view modules/README @ 5566:4654c01af32b

Improve the implementation, documentation of #'labels, #'flet. lisp/ChangeLog addition: 2011-09-07 Aidan Kehoe <kehoea@parhasard.net> * bytecomp.el: * bytecomp.el (for-effect): Move this earlier in the file, it's referenced in byte-compile-initial-macro-environment. * bytecomp.el (byte-compile-initial-macro-environment): In the byte-compile-macro-environment definition for #'labels, put off the compiling the lambda bodies until the point where the rest of the form is being compiled, allowing the lambda bodies to access appropriate values for byte-compile-bound-variables, and reducing excessive warning about free variables. Add a byte-compile-macro-environment definition for #'flet. This modifies byte-compile-function-environment appropriately, and warns about bindings of functions that have macro definitions in the current environment, about functions that have byte codes, and about functions that have byte-compile methods (which may not do what the user wants at runtime). * bytecomp.el (byte-compile-funcall): If FUNCTION is constant, call #'byte-compile-callargs-warn if that's appropriate, giving warnings about problems with calling functions bound with #'labels. * cl-macs.el: * cl-macs.el (flet): Mention the main difference from Common Lisp, that the bindings are dynamic, not lexical. Counsel the use of #'labels, not #'flet, for this and other reasons. Explain the limited single use case for #'flet. Cross-reference to bytecomp.el in a comment. * cl-macs.el (labels): Go into detail on which functions may be called from where. Explain how to access the function definition of a label within FORM. Add a comment cross-referencing to bytecomp.el. man/ChangeLog addition: 2011-09-07 Aidan Kehoe <kehoea@parhasard.net> * cl.texi (Function Bindings): Move #'labels first, describe it in more detail, explaining that it is to be preferred over #'flet, and explaining why. Explain that dynamic bindings with #'flet will also not work when functions are accessed through their bytecodes.
author Aidan Kehoe <kehoea@parhasard.net>
date Wed, 07 Sep 2011 16:26:45 +0100
parents da1365dd3f07
children
line wrap: on
line source

This file is part of XEmacs.

XEmacs is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs.  If not, see <http://www.gnu.org/licenses/>.


This directory contains a number of XEmacs dynamic modules.  These
modules can be loaded directly with the command 'M-x load-module'.
However, the preferred method of loading a module is to issue a
"(require 'module-name)" command to the Lisp interpreter.  This will
store information so that a later "(unload-feature 'module-name)" can
succeed.

To compile one of these modules, simply enter the desired directory,
type 'configure', and then 'make'.  If you are building the module for
an installed XEmacs, then 'make install' will place the module in the
appropriate directory for XEmacs to find it later (assuming you have
permission to write to that directory).  A subsequent 'load-module' or
'require' will then load the module, as described above.

Each of these demonstrates different features and limitations of the
XEmacs module loading technology.  For a complete discussion on XEmacs
dynamic modules, please consult the XEmacs Module Writers Guide, which
can be found in the ../info directory.

For those wanting to get started with module writing, please see the
'sample' directory.  It contains two subdirectories: internal and
external.  The 'internal' subdirectory contains the framework needed to
migrate some core piece of XEmacs functionality into code that can
either be compiled into the core or built as a separate module.  The
'external' subdirectory contains the somewhat simpler framework needed
to build a module separately from XEmacs.  These should be considered
starting places for module writing.