Mercurial > hg > xemacs-beta
view src/mc-alloc.c @ 3523:39938c4a27f2
[xemacs-hg @ 2006-07-20 21:51:09 by viteno]
Update xemacs_extra_name.
author | viteno |
---|---|
date | Thu, 20 Jul 2006 21:51:09 +0000 |
parents | 1043bbfa24cf |
children | 229bd619740a |
line wrap: on
line source
/* New size-based allocator for XEmacs. Copyright (C) 2005 Marcus Crestani. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: Not in FSF. */ #include <config.h> #include "lisp.h" #include "mc-alloc.h" #include "getpagesize.h" #if 0 # define USE_MARK_BITS_FREE_LIST 1 #endif #if 1 # define BLOCKTYPE_ALLOC_PAGE_HEADER 1 #endif /* Memory protection needs the real system-dependent pagesize. */ #ifndef WIN32_NATIVE #include <unistd.h> /* for getpagesize () */ #endif #if defined (HAVE_GETPAGESIZE) # define SYS_PAGE_SIZE getpagesize () #elif defined (_SC_PAGESIZE) # define SYS_PAGE_SIZE sysconf (_SC_PAGESIZE) #elif defined (_SC_PAGE_SIZE) # define SYS_PAGE_SIZE sysconf (_SC_PAGE_SIZE) #elif defined(get_page_size) # define SYS_PAGE_SIZE get_page_size () #elif defined(PAGESIZE) # define SYS_PAGE_SIZE PAGESIZE #elif defined(PAGE_SIZE) # define SYS_PAGE_SIZE PAGE_SIZE #else /* Valid page sizes are powers of 2. */ # define SYS_PAGE_SIZE 4096 #endif /*--- configurable values ----------------------------------------------*/ /* Definition of size classes */ /* Heap used list constants: In the used heap, it is important to quickly find a free spot for a new object. Therefore the size classes of the used heap are defined by the size of the cells on the pages. The size classes should match common object sizes, to avoid wasting memory. */ /* Minimum object size in bytes. */ #if BITS_PER_EMACS_INT > 32 # define USED_LIST_MIN_OBJECT_SIZE 16 #else # define USED_LIST_MIN_OBJECT_SIZE 8 #endif /* The step size by which the size classes increase (up to upper threshold). This many bytes are mapped to a single used list: */ #if BITS_PER_EMACS_INT > 32 # define USED_LIST_LIN_STEP 8 #else # define USED_LIST_LIN_STEP 4 #endif /* The upper threshold should always be set to PAGE_SIZE/2, because if a object is larger than PAGE_SIZE/2 there is no room for any other object on this page. Objects this big are kept in the page list of the multiple pages, since a quick search for free spots is not needed for this kind of pages (because there are no free spots). PAGE_SIZES_DIV_2 defines maximum size of a used space list. */ #define USED_LIST_UPPER_THRESHOLD PAGE_SIZE_DIV_2 /* Heap free list constants: In the unused heap, the size of consecutive memory tips the scales. A page is smallest entity which is asked for. Therefore, the size classes of the unused heap are defined by the number of consecutive pages. */ /* Sizes up to this many pages each have their own free list. */ #define FREE_LIST_LOWER_THRESHOLD 32 /* The step size by which the size classes increase (up to upper threshold). FREE_LIST_LIN_STEP number of sizes are mapped to a single free list for sizes between FREE_LIST_LOWER_THRESHOLD and FREE_LIST_UPPER_THRESHOLD. */ #define FREE_LIST_LIN_STEP 8 /* Sizes of at least this many pages are mapped to a single free list. Blocks of memory larger than this number are all kept in a single list, which makes searching this list slow. But objects that big are really seldom. */ #define FREE_LIST_UPPER_THRESHOLD 256 /* used heap list count */ #define N_USED_PAGE_LISTS (((USED_LIST_UPPER_THRESHOLD \ - USED_LIST_MIN_OBJECT_SIZE) \ / USED_LIST_LIN_STEP) + 1 ) + 1 /* free heap list count */ #define N_FREE_PAGE_LISTS (((FREE_LIST_UPPER_THRESHOLD \ - FREE_LIST_LOWER_THRESHOLD) \ / FREE_LIST_LIN_STEP) \ + FREE_LIST_LOWER_THRESHOLD) /* Maximum number of separately added heap sections. */ #if BITS_PER_EMACS_INT > 32 # define MAX_HEAP_SECTS 2048 #else # define MAX_HEAP_SECTS 768 #endif /* Heap growth constants. Heap increases by any number between the boundaries (unit is PAGE_SIZE). */ #define MIN_HEAP_INCREASE 256 #define MAX_HEAP_INCREASE 256 /* not used */ /* Every heap growth is calculated like this: needed_pages + ( HEAP_SIZE / ( PAGE_SIZE * HEAP_GROWTH_DIVISOR )). So the growth of the heap is influenced by the current size of the heap, but kept between MIN_HEAP_INCREASE and MAX_HEAP_INCREASE boundaries. This reduces the number of heap sectors, the larger the heap grows the larger are the newly allocated chunks. */ #define HEAP_GROWTH_DIVISOR 3 /* Zero memory before putting on free lists. */ #define ZERO_MEM 1 #ifndef CHAR_BIT /* should be included by limits.h */ # define CHAR_BIT BITS_PER_CHAR #endif /*--- values depending on PAGE_SIZE ------------------------------------*/ /* initialized in init_mc_allocator () */ static EMACS_INT log_page_size; static EMACS_INT page_size_div_2; #undef PAGE_SIZE #define PAGE_SIZE SYS_PAGE_SIZE #define LOG_PAGE_SIZE log_page_size #define PAGE_SIZE_DIV_2 page_size_div_2 /* Constants for heap address to page header mapping. */ #define LOG_LEVEL2_SIZE 10 #define LEVEL2_SIZE (1 << LOG_LEVEL2_SIZE) #if BITS_PER_EMACS_INT > 32 # define USE_HASH_TABLE 1 # define LOG_LEVEL1_SIZE 11 #else # define LOG_LEVEL1_SIZE \ (BITS_PER_EMACS_INT - LOG_LEVEL2_SIZE - LOG_PAGE_SIZE) #endif #define LEVEL1_SIZE (1 << LOG_LEVEL1_SIZE) #ifdef USE_HASH_TABLE # define HASH(hi) ((hi) & (LEVEL1_SIZE - 1)) # define L1_INDEX(p) HASH ((EMACS_INT) p >> (LOG_LEVEL2_SIZE + LOG_PAGE_SIZE)) #else # define L1_INDEX(p) ((EMACS_INT) p >> (LOG_LEVEL2_SIZE + LOG_PAGE_SIZE)) #endif #define L2_INDEX(p) (((EMACS_INT) p >> LOG_PAGE_SIZE) & (LEVEL2_SIZE - 1)) /*--- structs and typedefs ---------------------------------------------*/ /* Links the free lists (mark_bit_free_list and cell free list). */ typedef struct free_link { struct lrecord_header lheader; struct free_link *next_free; } free_link; /* Header for pages. They are held in a doubly linked list. */ typedef struct page_header { struct page_header *next; /* next page_header */ struct page_header *prev; /* previous page_header */ /* Field plh holds pointer to the according header of the page list.