Mercurial > hg > xemacs-beta
view src/hash.c @ 4407:4ee73bbe4f8e
Always use boyer_moore in ASCII or Latin-1 buffers with ASCII search strings.
2007-12-26 Aidan Kehoe <kehoea@parhasard.net>
* casetab.c:
Extend and correct some case table documentation.
* search.c (search_buffer):
Correct a bug where only the first entry for a character in the
case equivalence table was examined in determining if the
Boyer-Moore search algorithm is appropriate.
If there are case mappings outside of the charset and row of the
characters specified in the search string, those case mappings can
be safely ignored (and Boyer-Moore search can be used) if we know
from the buffer statistics that the corresponding characters cannot
occur.
* search.c (boyer_moore):
Assert that we haven't been passed a string with varying
characters sets or rows within character sets. That's what
simple_search is for.
In the very rare event that a character in the search string has a
canonical case mapping that is not in the same character set and
row, don't try to search for the canonical character, search for
some other character that is in the the desired character set and
row. Assert that the case table isn't corrupt.
Do not search for any character case mappings that cannot possibly
occur in the buffer, given the buffer metadata about its
contents.
author | Aidan Kehoe <kehoea@parhasard.net> |
---|---|
date | Wed, 26 Dec 2007 17:30:16 +0100 |
parents | facf3239ba30 |
children | 16112448d484 |
line wrap: on
line source
/* Hash tables. Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc. Copyright (C) 2003, 2004 Ben Wing. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: Not in FSF. */ /* Author: Lost in the mists of history. At least back to Lucid 19.3, circa Sep 1992. */ #include <config.h> #include "lisp.h" #include "hash.h" #define NULL_ENTRY ((void *) 0xdeadbeef) /* -559038737 base 10 */ #define COMFORTABLE_SIZE(size) (21 * (size) / 16) #define KEYS_DIFFER_P(old, new_, testfun) \ (((old) != (new_)) && (!(testfun) || !(testfun) ((old),(new_)))) static void rehash (hentry *harray, struct hash_table *ht, Elemcount size); Hashcode memory_hash (const void *xv, Bytecount size) { Hashcode h = 0; unsigned const char *x = (unsigned const char *) xv; if (!x) return 0; while (size--) { Hashcode g; h = (h << 4) + *x++; if ((g = h & 0xf0000000) != 0) h = (h ^ (g >> 24)) ^ g; } return h; } static int string_equal (const void *st1, const void *st2) { if (!st1) return st2 ? 0 : 1; else if (!st2) return 0; else return !strcmp ((const char *) st1, (const char *) st2); } static Hashcode string_hash (const void *xv) { Hashcode h = 0; unsigned const char *x = (unsigned const char *) xv; if (!x) return 0; while (*x) { Hashcode g; h = (h << 4) + *x++; if ((g = h & 0xf0000000) != 0) h = (h ^ (g >> 24)) ^ g; } return h; } /* Return a suitable size for a hash table, with at least SIZE slots. */ static Elemcount hash_table_size (Elemcount requested_size) { /* Return some prime near, but greater than or equal to, SIZE. Decades from the time of writing, someone will have a system large enough that the list below will be too short... */ static const Elemcount primes [] = { 19, 29, 41, 59, 79, 107, 149, 197, 263, 347, 457, 599, 787, 1031, 1361, 1777, 2333, 3037, 3967, 5167, 6719, 8737, 11369, 14783, 19219, 24989, 32491, 42257, 54941, 71429, 92861, 120721, 156941, 204047, 265271, 344857, 448321, 582821, 757693, 985003, 1280519, 1664681, 2164111, 2813353, 3657361, 4754591, 6180989, 8035301, 10445899, 13579681, 17653589, 22949669, 29834603, 38784989, 50420551, 65546729, 85210757, 110774011, 144006217, 187208107, 243370577, 316381771, 411296309, 534685237, 695090819, 903618083, 1174703521, 1527114613, 1985248999 /* , 2580823717UL, 3355070839UL */ }; /* We've heard of binary search. */ int low, high; for (low = 0, high = countof (primes) - 1; high - low > 1;) { /* Loop Invariant: size < primes [high] */ int mid = (low + high) / 2; if (primes [mid] < requested_size) low = mid; else high = mid; } return primes [high]; } const void * gethash (const void *key, struct hash_table *hash_table, const void **ret_value) { if (!key) { *ret_value = hash_table->zero_entry; return (void *) hash_table->zero_set; } else { hentry *harray = hash_table->harray; hash_table_test_function test_function = hash_table->test_function; Elemcount size = hash_table->size; Hashcode hcode_initial = hash_table->hash_function ? hash_table->hash_function (key) : (Hashcode) key; Elemcount hcode = (Elemcount) (hcode_initial % size); hentry *e = &harray [hcode]; const void *e_key = e->key; if (e_key ? KEYS_DIFFER_P (e_key, key, test_function) : e->contents == NULL_ENTRY) { Elemcount h2 = size - 2; Elemcount incr = (Elemcount) (1 + (hcode_initial % h2)); do { hcode += incr; if (hcode >= size) hcode -= size; e = &harray [hcode]; e_key = e->key; } while (e_key ? KEYS_DIFFER_P (e_key, key, test_function) : e->contents == NULL_ENTRY); } *ret_value = e->contents; return e->key; } } void clrhash (struct hash_table *hash_table) { memset (hash_table->harray, 0, sizeof (hentry) * hash_table->size); hash_table->zero_entry = 0; hash_table->zero_set = 0; hash_table->fullness = 0; } void free_hash_table (struct hash_table *hash_table) { xfree (hash_table->harray, hentry *); xfree (hash_table, struct hash_table *); } struct hash_table * make_hash_table (Elemcount size) { struct hash_table *hash_table = xnew_and_zero (struct hash_table); hash_table->size = hash_table_size (COMFORTABLE_SIZE (size)); hash_table->harray = xnew_array (hentry, hash_table->size); clrhash (hash_table); return hash_table; } struct hash_table * make_string_hash_table (Elemcount size) { return make_general_hash_table (size, string_hash, string_equal); } struct hash_table * make_general_hash_table (Elemcount size, hash_table_hash_function hash_function, hash_table_test_function test_function) { struct hash_table* hash_table = make_hash_table (size); hash_table->hash_function = hash_function; hash_table->test_function = test_function; return hash_table; } static void grow_hash_table (struct hash_table *hash_table, Elemcount new_size) { Elemcount old_size = hash_table->size; hentry *old_harray = hash_table->harray; hash_table->size = hash_table_size (new_size); hash_table->harray = xnew_array (hentry, hash_table->size); /* do the rehash on the "grown" table */ { long old_zero_set = hash_table->zero_set; void *old_zero_entry = hash_table->zero_entry; clrhash (hash_table); hash_table->zero_set = old_zero_set; hash_table->zero_entry = old_zero_entry; rehash (old_harray, hash_table, old_size); } xfree (old_harray, hentry *); } void pregrow_hash_table_if_necessary (struct hash_table *hash_table, Elemcount breathing_room) { Elemcount comfortable_size = COMFORTABLE_SIZE (hash_table->fullness); if (hash_table->size < comfortable_size - breathing_room) grow_hash_table (hash_table, comfortable_size + 1); } void puthash (const void *key, void *contents, struct hash_table *hash_table) { if (!key) { hash_table->zero_entry = contents; hash_table->zero_set = 1; } else { hash_table_test_function test_function = hash_table->test_function; Elemcount size = hash_table->size; hentry *harray = hash_table->harray; Hashcode hcode_initial = hash_table->hash_function ? hash_table->hash_function (key) : (Hashcode) key; Elemcount hcode = (Elemcount) (hcode_initial % size); Elemcount h2 = size - 2; Elemcount incr = (Elemcount) (1 + (hcode_initial % h2)); const void *e_key = harray [hcode].key; const void *oldcontents; if (e_key && KEYS_DIFFER_P (e_key, key, test_function)) { do { hcode += incr; if (hcode >= size) hcode -= size; e_key = harray [hcode].key; } while (e_key && KEYS_DIFFER_P (e_key, key, test_function)); } oldcontents = harray [hcode].contents; harray [hcode].key = key; harray [hcode].contents = contents; /* If the entry that we used was a deleted entry, check for a non deleted entry of the same key, then delete it. */ if (!e_key && oldcontents == NULL_ENTRY) { hentry *e; do { hcode += incr; if (hcode >= size) hcode -= size; e = &harray [hcode]; e_key = e->key; } while (e_key ? KEYS_DIFFER_P (e_key, key, test_function): e->contents == NULL_ENTRY); if (e_key) { e->key = 0; e->contents = NULL_ENTRY; } } /* only increment the fullness when we used up a new hentry */ if (!e_key || KEYS_DIFFER_P (e_key, key, test_function)) { Elemcount comfortable_size = COMFORTABLE_SIZE (++(hash_table->fullness)); if (hash_table->size < comfortable_size) grow_hash_table (hash_table, comfortable_size + 1); } } } static void rehash (hentry *harray, struct hash_table *hash_table, Elemcount size) { hentry *limit = harray + size; hentry *e; for (e = harray; e < limit; e++) { if (e->key) puthash (e->key, e->contents, hash_table); } } void remhash (const void *key, struct hash_table *hash_table) { if (!key) { hash_table->zero_entry = 0; hash_table->zero_set = 0; } else { hentry *harray = hash_table->harray; hash_table_test_function test_function = hash_table->test_function; Elemcount size = hash_table->size; Hashcode hcode_initial = (hash_table->hash_function) ? (hash_table->hash_function (key)) : ((Hashcode) key); Elemcount hcode = (Elemcount) (hcode_initial % size); hentry *e = &harray [hcode]; const void *e_key = e->key; if (e_key ? KEYS_DIFFER_P (e_key, key, test_function) : e->contents == NULL_ENTRY) { Elemcount h2 = size - 2; Elemcount incr = (Elemcount) (1 + (hcode_initial % h2)); do { hcode += incr; if (hcode >= size) hcode -= size; e = &harray [hcode]; e_key = e->key; } while (e_key? KEYS_DIFFER_P (e_key, key, test_function): e->contents == NULL_ENTRY); } if (e_key) { e->key = 0; e->contents = NULL_ENTRY; /* Note: you can't do fullness-- here, it breaks the world. */ } } } void maphash (maphash_function mf, struct hash_table *hash_table, void *arg) { hentry *e; hentry *limit; if (hash_table->zero_set) { if (mf (0, hash_table->zero_entry, arg)) return; } for (e = hash_table->harray, limit = e + hash_table->size; e < limit; e++) { if (e->key && mf (e->key, e->contents, arg)) return; } } void map_remhash (remhash_predicate predicate, struct hash_table *hash_table, void *arg) { hentry *e; hentry *limit; if (hash_table->zero_set && predicate (0, hash_table->zero_entry, arg)) { hash_table->zero_set = 0; hash_table->zero_entry = 0; } for (e = hash_table->harray, limit = e + hash_table->size; e < limit; e++) if (predicate (e->key, e->contents, arg)) { e->key = 0; e->contents = NULL_ENTRY; } }