d = ceil (XFLOAT_DATA (number))), "ceiling", number);
      return (float_to_int (d, "ceiling", number, Qunbound));
    }
#endif /* LISP_FLOAT_TYPE */

  if (INTP (number))
    return number;

  return Fceiling (wrong_type_argument (Qnumberp, number));
}


DEFUN ("floor", Ffloor, 1, 2, 0, /*
Return the largest integer no greater than NUMBER.  (Round towards -inf.)
With optional second argument DIVISOR, return the largest integer no
greater than NUMBER/DIVISOR.
*/
       (number, divisor))
{
  CHECK_INT_OR_FLOAT (number);

  if (! NILP (divisor))
    {
      EMACS_INT i1, i2;

      CHECK_INT_OR_FLOAT (divisor);

#ifdef LISP_FLOAT_TYPE
      if (FLOATP (number) || FLOATP (divisor))
	{
	  double f1 = extract_float (number);
	  double f2 = extract_float (divisor);

	  if (f2 == 0)
	    Fsignal (Qarith_error, Qnil);

	  IN_FLOAT2 (f1 = floor (f1 / f2), "floor", number, divisor);
	  return float_to_int (f1, "floor", number, divisor);
	}
#endif /* LISP_FLOAT_TYPE */

      i1 = XINT (number);
      i2 = XINT (divisor);

      if (i2 == 0)
	Fsignal (Qarith_error, Qnil);

      /* With C's /, the result is implementation-defined if either operand
	 is negative, so use only nonnegative operands.  */
      i1 = (i2 < 0
	    ? (i1 <= 0  ?  -i1 / -i2  :  -1 - ((i1 - 1) / -i2))
	    : (i1 < 0  ?  -1 - ((-1 - i1) / i2)  :  i1 / i2));

      return (make_int (i1));
    }

#ifdef LISP_FLOAT_TYPE
  if (FLOATP (number))
    {
      double d;
      IN_FLOAT ((d = floor (XFLOAT_DATA (number))), "floor", number);
      return (float_to_int (d, "floor", number, Qunbound));
    }
#endif /* LISP_FLOAT_TYPE */

  return number;
}

DEFUN ("round", Fround, 1, 1, 0, /*
Return the nearest integer to NUMBER.
*/
       (number))
{
#ifdef LISP_FLOAT_TYPE
  if (FLOATP (number))
    {
      double d;
      /* Screw the prevailing rounding mode.  */
      IN_FLOAT ((d = emacs_rint (XFLOAT_DATA (number))), "round", number);
      return (float_to_int (d, "round", number, Qunbound));
    }
#endif /* LISP_FLOAT_TYPE */

  if (INTP (number))
    return number;

  return Fround (wrong_type_argument (Qnumberp, number));
}

DEFUN ("truncate", Ftruncate, 1, 1, 0, /*
Truncate a floating point number to an integer.
Rounds the value toward zero.
*/
       (number))
{
#ifdef LISP_FLOAT_TYPE
  if (FLOATP (number))
    return float_to_int (XFLOAT_DATA (number), "truncate", number, Qunbound);
#endif /* LISP_FLOAT_TYPE */

  if (INTP (number))
    return number;

  return Ftruncate (wrong_type_argument (Qnumberp, number));
}

/* Float-rounding functions. */
#ifdef LISP_FLOAT_TYPE
/* #if 1  It's not clear these are worth adding... */

DEFUN ("fceiling", Ffceiling, 1, 1, 0, /*
Return the smallest integer no less than NUMBER, as a float.
\(Round toward +inf.\)
*/
       (number))
{
  double d = extract_float (number);
  IN_FLOAT (d = ceil (d), "fceiling", number);
  return make_float (d);
}

DEFUN ("ffloor", Fffloor, 1, 1, 0, /*
Return the largest integer no greater than NUMBER, as a float.
\(Round towards -inf.\)
*/
       (number))
{
  double d = extract_float (number);
  IN_FLOAT (d = floor (d), "ffloor", number);
  return make_float (d);
}

DEFUN ("fround", Ffround, 1, 1, 0, /*
Return the nearest integer to NUMBER, as a float.
*/
       (number))
{
  double d = extract_float (number);
  IN_FLOAT (d = emacs_rint (d), "fround", number);
  return make_float (d);
}

DEFUN ("ftruncate", Fftruncate, 1, 1, 0, /*
Truncate a floating point number to an integral float value.
Rounds the value toward zero.
*/
       (number))
{
  double d = extract_float (number);
  if (d >= 0.0)
    IN_FLOAT (d = floor (d), "ftruncate", number);
  else
    IN_FLOAT (d = ceil (d), "ftruncate", number);
  return make_float (d);
}

#endif /* LISP_FLOAT_TYPE (float-rounding functions) */


#ifdef LISP_FLOAT_TYPE
#ifdef FLOAT_CATCH_SIGILL
static SIGTYPE
float_error (int signo)
{
  if (! in_float)
    fatal_error_signal (signo);