*/ struct page_list_header *plh; /* page list header */ free_link *free_list; /* links free cells on page */ EMACS_INT n_pages; /* number of pages */ EMACS_INT cell_size; /* size of cells on page */ EMACS_INT cells_on_page; /* total number of cells on page */ EMACS_INT cells_used; /* number of used cells on page */ /* If the number of objects on page is bigger than BITS_PER_EMACS_INT, the mark bits are put in an extra memory area. Then the field mark_bits holds the pointer to this area. Is the number of objects smaller than BITS_PER_EMACS_INT, the mark bits are held in the mark_bit EMACS_INT directly, without an additional indirection. */ unsigned int black_bit:1; /* objects on page are black */ unsigned int dirty_bit:1; /* page is dirty */ unsigned int protection_bit:1; /* page is write protected */ unsigned int array_bit:1; /* page holds arrays */ Rawbyte *mark_bits; /* pointer to mark bits */ void *heap_space; /* pointer to heap, where objects are stored */ } page_header; /* Different list types. */ enum list_type_enum { USED_LIST, FREE_LIST }; /* Header for page lists. Field list_type holds the type of the list. */ typedef struct page_list_header { enum list_type_enum list_type; /* the type of the list */ /* Size holds the size of one cell (in bytes) in a used heap list, or the size of the heap sector (in number of pages). */ size_t size; /* size of one cell / heap sector */ page_header *first; /* first of page_header list */ page_header *last; /* last of page_header list */ /* If the number of objects on page is bigger than BITS_PER_EMACS_INT, the mark bits are put in an extra memory area, which is linked in this free list, if not used. Is the number of objects smaller than BITS_PER_EMACS_INT, the mark bits are hold in the mark bit EMACS_INT directly, without an additional indirection. */ free_link *mark_bit_free_list; #ifdef MEMORY_USAGE_STATS EMACS_INT page_count; /* number if pages in list */ EMACS_INT used_cells; /* number of objects in list */ EMACS_INT used_space; /* used space */ EMACS_INT total_cells; /* number of available cells */ EMACS_INT total_space; /* available space */ #endif } page_list_header; /* The heap sectors are stored with their real start pointer and their real size. Not aligned to PAGE_SIZE. Needed for freeing heap sectors. */ typedef struct heap_sect { void *real_start; /* real start pointer (NOT aligned) */ size_t real_size; /* NOT multiple of PAGE_SIZE */ void *start; /* aligned start pointer */ EMACS_INT n_pages; /* multiple of PAGE_SIZE */ } heap_sect; /* 2nd tree level for mapping of heap addresses to page headers. */ typedef struct level_2_lookup_tree { page_header *index[LEVEL2_SIZE]; /* link to page header */ EMACS_INT key; /* high order address bits */ #ifdef USE_HASH_TABLE struct level_2_lookup_tree *hash_link; /* hash chain link */ #endif } level_2_lookup_tree; /*--- global variable definitions --------------------------------------*/ /* All global allocator variables are kept in this struct. */ typedef struct mc_allocator_globals_type { /* heap size */ EMACS_INT heap_size; /* list of all separatly allocated chunks of heap */ heap_sect heap_sections[MAX_HEAP_SECTS]; EMACS_INT n_heap_sections; /* Holds all allocated pages, each object size class in its separate list, to guarantee fast allocation on partially filled pages. */ page_list_header *used_heap_pages; /* Holds all free pages in the heap. N multiples of PAGE_SIZE are kept on the Nth free list. Contiguos pages are coalesced. */ page_list_header free_heap_pages[N_FREE_PAGE_LISTS]; /* ptr lookup table */ level_2_lookup_tree **ptr_lookup_table; #ifndef BLOCKTYPE_ALLOC_PAGE_HEADER /* page header free list */ free_link *page_header_free_list; #endif /* not BLOCKTYPE_ALLOC_PAGE_HEADER */ #ifdef MEMORY_USAGE_STATS EMACS_INT malloced_bytes; #endif } mc_allocator_globals_type; mc_allocator_globals_type mc_allocator_globals; /*--- macro accessors --------------------------------------------------*/ #define USED_HEAP_PAGES(i) \ ((page_list_header*) &mc_allocator_globals.used_heap_pages[i]) #define FREE_HEAP_PAGES(i) \ ((page_list_header*) &mc_allocator_globals.free_heap_pages[i]) #define PLH(plh) plh # define PLH_LIST_TYPE(plh) PLH (plh)->list_type # define PLH_SIZE(plh) PLH (plh)->size # define PLH_FIRST(plh) PLH (plh)->first # define PLH_LAST(plh) PLH (plh)->last # define PLH_MARK_BIT_FREE_LIST(plh) PLH (plh)->mark_bit_free_list #ifdef MEMORY_USAGE_STATS # define PLH_PAGE_COUNT(plh) PLH (plh)->page_count # define PLH_USED_CELLS(plh) PLH (plh)->used_cells # define PLH_USED_SPACE(plh) PLH (plh)->used_space # define PLH_TOTAL_CELLS(plh) PLH (plh)->total_cells # define PLH_TOTAL_SPACE(plh) PLH (plh)->total_space #endif #define PH(ph) ph # define PH_NEXT(ph) PH (ph)->next # define PH_PREV(ph) PH (ph)->prev # define PH_PLH(ph) PH (ph)->plh # define PH_FREE_LIST(ph) PH (ph)->free_list # define PH_N_PAGES(ph) PH (ph)->n_pages # define PH_CELL_SIZE(ph) PH (ph)->cell_size # define PH_CELLS_ON_PAGE(ph) PH (ph)->cells_on_page # define PH_CELLS_USED(ph) PH (ph)->cells_used # define PH_BLACK_BIT(ph) PH (ph)->black_bit # define PH_DIRTY_BIT(ph) PH (ph)->dirty_bit # define PH_PROTECTION_BIT(ph) PH (ph)->protection_bit # define PH_ARRAY_BIT(ph) PH (ph)->array_bit # define PH_MARK_BITS(ph) PH (ph)->mark_bits # define PH_HEAP_SPACE(ph) PH (ph)->heap_space #define PH_LIST_TYPE(ph) PLH_LIST_TYPE (PH_PLH (ph)) #define PH_MARK_BIT_FREE_LIST(ph) PLH_MARK_BIT_FREE_LIST (PH_PLH (ph)) #define HEAP_SIZE mc_allocator_globals.heap_size #ifdef MEMORY_USAGE_STATS # define MC_MALLOCED_BYTES mc_allocator_globals.malloced_bytes #endif #define HEAP_SECTION(index) mc_allocator_globals.heap_sections[index] #define N_HEAP_SECTIONS mc_allocator_globals.n_heap_sections #ifndef BLOCKTYPE_ALLOC_PAGE_HEADER #define PAGE_HEADER_FREE_LIST mc_allocator_globals.page_header_free_list #endif /* not BLOCKTYPE_ALLOC_PAGE_HEADER */ #define NEXT_FREE(free_list) ((free_link*) free_list)->next_free #define FREE_LIST(free_list) (free_link*) (free_list) #define PTR_LOOKUP_TABLE(i) mc_allocator_globals.ptr_lookup_table[i] #define LEVEL2(l2, i) l2->index[i] # define LEVEL2_KEY(l2) l2->key #ifdef USE_HASH_TABLE # define LEVEL2_HASH_LINK(l2) l2->hash_link #endif #if ZERO_MEM # define ZERO_HEAP_SPACE(ph) \ memset (PH_HEAP_SPACE (ph), '\0', PH_N_PAGES (ph) * PAGE_SIZE) # define ZERO_PAGE_HEADER(ph) memset (ph, '\0', sizeof (page_header)) #endif #define div_PAGE_SIZE(x) (x >> LOG_PAGE_SIZE) #define mult_PAGE_SIZE(x) (x << LOG_PAGE_SIZE) #define BYTES_TO_PAGES(bytes) (div_PAGE_SIZE ((bytes + (PAGE_SIZE - 1)))) #define PAGE_SIZE_ALIGNMENT(address) \ (void *) ((((EMACS_INT) (address)) + PAGE_SIZE) & ~(PAGE_SIZE - 1)) #define PH_ON_FREE_LIST_P(ph) \ (ph && PH_PLH (ph) && (PLH_LIST_TYPE (PH_PLH (ph)) == FREE_LIST)) #define PH_ON_USED_LIST_P(ph) \ (ph && PH_PLH (ph) && (PLH_LIST_TYPE (PH_PLH (ph)) == USED_LIST)) /* Number of mark bits: minimum 1, maximum 8. */ #define N_MARK_BITS 2 /************************************************************************/ /* MC Allocator */ /************************************************************************/ /* Set to 1 if memory becomes short. */ EMACS_INT memory_shortage; /*--- misc functions ---------------------------------------------------*/ /* moved here from alloc.c */ #ifdef ERROR_CHECK_GC static void deadbeef_memory (void *ptr, Bytecount size) { UINT_32_BIT *ptr4 = (UINT_32_BIT *) ptr; Bytecount beefs = size >> 2; /* In practice, size will always be a multiple of four. */ while (beefs--) (*ptr4++) = 0xDEADBEEF; /* -559038737 base 10 */ } #endif /* ERROR_CHECK_GC */ /* Visits all pages (page_headers) hooked into the used heap pages list and executes f with the current page header as argument. Needed for sweep. Returns number of processed pages. */ static EMACS_INT visit_all_used_page_headers (EMACS_INT (*f) (page_header *ph)) { EMACS_INT number_of_pages_processed = 0; EMACS_INT i; for (i = 0; i < N_USED_PAGE_LISTS; i++) if (PLH_FIRST (USED_HEAP_PAGES (i))) { page_header *ph = PLH_FIRST (USED_HEAP_PAGES (i)); while (PH_NEXT (ph)) { page_header *next = PH_NEXT (ph); /* in case f removes the page */ number_of_pages_processed += f (ph); ph = next; } number_of_pages_processed += f (ph); } return number_of_pages_processed; } /*--- mapping of heap addresses to page headers and mark bits ----------*/ /* Sets a heap pointer and page header pair into the lookup table. */ static void set_lookup_table (void *ptr, page_header *ph) { EMACS_INT l1_index = L1_INDEX (ptr); level_2_lookup_tree *l2 = PTR_LOOKUP_TABLE (l1_index); #ifdef USE_HASH_TABLE while ((l2) && (LEVEL2_KEY (l2) != l1_index)) l2 = LEVEL2_HASH_LINK (l2); #endif if (!l2) { l2 = (level_2_lookup_tree*) xmalloc_and_zero (sizeof (level_2_lookup_tree)); #ifdef MEMORY_USAGE_STATS MC_MALLOCED_BYTES += malloced_storage_size (0, sizeof (level_2_lookup_tree), 0); #endif memset (l2, '\0', sizeof (level_2_lookup_tree)); #ifdef USE_HASH_TABLE LEVEL2_HASH_LINK (l2) = PTR_LOOKUP_TABLE (l1_index); #endif PTR_LOOKUP_TABLE (l1_index) = l2; LEVEL2_KEY (l2) = l1_index; } LEVEL2 (l2, L2_INDEX (ptr)) = ph; } #ifdef UNSET_LOOKUP_TABLE /* Set the lookup table to 0 for given heap address. */ static void unset_lookup_table (void *ptr) { EMACS_INT l1_index = L1_INDEX (ptr); level_2_lookup_tree *l2 = PTR_LOOKUP_TABLE (l1_index); #ifdef USE_HASH_TABLE while ((l2) && (LEVEL2_KEY (l2) != l1_index)) l2 = LEVEL2_HASH_LINK (l2); #endif if (l2) { LEVEL2 (l2, L2_INDEX (ptr)) = 0; } } #endif /* Returns the page header of a given heap address, or 0 if not in table. For internal use, no error checking. */ static page_header * get_page_header_internal (void *ptr) { EMACS_INT l1_index = L1_INDEX (ptr); level_2_lookup_tree *l2 = PTR_LOOKUP_TABLE (l1_index); #ifdef USE_HASH_TABLE while ((l2) && (LEVEL2_KEY (l2) != l1_index)) l2 = LEVEL2_HASH_LINK (l2); #endif if (!l2) return 0; return LEVEL2 (l2, L2_INDEX (ptr)); } /* Returns the page header of a given heap address, or 0 if not in table. */ static page_header * get_page_header (void *ptr) { EMACS_INT l1_index = L1_INDEX (ptr); level_2_lookup_tree *l2 = PTR_LOOKUP_TABLE (l1_index); assert (l2); #ifdef USE_HASH_TABLE while ((l2) && (LEVEL2_KEY (l2) != l1_index)) l2 = LEVEL2_HASH_LINK (l2); #endif assert (LEVEL2 (l2, L2_INDEX (ptr))); return LEVEL2 (l2, L2_INDEX (ptr)); } /* Returns the mark bit index of a given heap address. */ static EMACS_INT get_mark_bit_index (void *ptr, page_header *ph) { EMACS_INT cell_size = PH_CELL_SIZE (ph); if (cell_size) return (((EMACS_INT) ptr - (EMACS_INT)(PH_HEAP_SPACE (ph))) / cell_size) * N_MARK_BITS; else /* only one object on page */ return 0; } /* Adds addresses of pages to lookup table. */ static void add_pages_to_lookup_table (page_header *ph, EMACS_INT n_pages) { Rawbyte *p = (Rawbyte *) PH_HEAP_SPACE (ph); EMACS_INT end_of_section = (EMACS_INT) p + (PAGE_SIZE * n_pages); for (p = (Rawbyte *) PH_HEAP_SPACE (ph); (EMACS_INT) p < end_of_section; p += PAGE_SIZE) set_lookup_table (p, ph); } /* Initializes lookup table. */ static void init_lookup_table (void) { EMACS_INT i; for (i = 0; i < LEVEL1_SIZE; i++) PTR_LOOKUP_TABLE (i) = 0; } /*--- mark bits --------------------------------------------------------*/ /*--- bit operations --- */ /* Allocates a bit array of length bits. */ static Rawbyte * alloc_bit_array(size_t bits) { Rawbyte *bit_array; #ifdef USE_MARK_BITS_FREE_LIST size_t size = ((bits + CHAR_BIT - 1) / CHAR_BIT) * sizeof (Rawbyte); #else /* not USE_MARK_BITS_FREE_LIST */ size_t size = ALIGN_FOR_TYPE (((bits + CHAR_BIT - 1) / CHAR_BIT) * sizeof (Rawbyte), Rawbyte *); #endif /* not USE_MARK_BITS_FREE_LIST */ if (size < sizeof (free_link)) size = sizeof (free_link); #ifdef MEMORY_USAGE_STATS MC_MALLOCED_BYTES += malloced_storage_size (0, size, 0); #endif bit_array = (Rawbyte *) xmalloc_and_zero (size); return bit_array; } /* Returns the bit value at pos. */ static EMACS_INT get_bit (Rawbyte *bit_array, EMACS_INT pos) { #if N_MARK_BITS > 1 EMACS_INT result = 0; EMACS_INT i; #endif bit_array += pos / CHAR_BIT; #if N_MARK_BITS > 1 for (i = 0; i < N_MARK_BITS; i++) result |= ((*bit_array & (1 << ((pos + i) % CHAR_BIT))) != 0) << i; return result; #else return (*bit_array & (1 << (pos % CHAR_BIT))) != 0; #endif } /* Bit_Arrays bit at pos to val. */ static void set_bit (Rawbyte *bit_array, EMACS_INT pos, EMACS_INT val) { #if N_MARK_BITS > 1 EMACS_INT i; #endif bit_array += pos / CHAR_BIT; #if N_MARK_BITS > 1 for (i = 0; i < N_MARK_BITS; i++) if ((val >> i) & 1) *bit_array |= 1 << ((pos + i) % CHAR_BIT); else *bit_array &= ~(1 << ((pos + i) % CHAR_BIT)); #else if (val) *bit_array |= 1 << (pos % CHAR_BIT); else *bit_array &= ~(1 << (pos % CHAR_BIT)); #endif } /*--- mark bit functions ---*/ #define USE_PNTR_MARK_BITS(ph) \ ((PH_CELLS_ON_PAGE (ph) * N_MARK_BITS) > BITS_PER_EMACS_INT) #define USE_WORD_MARK_BITS(ph) \ ((PH_CELLS_ON_PAGE (ph) * N_MARK_BITS) <= BITS_PER_EMACS_INT) #define GET_BIT_WORD(b, p) get_bit ((Rawbyte *) &b, p) #define GET_BIT_PNTR(b, p) get_bit (b, p) #define SET_BIT_WORD(b, p, v) set_bit ((Rawbyte *) &b, p, v) #define SET_BIT_PNTR(b, p, v) set_bit (b, p, v) #define ZERO_MARK_BITS_WORD(ph) PH_MARK_BITS (ph) = 0 #define ZERO_MARK_BITS_PNTR(ph) \ do { \ memset (PH_MARK_BITS (ph), '\0', \ ((PH_CELLS_ON_PAGE (ph) * N_MARK_BITS) \ + CHAR_BIT - 1) / CHAR_BIT * sizeof (Rawbyte)); \ } while (0) #define GET_BIT(bit, ph, p) \ do { \ if (USE_PNTR_MARK_BITS (ph)) \ bit = GET_BIT_PNTR (PH_MARK_BITS (ph), p); \ else \ bit = GET_BIT_WORD (PH_MARK_BITS (ph), p); \ } while (0) #define SET_BIT(ph, p, v) \ do { \ if (USE_PNTR_MARK_BITS (ph)) \ SET_BIT_PNTR (PH_MARK_BITS (ph), p, v); \ else \ SET_BIT_WORD (PH_MARK_BITS (ph), p, v); \ } while (0) #define ZERO_MARK_BITS(ph) \ do { \ if (USE_PNTR_MARK_BITS (ph)) \ ZERO_MARK_BITS_PNTR (ph); \ else \ ZERO_MARK_BITS_WORD (ph); \ } while (0) /* Allocates mark-bit space either from a free list or from the OS for the given page header. */ static Rawbyte * alloc_mark_bits (page_header *ph) { Rawbyte *result; #ifdef USE_MARK_BITS_FREE_LIST if (PH_MARK_BIT_FREE_LIST (ph) == 0) result = (Rawbyte *) alloc_bit_array (PH_CELLS_ON_PAGE (ph) * N_MARK_BITS); else { result = (Rawbyte *) PH_MARK_BIT_FREE_LIST (ph); PH_MARK_BIT_FREE_LIST (ph) = NEXT_FREE (result); } #else /* not USE_MARK_BITS_FREE_LIST */ result = (Rawbyte *) alloc_bit_array (PH_CELLS_ON_PAGE (ph) * N_MARK_BITS); #endif /* not USE_MARK_BITS_FREE_LIST */ return result; } /* Frees by maintaining a free list. */ static void free_mark_bits (page_header *ph) { #ifdef USE_MARK_BITS_FREE_LIST NEXT_FREE (PH_MARK_BITS (ph)) = PH_MARK_BIT_FREE_LIST (ph); PH_MARK_BIT_FREE_LIST (ph) = FREE_LIST (PH_MARK_BITS (ph)); #else /* not USE_MARK_BITS_FREE_LIST */ if (PH_MARK_BITS (ph)) free (PH_MARK_BITS (ph)); #endif /* not USE_MARK_BITS_FREE_LIST */ } /* Installs mark bits and zeros bits. */ static void install_mark_bits (page_header *ph) { if (USE_PNTR_MARK_BITS (ph)) { PH_MARK_BITS (ph) = alloc_mark_bits (ph); ZERO_MARK_BITS_PNTR (ph); } else ZERO_MARK_BITS_WORD (ph); } /* Cleans and frees the mark bits of the given page_header. */ static void remove_mark_bits (page_header *ph) { if (USE_PNTR_MARK_BITS (ph)) free_mark_bits (ph); } /* Zeros all mark bits in given header. */ static void zero_mark_bits (page_header *ph) { ZERO_MARK_BITS (ph); } /* Returns mark bit for given heap pointer. */ EMACS_INT get_mark_bit (void *ptr) { EMACS_INT bit = 0; page_header *ph = get_page_header (ptr); gc_checking_assert (ph && PH_ON_USED_LIST_P (ph)); if (ph) { GET_BIT (bit, ph, get_mark_bit_index (ptr, ph)); } return bit; } /* Sets mark bit for given heap pointer. */ void set_mark_bit (void *ptr, EMACS_INT value) { page_header *ph = get_page_header (ptr); assert (ph && PH_ON_USED_LIST_P (ph)); if (ph) { if (value == BLACK) if (!PH_BLACK_BIT (ph)) PH_BLACK_BIT (ph) = 1; SET_BIT (ph, get_mark_bit_index (ptr, ph), value); } } /*--- page header functions --------------------------------------------*/ #ifdef BLOCKTYPE_ALLOC_PAGE_HEADER #include "blocktype.h" struct page_header_blocktype { Blocktype_declare (page_header); } *the_page_header_blocktype; #endif /* BLOCKTYPE_ALLOC_PAGE_HEADER */ /* Allocates a page header either from a free list or from the OS. */ static page_header * alloc_page_header (void) { #ifdef BLOCKTYPE_ALLOC_PAGE_HEADER page_header *result; #ifdef MEMORY_USAGE_STATS MC_MALLOCED_BYTES += malloced_storage_size (0, sizeof (page_header), 0); #endif result = Blocktype_alloc (the_page_header_blocktype); ZERO_PAGE_HEADER (result); return result; #else /* not BLOCKTYPE_ALLOC_PAGE_HEADER */ page_header *result; if (PAGE_HEADER_FREE_LIST == 0) { result = (page_header *) xmalloc_and_zero ((EMACS_INT) (sizeof (page_header))); #ifdef MEMORY_USAGE_STATS MC_MALLOCED_BYTES += malloced_storage_size (0, sizeof (page_header), 0); #endif } else { result = (page_header*) PAGE_HEADER_FREE_LIST; PAGE_HEADER_FREE_LIST = NEXT_FREE (result); } return result; #endif /* not BLOCKTYPE_ALLOC_PAGE_HEADER */ } /* Frees given page header by maintaining a free list. */ static void free_page_header (page_header *ph) { #ifdef BLOCKTYPE_ALLOC_PAGE_HEADER Blocktype_free (the_page_header_blocktype, ph); #else /* not BLOCKTYPE_ALLOC_PAGE_HEADER */ #if ZERO_MEM ZERO_PAGE_HEADER (ph); #endif NEXT_FREE (ph) = PAGE_HEADER_FREE_LIST; PAGE_HEADER_FREE_LIST = FREE_LIST (ph); #endif /* not BLOCKTYPE_ALLOC_PAGE_HEADER */ } /* Adds given page header to given page list header's list. */ static void add_page_header_to_plh (page_header *ph, page_list_header *plh) { /* insert at the front of the list */ PH_PREV (ph) = 0; PH_NEXT (ph) = PLH_FIRST (plh); PH_PLH (ph) = plh; /* if list is not empty, set prev in the first element */ if (PLH_FIRST (plh)) PH_PREV (PLH_FIRST (plh)) = ph; /* one element in list is first and last at the same time */ PLH_FIRST (plh) = ph; if (!PLH_LAST (plh)) PLH_LAST (plh) = ph; #ifdef MEMORY_USAGE_STATS /* bump page count */ PLH_PAGE_COUNT (plh)++; #endif } /* Removes given page header from given page list header's list. */ static void remove_page_header_from_plh (page_header *ph, page_list_header *plh) { if (PLH_FIRST (plh) == ph) PLH_FIRST (plh) = PH_NEXT (ph); if (PLH_LAST (plh) == ph) PLH_LAST (plh) = PH_PREV (ph); if (PH_NEXT (ph)) PH_PREV (PH_NEXT (ph)) = PH_PREV (ph); if (PH_PREV (ph)) PH_NEXT (PH_PREV (ph)) = PH_NEXT (ph); #ifdef MEMORY_USAGE_STATS /* decrease page count */ PLH_PAGE_COUNT (plh)--; #endif } /* Moves a page header to the front of its the page header list. This is used during sweep: Pages with some alive objects are moved to the front. This makes allocation faster, all pages with free slots can be found at the front of the list. */ static void move_page_header_to_front (page_header *ph) { page_list_header *plh = PH_PLH (ph); /* is page already first? */ if (ph == PLH_FIRST (plh)) return; /* remove from list */ if (PLH_LAST (plh) == ph) PLH_LAST (plh) = PH_PREV (ph); if (PH_NEXT (ph)) PH_PREV (PH_NEXT (ph)) = PH_PREV (ph); if (PH_PREV (ph)) PH_NEXT (PH_PREV (ph)) = PH_NEXT (ph); /* insert at the front */ PH_NEXT (ph) = PLH_FIRST (plh); PH_PREV (ph) = 0; PH_PREV (PH_NEXT (ph)) = ph; PLH_FIRST (plh) = ph; } /*--- page list functions ----------------------------------------------*/ /* Returns the index of the used heap list according to given size. */ static int get_used_list_index (size_t size) { if (size <= USED_LIST_MIN_OBJECT_SIZE) { // printf ("size %d -> index %d\n", size, 0); return 0; } if (size <= (size_t) USED_LIST_UPPER_THRESHOLD) { // printf ("size %d -> index %d\n", size, // ((size - USED_LIST_MIN_OBJECT_SIZE - 1) // / USED_LIST_LIN_STEP) + 1); return ((size - USED_LIST_MIN_OBJECT_SIZE - 1) / USED_LIST_LIN_STEP) + 1; } // printf ("size %d -> index %d\n", size, N_USED_PAGE_LISTS - 1); return N_USED_PAGE_LISTS - 1; } /* Returns the size of the used heap list according to given index. */ static size_t get_used_list_size_value (int used_index) { if (used_index < N_USED_PAGE_LISTS - 1) return (used_index * USED_LIST_LIN_STEP) + USED_LIST_MIN_OBJECT_SIZE; return 0; } /* Returns the index of the free heap list according to given size. */ static EMACS_INT get_free_list_index (EMACS_INT n_pages) { if (n_pages == 0) return 0; if (n_pages <= FREE_LIST_LOWER_THRESHOLD) return n_pages - 1; if (n_pages >= FREE_LIST_UPPER_THRESHOLD - 1) return N_FREE_PAGE_LISTS - 1; return ((n_pages - FREE_LIST_LOWER_THRESHOLD - 1) / FREE_LIST_LIN_STEP) + FREE_LIST_LOWER_THRESHOLD; } /* Returns the size in number of pages of the given free list at index. */ static size_t get_free_list_size_value (EMACS_INT free_index) { if (free_index < FREE_LIST_LOWER_THRESHOLD) return free_index + 1; if (free_index >= N_FREE_PAGE_LISTS) return FREE_LIST_UPPER_THRESHOLD; return ((free_index + 1 - FREE_LIST_LOWER_THRESHOLD) * FREE_LIST_LIN_STEP) + FREE_LIST_LOWER_THRESHOLD; } #ifdef MEMORY_USAGE_STATS Bytecount mc_alloced_storage_size (Bytecount claimed_size, struct overhead_stats *stats) { size_t used_size = get_used_list_size_value (get_used_list_index (claimed_size)); if (used_size == 0) used_size = mult_PAGE_SIZE (BYTES_TO_PAGES (claimed_size)); if (stats) { stats->was_requested += claimed_size; stats->malloc_overhead += used_size - claimed_size; } return used_size; } #endif /* not MEMORY_USAGE_STATS */ /*--- free heap functions ----------------------------------------------*/ /* Frees a heap section, if the heap_section is completly free */ static EMACS_INT free_heap_section (page_header *ph) { EMACS_INT i; EMACS_INT removed = 0; for (i = 0; i < N_HEAP_SECTIONS; i++) if (!removed) { if ((PH_HEAP_SPACE (ph) == HEAP_SECTION(i).start) && (PH_N_PAGES (ph) == HEAP_SECTION(i).n_pages)) { xfree_1 (HEAP_SECTION(i).real_start); #ifdef MEMORY_USAGE_STATS MC_MALLOCED_BYTES -= malloced_storage_size (0, HEAP_SECTION(i).real_size, 0); #endif HEAP_SIZE -= PH_N_PAGES (ph) * PAGE_SIZE; removed = 1; } } else { HEAP_SECTION(i-1).real_start = HEAP_SECTION(i).real_start; HEAP_SECTION(i-1).real_size = HEAP_SECTION(i).real_size; HEAP_SECTION(i-1).start = HEAP_SECTION(i).start; HEAP_SECTION(i-1).n_pages = HEAP_SECTION(i).n_pages; } N_HEAP_SECTIONS = N_HEAP_SECTIONS - removed; return removed; } /* Removes page from free list. */ static void remove_page_from_free_list (page_header *ph) { remove_page_header_from_plh (ph, PH_PLH (ph)); PH_PLH (ph) = 0; } /* Adds page to according free list. */ static void add_page_to_free_list (page_header *ph) { PH_PLH (ph) = FREE_HEAP_PAGES (get_free_list_index (PH_N_PAGES (ph))); add_page_header_to_plh (ph, PH_PLH (ph)); } /* Merges two adjacent pages. */ static page_header * merge_pages (page_header *first_ph, page_header *second_ph) { /* merge */ PH_N_PAGES (first_ph) += PH_N_PAGES (second_ph); /* clean up left over page header */ free_page_header (second_ph); /* update lookup table */ add_pages_to_lookup_table (first_ph, PH_N_PAGES (first_ph)); return first_ph; } /* Checks if pages are adjacent, merges them, and adds merged page to free list */ static void merge_into_free_list (page_header *ph) { /* check if you can coalesce adjacent pages */ page_header *prev_ph = get_page_header_internal ((void*) (((EMACS_INT) PH_HEAP_SPACE (ph)) - PAGE_SIZE)); page_header *succ_ph = get_page_header_internal ((void*) (((EMACS_INT) PH_HEAP_SPACE (ph)) + (PH_N_PAGES (ph) * PAGE_SIZE))); if (PH_ON_FREE_LIST_P (prev_ph)) { remove_page_from_free_list (prev_ph); ph = merge_pages (prev_ph, ph); } if (PH_ON_FREE_LIST_P (succ_ph)) { remove_page_from_free_list (succ_ph); ph = merge_pages (ph, succ_ph); } /* try to free heap_section, if the section is complete */ if (!free_heap_section (ph)) /* else add merged page to free list */ add_page_to_free_list (ph); } /* Cuts given page header after n_pages, returns the first (cut) part, and puts the rest on the free list. */ static page_header * split_page (page_header *ph, EMACS_INT n_pages) { page_header *new_ph; EMACS_INT rem_pages = PH_N_PAGES (ph) - n_pages; /* remove the page from the free list if already hooked in */ if (PH_PLH (ph)) remove_page_from_free_list (ph); /* set new number of pages */ PH_N_PAGES (ph) = n_pages; /* add new page to lookup table */ add_pages_to_lookup_table (ph, n_pages); if (rem_pages) { /* build new page with reminder */ new_ph = alloc_page_header (); PH_N_PAGES (new_ph) = rem_pages; PH_HEAP_SPACE (new_ph) = (void*) ((EMACS_INT) (PH_HEAP_SPACE (ph)) + (n_pages * PAGE_SIZE)); /* add new page to lookup table */ add_pages_to_lookup_table (new_ph, rem_pages); /* hook the rest into free list */ add_page_to_free_list (new_ph); } return ph; } /* Expands the heap by given number of pages. */ static page_header * expand_heap (EMACS_INT needed_pages) { page_header *ph; EMACS_INT n_pages; size_t real_size; void *real_start; /* determine number of pages the heap should grow */ if (memory_shortage) n_pages = needed_pages; else n_pages = max (MIN_HEAP_INCREASE, needed_pages + (HEAP_SIZE / (PAGE_SIZE * HEAP_GROWTH_DIVISOR))); /* get the real values */ real_size = (n_pages * PAGE_SIZE) + PAGE_SIZE; real_start = xmalloc_and_zero (real_size); #ifdef MEMORY_USAGE_STATS MC_MALLOCED_BYTES += malloced_storage_size (0, real_size, 0); #endif /* maintain heap section count */ if (N_HEAP_SECTIONS >= MAX_HEAP_SECTS) { stderr_out ("Increase number of MAX_HEAP_SECTS"); ABORT (); } HEAP_SECTION(N_HEAP_SECTIONS).real_start = real_start; HEAP_SECTION(N_HEAP_SECTIONS).real_size = real_size; HEAP_SECTION(N_HEAP_SECTIONS).start = PAGE_SIZE_ALIGNMENT (real_start); HEAP_SECTION(N_HEAP_SECTIONS).n_pages = n_pages; N_HEAP_SECTIONS ++; /* get page header */ ph = alloc_page_header (); /* setup page header */ PH_N_PAGES (ph) = n_pages; PH_HEAP_SPACE (ph) = PAGE_SIZE_ALIGNMENT (real_start); assert (((EMACS_INT) (PH_HEAP_SPACE (ph)) % PAGE_SIZE) == 0); HEAP_SIZE += n_pages * PAGE_SIZE; /* this was also done by allocate_lisp_storage */ if (need_to_check_c_alloca) xemacs_c_alloca (0); /* return needed size, put rest on free list */ return split_page (ph, needed_pages); } /*--- used heap functions ----------------------------------------------*/ /* Installs initial free list. */ static void install_cell_free_list (page_header *ph, EMACS_INT elemcount) { Rawbyte *p; EMACS_INT i; EMACS_INT cell_size = PH_CELL_SIZE (ph); /* write initial free list if cell_size is < PAGE_SIZE */ p = (Rawbyte *) PH_HEAP_SPACE (ph); for (i = 0; i < PH_CELLS_ON_PAGE (ph) - 1; i++) { #ifdef ERROR_CHECK_GC assert (!LRECORD_FREE_P (p)); MARK_LRECORD_AS_FREE (p); #endif if (elemcount == 1) NEXT_FREE (p) = FREE_LIST (p + cell_size); set_lookup_table (p, ph); p += cell_size; } #ifdef ERROR_CHECK_GC assert (!LRECORD_FREE_P (p)); MARK_LRECORD_AS_FREE (p); #endif NEXT_FREE (p) = 0; set_lookup_table (p, ph); /* hook free list into header */ PH_FREE_LIST (ph) = FREE_LIST (PH_HEAP_SPACE (ph)); } /* Cleans the object space of the given page_header. */ static void remove_cell_free_list (page_header *ph) { #if ZERO_MEM ZERO_HEAP_SPACE (ph); #endif PH_FREE_LIST (ph) = 0; } /* Installs a new page and hooks it into given page_list_header. */ static page_header * install_page_in_used_list (page_header *ph, page_list_header *plh, size_t size, EMACS_INT elemcount) { /* add to list */ add_page_header_to_plh (ph, plh); /* determine cell size */ if (PLH_SIZE (plh)) PH_CELL_SIZE (ph) = PLH_SIZE (plh); else PH_CELL_SIZE (ph) = size; if (elemcount == 1) PH_CELLS_ON_PAGE (ph) = (PAGE_SIZE * PH_N_PAGES (ph)) / PH_CELL_SIZE (ph); else { PH_CELLS_ON_PAGE (ph) = elemcount; PH_ARRAY_BIT (ph) = 1; } /* init cell count */ PH_CELLS_USED (ph) = 0; /* install mark bits and initialize cell free list */ install_mark_bits (ph); install_cell_free_list (ph, elemcount); #ifdef MEMORY_USAGE_STATS PLH_TOTAL_CELLS (plh) += PH_CELLS_ON_PAGE (ph); PLH_TOTAL_SPACE (plh) += PAGE_SIZE * PH_N_PAGES (ph); #endif return ph; } /* Cleans and frees a page, identified by the given page_header. */ static void remove_page_from_used_list (page_header *ph) { page_list_header *plh = PH_PLH (ph); if (gc_in_progress && PH_PROTECTION_BIT (ph)) ABORT(); /* cleanup: remove memory protection, zero page_header bits. */ #ifdef MEMORY_USAGE_STATS PLH_TOTAL_CELLS (plh) -= PH_CELLS_ON_PAGE (ph); PLH_TOTAL_SPACE (plh) -= PAGE_SIZE * PH_N_PAGES (ph); #endif /* clean up mark bits and cell free list */ remove_cell_free_list (ph); if (PH_ON_USED_LIST_P (ph)) remove_mark_bits (ph); /* clean up page header */ PH_CELL_SIZE (ph) = 0; PH_CELLS_ON_PAGE (ph) = 0; PH_CELLS_USED (ph) = 0; /* remove from used list */ remove_page_header_from_plh (ph, plh); /* move to free list */ merge_into_free_list (ph); } /*--- allocation -------------------------------------------------------*/ /* Allocates from cell free list on already allocated pages. */ static page_header * allocate_cell (page_list_header *plh) { page_header *ph = PLH_FIRST (plh); if (ph) { if (PH_FREE_LIST (ph)) /* elements free on first page */ return ph; else if ((PH_NEXT (ph)) && (PH_FREE_LIST (PH_NEXT (ph)))) /* elements free on second page */ { page_header *temp = PH_NEXT (ph); /* move full page (first page) to end of list */ PH_NEXT (PLH_LAST (plh)) = ph; PH_PREV (ph) = PLH_LAST (plh); PLH_LAST (plh) = ph; PH_NEXT (ph) = 0; /* install second page as first page */ ph = temp; PH_PREV (ph) = 0; PLH_FIRST (plh) = ph; return ph; } } return 0; } /* Finds a page which has at least the needed number of pages. Algorithm: FIRST FIT. */ static page_header * find_free_page_first_fit (EMACS_INT needed_pages, page_header *ph) { while (ph) { if (PH_N_PAGES (ph) >= needed_pages) return ph; ph = PH_NEXT (ph); } return 0; } /* Allocates a page from the free list. */ static page_header * allocate_page_from_free_list (EMACS_INT needed_pages) { page_header *ph = 0; EMACS_INT i; for (i = get_free_list_index (needed_pages); i < N_FREE_PAGE_LISTS; i++) if ((ph = find_free_page_first_fit (needed_pages, PLH_FIRST (FREE_HEAP_PAGES (i)))) != 0) { if (PH_N_PAGES (ph) > needed_pages) return split_page (ph, needed_pages); else { remove_page_from_free_list (ph); return ph; } } return 0; } /* Allocates a new page, either from free list or by expanding the heap. */ static page_header * allocate_new_page (page_list_header *plh, size_t size, EMACS_INT elemcount) { EMACS_INT needed_pages = BYTES_TO_PAGES (size * elemcount); /* first check free list */ page_header *result = allocate_page_from_free_list (needed_pages); if (!result) /* expand heap */ result = expand_heap (needed_pages); install_page_in_used_list (result, plh, size, elemcount); return result; } /* Selects the correct size class, tries to allocate a cell of this size from the free list, if this fails, a new page is allocated. */ static void * mc_alloc_1 (size_t size, EMACS_INT elemcount) { page_list_header *plh = 0; page_header *ph = 0; void *result = 0; plh = USED_HEAP_PAGES (get_used_list_index (size)); if (size == 0) return 0; if ((elemcount == 1) && (size < (size_t) PAGE_SIZE_DIV_2)) /* first check any free cells */ ph = allocate_cell (plh); if (!ph) /* allocate a new