  EMACS_REESTABLISH_SIGNAL (signo, arith_error);
  EMACS_UNBLOCK_SIGNAL (signo);

  in_float = 0;

  /* Was Fsignal(), but it just doesn't make sense for an error
     occurring inside a signal handler to be restartable, considering
     that anything could happen when the error is signaled and trapped
     and considering the asynchronous nature of signal handlers. */
  signal_error (Qarith_error, list1 (float_error_arg));
}

/* Another idea was to replace the library function `infnan'
   where SIGILL is signaled.  */

#endif /* FLOAT_CATCH_SIGILL */

/* In C++, it is impossible to determine what type matherr expects
   without some more configure magic.
   We shouldn't be using matherr anyways - it's a non-standard SYSVism. */
#if defined (HAVE_MATHERR) && !defined(__cplusplus)
int
matherr (struct exception *x)
{
  Lisp_Object args;
  if (! in_float)
    /* Not called from emacs-lisp float routines; do the default thing. */
    return 0;

  /* if (!strcmp (x->name, "pow")) x->name = "expt"; */

  args = Fcons (build_string (x->name),
                Fcons (make_float (x->arg1),
                       ((in_float == 2)
                        ? Fcons (make_float (x->arg2), Qnil)
                        : Qnil)));
  switch (x->type)
    {
    case DOMAIN:    Fsignal (Qdomain_error,	 args); break;
    case SING:	    Fsignal (Qsingularity_error, args); break;
    case OVERFLOW:  Fsignal (Qoverflow_error,	 args); break;
    case UNDERFLOW: Fsignal (Qunderflow_error,	 args); break;
    default:	    Fsignal (Qarith_error,	 args); break;
    }
  return 1;	/* don't set errno or print a message */
}
#endif /* HAVE_MATHERR */
#endif /* LISP_FLOAT_TYPE */


void
init_floatfns_very_early (void)
{
#ifdef LISP_FLOAT_TYPE
# ifdef FLOAT_CATCH_SIGILL
  signal (SIGILL, float_error);
# endif
  in_float = 0;
#endif /* LISP_FLOAT_TYPE */
}

void
syms_of_floatfns (void)
{
  INIT_LRECORD_IMPLEMENTATION (float);

  /* Trig functions.  */

#ifdef LISP_FLOAT_TYPE
  DEFSUBR (Facos);
  DEFSUBR (Fasin);
  DEFSUBR (Fatan);
  DEFSUBR (Fcos);
  DEFSUBR (Fsin);
  DEFSUBR (Ftan);
#endif /* LISP_FLOAT_TYPE */

  /* Bessel functions */

#if 0
  DEFSUBR (Fbessel_y0);
  DEFSUBR (Fbessel_y1);
  DEFSUBR (Fbessel_yn);
  DEFSUBR (Fbessel_j0);
  DEFSUBR (Fbessel_j1);
  DEFSUBR (Fbessel_jn);
#endif /* 0 */

  /* Error functions. */

#if 0
  DEFSUBR (Ferf);
  DEFSUBR (Ferfc);
  DEFSUBR (Flog_gamma);
#endif /* 0 */

  /* Root and Log functions. */

#ifdef LISP_FLOAT_TYPE
  DEFSUBR (Fexp);
#endif /* LISP_FLOAT_TYPE */
  DEFSUBR (Fexpt);
#ifdef LISP_FLOAT_TYPE
  DEFSUBR (Flog);
  DEFSUBR (Flog10);
  DEFSUBR (Fsqrt);
  DEFSUBR (Fcube_root);
#endif /* LISP_FLOAT_TYPE */

  /* Inverse trig functions. */

#ifdef LISP_FLOAT_TYPE
  DEFSUBR (Facosh);
  DEFSUBR (Fasinh);
  DEFSUBR (Fatanh);
  DEFSUBR (Fcosh);
  DEFSUBR (Fsinh);
  DEFSUBR (Ftanh);
#endif /* LISP_FLOAT_TYPE */

  /* Rounding functions */

  DEFSUBR (Fabs);
#ifdef LISP_FLOAT_TYPE
  DEFSUBR (Ffloat);
  DEFSUBR (Flogb);
#endif /* LISP_FLOAT_TYPE */
  DEFSUBR (Fceiling);
  DEFSUBR (Ffloor);
  DEFSUBR (Fround);
  DEFSUBR (Ftruncate);

  /* Float-rounding functions. */

#ifdef LISP_FLOAT_TYPE
  DEFSUBR (Ffceiling);
  DEFSUBR (Fffloor);
  DEFSUBR (Ffround);
  DEFSUBR (Fftruncate);
#endif /* LISP_FLOAT_TYPE */
}

void
vars_of_floatfns (void)
{
#ifdef LISP_FLOAT_TYPE
  Fprovide (intern ("lisp-float-type"));
#endif
}