page */ ph = allocate_new_page (plh, size, elemcount); /* return first element of free list and remove it from the list */ result = (void*) PH_FREE_LIST (ph); PH_FREE_LIST (ph) = NEXT_FREE (PH_FREE_LIST (ph)); memset (result, '\0', (size * elemcount)); MARK_LRECORD_AS_FREE (result); /* bump used cells counter */ PH_CELLS_USED (ph) += elemcount; #ifdef MEMORY_USAGE_STATS PLH_USED_CELLS (plh) += elemcount; PLH_USED_SPACE (plh) += size * elemcount; #endif return result; } /* Array allocation. */ void * mc_alloc_array (size_t size, EMACS_INT elemcount) { return mc_alloc_1 (size, elemcount); } void * mc_alloc (size_t size) { return mc_alloc_1 (size, 1); } /*--- sweep & free & finalize-------------------------------------------*/ /* Frees a heap pointer. */ static void remove_cell (void *ptr, page_header *ph) { #ifdef MEMORY_USAGE_STATS PLH_USED_CELLS (PH_PLH (ph))--; if (PH_ON_USED_LIST_P (ph)) PLH_USED_SPACE (PH_PLH (ph)) -= detagged_lisp_object_size ((const struct lrecord_header *) ptr); else PLH_USED_SPACE (PH_PLH (ph)) -= PH_CELL_SIZE (ph); #endif if (PH_ON_USED_LIST_P (ph)) { #ifdef ALLOC_TYPE_STATS dec_lrecord_stats (PH_CELL_SIZE (ph), (const struct lrecord_header *) ptr); #endif /* ALLOC_TYPE_STATS */ #ifdef ERROR_CHECK_GC assert (!LRECORD_FREE_P (ptr)); deadbeef_memory (ptr, PH_CELL_SIZE (ph)); MARK_LRECORD_AS_FREE (ptr); #endif } /* hooks cell into free list */ NEXT_FREE (ptr) = PH_FREE_LIST (ph); PH_FREE_LIST (ph) = FREE_LIST (ptr); /* decrease cells used */ PH_CELLS_USED (ph)--; } /* Mark free list marks all free list entries. */ static void mark_free_list (page_header *ph) { free_link *fl = PH_FREE_LIST (ph); while (fl) { SET_BIT (ph, get_mark_bit_index (fl, ph), BLACK); fl = NEXT_FREE (fl); } } /* Finalize a page for disksave. XEmacs calls this routine before it dumps the heap image. You have to tell mc-alloc how to call your object's finalizer for disksave. Therefore, you have to define the macro MC_ALLOC_CALL_FINALIZER_FOR_DISKSAVE(ptr). This macro should do nothing else then test if there is a finalizer and call it on the given argument, which is the heap address of the object. Returns number of processed pages. */ static EMACS_INT finalize_page_for_disksave (page_header *ph) { EMACS_INT heap_space = (EMACS_INT) PH_HEAP_SPACE (ph); EMACS_INT heap_space_step = PH_CELL_SIZE (ph); EMACS_INT mark_bit = 0; EMACS_INT mark_bit_max_index = PH_CELLS_ON_PAGE (ph); for (mark_bit = 0; mark_bit < mark_bit_max_index; mark_bit++) { EMACS_INT ptr = (heap_space + (heap_space_step * mark_bit)); MC_ALLOC_CALL_FINALIZER_FOR_DISKSAVE ((void *) ptr); } return 1; } /* Finalizes the heap for disksave. Returns number of processed pages. */ EMACS_INT mc_finalize_for_disksave (void) { return visit_all_used_page_headers (finalize_page_for_disksave); } /* Sweeps a page: all the non-marked cells are freed. If the page is empty in the end, it is removed. If some cells are free, it is moved to the front of its page header list. Full pages stay where they are. Returns number of processed pages.*/ static EMACS_INT sweep_page (page_header *ph) { Rawbyte *heap_space = (Rawbyte *) PH_HEAP_SPACE (ph); EMACS_INT heap_space_step = PH_CELL_SIZE (ph); EMACS_INT mark_bit = 0; EMACS_INT mark_bit_max_index = PH_CELLS_ON_PAGE (ph); unsigned int bit = 0; mark_free_list (ph); /* ARRAY_BIT_HACK */ if (PH_ARRAY_BIT (ph)) for (mark_bit = 0; mark_bit < mark_bit_max_index; mark_bit++) { GET_BIT (bit, ph, mark_bit * N_MARK_BITS); if (bit) { zero_mark_bits (ph); PH_BLACK_BIT (ph) = 0; return 1; } } for (mark_bit = 0; mark_bit < mark_bit_max_index; mark_bit++) { GET_BIT (bit, ph, mark_bit * N_MARK_BITS); if (bit == WHITE) { GC_STAT_FREED; remove_cell (heap_space + (heap_space_step * mark_bit), ph); } } zero_mark_bits (ph); PH_BLACK_BIT (ph) = 0; if (PH_CELLS_USED (ph) == 0) remove_page_from_used_list (ph); else if (PH_CELLS_USED (ph) < PH_CELLS_ON_PAGE (ph)) move_page_header_to_front (ph); return 1; } /* Sweeps the heap. Returns number of processed pages. */ EMACS_INT mc_sweep (void) { return visit_all_used_page_headers (sweep_page); } /* Frees the cell pointed to by ptr. */ void mc_free (void *UNUSED (ptr)) { /* Manual frees are not allowed with asynchronous finalization */ return; } /* Changes the size of the cell pointed to by ptr. Returns the new address of the new cell with new size. */ void * mc_realloc_1 (void *ptr, size_t size, int elemcount) { if (ptr) { if (size * elemcount) { void *result = mc_alloc_1 (size, elemcount); size_t from_size = PH_CELL_SIZE (get_page_header (ptr)); size_t cpy_size = size * elemcount; if (cpy_size > from_size) cpy_size = from_size; memcpy (result, ptr, cpy_size); #ifdef ALLOC_TYPE_STATS inc_lrecord_stats (size, (struct lrecord_header *) result); #endif /* not ALLOC_TYPE_STATS */ /* mc_free (ptr); not needed, will be collected next gc */ return result; } else { /* mc_free (ptr); not needed, will be collected next gc */ return 0; } } else return mc_alloc_1 (size, elemcount); } void * mc_realloc (void *ptr, size_t size) { return mc_realloc_1 (ptr, size, 1); } void * mc_realloc_array (void *ptr, size_t size, EMACS_INT elemcount) { return mc_realloc_1 (ptr, size, elemcount); } /*--- initialization ---------------------------------------------------*/ /* Call once at the very beginning. */ void init_mc_allocator (void) { EMACS_INT i; #ifdef MEMORY_USAGE_STATS MC_MALLOCED_BYTES = 0; #endif /* init of pagesize dependent values */ switch (SYS_PAGE_SIZE) { case 512: log_page_size = 9; break; case 1024: log_page_size = 10; break; case 2048: log_page_size = 11; break; case 4096: log_page_size = 12; break; case 8192: log_page_size = 13; break; case 16384: log_page_size = 14; break; case 32768: log_page_size = 15; break; case 65536: log_page_size = 16; break; default: fprintf(stderr, "##### SYS_PAGE_SIZE=%d not supported #####\n", SYS_PAGE_SIZE); ABORT (); } page_size_div_2 = (EMACS_INT) SYS_PAGE_SIZE >> 1; mc_allocator_globals.used_heap_pages = (page_list_header *) xmalloc_and_zero ((N_USED_PAGE_LISTS + 1) * sizeof (page_list_header)); #ifdef MEMORY_USAGE_STATS MC_MALLOCED_BYTES += (N_USED_PAGE_LISTS + 1) * sizeof (page_list_header); #endif mc_allocator_globals.ptr_lookup_table = (level_2_lookup_tree **) xmalloc_and_zero ((LEVEL1_SIZE + 1) * sizeof (level_2_lookup_tree *)); #ifdef MEMORY_USAGE_STATS MC_MALLOCED_BYTES += (LEVEL1_SIZE + 1) * sizeof (level_2_lookup_tree *); #endif #ifdef BLOCKTYPE_ALLOC_PAGE_HEADER the_page_header_blocktype = Blocktype_new (struct page_header_blocktype); #endif /* BLOCKTYPE_ALLOC_PAGE_HEADER */ for (i = 0; i < N_USED_PAGE_LISTS; i++) { page_list_header *plh = USED_HEAP_PAGES (i); PLH_LIST_TYPE (plh) = USED_LIST; PLH_SIZE (plh) = get_used_list_size_value (i); PLH_FIRST (plh) = 0; PLH_LAST (plh) = 0; PLH_MARK_BIT_FREE_LIST (plh) = 0; #ifdef MEMORY_USAGE_STATS PLH_PAGE_COUNT (plh) = 0; PLH_USED_CELLS (plh) = 0; PLH_USED_SPACE (plh) = 0; PLH_TOTAL_CELLS (plh) = 0; PLH_TOTAL_SPACE (plh) = 0; #endif } for (i = 0; i < N_FREE_PAGE_LISTS; i++) { page_list_header *plh = FREE_HEAP_PAGES (i); PLH_LIST_TYPE (plh) = FREE_LIST; PLH_SIZE (plh) = get_free_list_size_value (i); PLH_FIRST (plh) = 0; PLH_LAST (plh) = 0; PLH_MARK_BIT_FREE_LIST (plh) = 0; #ifdef MEMORY_USAGE_STATS PLH_PAGE_COUNT (plh) = 0; PLH_USED_CELLS (plh) = 0; PLH_USED_SPACE (plh) = 0; PLH_TOTAL_CELLS (plh) = 0; PLH_TOTAL_SPACE (plh) = 0; #endif } #ifndef BLOCKTYPE_ALLOC_PAGE_HEADER PAGE_HEADER_FREE_LIST = 0; #endif /* not BLOCKTYPE_ALLOC_PAGE_HEADER */ #ifdef MEMORY_USAGE_STATS MC_MALLOCED_BYTES += sizeof (mc_allocator_globals); #endif init_lookup_table (); } /*--- lisp function for statistics -------------------------------------*/ #ifdef MEMORY_USAGE_STATS DEFUN ("mc-alloc-memory-usage", Fmc_alloc_memory_usage, 0, 0, 0, /* Returns stats about the mc-alloc memory usage. See diagnose.el. */ ()) { Lisp_Object free_plhs = Qnil; Lisp_Object used_plhs = Qnil; Lisp_Object heap_sects = Qnil; EMACS_INT used_size = 0; EMACS_INT real_size = 0; EMACS_INT i; for (i = 0; i < N_FREE_PAGE_LISTS; i++) if (PLH_PAGE_COUNT (FREE_HEAP_PAGES(i)) > 0) free_plhs = acons (make_int (PLH_SIZE (FREE_HEAP_PAGES(i))), list1 (make_int (PLH_PAGE_COUNT (FREE_HEAP_PAGES(i)))), free_plhs); for (i = 0; i < N_USED_PAGE_LISTS; i++) if (PLH_PAGE_COUNT (USED_HEAP_PAGES(i)) > 0) used_plhs = acons (make_int (PLH_SIZE (USED_HEAP_PAGES(i))), list5 (make_int (PLH_PAGE_COUNT (USED_HEAP_PAGES(i))), make_int (PLH_USED_CELLS (USED_HEAP_PAGES(i))), make_int (PLH_USED_SPACE (USED_HEAP_PAGES(i))), make_int (PLH_TOTAL_CELLS (USED_HEAP_PAGES(i))), make_int (PLH_TOTAL_SPACE (USED_HEAP_PAGES(i)))), used_plhs); for (i = 0; i < N_HEAP_SECTIONS; i++) { used_size += HEAP_SECTION(i).n_pages * PAGE_SIZE; real_size += malloced_storage_size (0, HEAP_SECTION(i).real_size, 0); } heap_sects = list3 (make_int (N_HEAP_SECTIONS), make_int (used_size), make_int (real_size)); return Fcons (make_int (PAGE_SIZE), list5 (heap_sects, Fnreverse (used_plhs), Fnreverse (free_plhs), make_int (sizeof (mc_allocator_globals)), make_int (MC_MALLOCED_BYTES))); } #endif /* MEMORY_USAGE_STATS */ void syms_of_mc_alloc (void) { #ifdef MEMORY_USAGE_STATS DEFSUBR (Fmc_alloc_memory_usage); #endif /* MEMORY_USAGE_STATS */ } /*--- incremental garbage collector ----------------------------------*/ /* access dirty bit of page header */ void set_dirty_bit (page_header *ph, unsigned int value) { PH_DIRTY_BIT (ph) = value; } void set_dirty_bit_for_address (void *ptr, unsigned int value) { set_dirty_bit (get_page_header (ptr), value); } unsigned int get_dirty_bit (page_header *ph) { return PH_DIRTY_BIT (ph); } unsigned int get_dirty_bit_for_address (void *ptr) { return get_dirty_bit (get_page_header (ptr)); } /* access protection bit of page header */ void set_protection_bit (page_header *ph, unsigned int value) { PH_PROTECTION_BIT (ph) = value; } void set_protection_bit_for_address (void *ptr, unsigned int value) { set_protection_bit (get_page_header (ptr), value); } unsigned int get_protection_bit (page_header *ph) { return PH_PROTECTION_BIT (ph); } unsigned int get_protection_bit_for_address (void *ptr) { return get_protection_bit (get_page_header (ptr)); } /* Returns the start of the page of the object pointed to by ptr. */ void * get_page_start (void *ptr) { return PH_HEAP_SPACE (get_page_header (ptr)); } /* Make PAGE_SIZE globally available. */ EMACS_INT mc_get_page_size () { return PAGE_SIZE; } /* Is the fault at ptr on a protected page? */ EMACS_INT fault_on_protected_page (void *ptr) { page_header *ph = get_page_header_internal (ptr); return (ph && PH_HEAP_SPACE (ph) && (PH_HEAP_SPACE (ph) <= ptr) && ((void *) ((EMACS_INT) PH_HEAP_SPACE (ph) + PH_N_PAGES (ph) * PAGE_SIZE) > ptr) && (PH_PROTECTION_BIT (ph) == 1)); } /* Protect the heap page of given page header ph if black objects are on the page. Returns number of processed pages. */ static EMACS_INT protect_heap_page (page_header *ph) { if (PH_BLACK_BIT (ph)) { void *heap_space = PH_HEAP_SPACE (ph); EMACS_INT heap_space_size = PH_N_PAGES (ph) * PAGE_SIZE; vdb_protect ((void *) heap_space, heap_space_size); PH_PROTECTION_BIT (ph) = 1; return 1; } return 0; } /* Protect all heap pages with black objects. Returns number of processed pages.*/ EMACS_INT protect_heap_pages (void) { return visit_all_used_page_headers (protect_heap_page); } /* Remove protection (if there) of heap page of given page header ph. Returns number of processed pages. */ static EMACS_INT unprotect_heap_page (page_header *ph) { if (PH_PROTECTION_BIT (ph)) { void *heap_space = PH_HEAP_SPACE (ph); EMACS_INT heap_space_size = PH_N_PAGES (ph) * PAGE_SIZE; vdb_unprotect (heap_space, heap_space_size); PH_PROTECTION_BIT (ph) = 0; return 1; } return 0; } /* Remove protection for all heap pages which are protected. Returns number of processed pages. */ EMACS_INT unprotect_heap_pages (void) { return visit_all_used_page_headers (unprotect_heap_page); } /* Remove protection and mark page dirty. */ void unprotect_page_and_mark_dirty (void *ptr) { page_header *ph = get_page_header (ptr); unprotect_heap_page (ph); PH_DIRTY_BIT (ph) = 1; } /* Repush all objects on dirty pages onto the mark stack. */ int repush_all_objects_on_page (void *ptr) { int repushed_objects = 0; page_header *ph = get_page_header (ptr); Rawbyte *heap_space = (Rawbyte *) PH_HEAP_SPACE (ph); EMACS_INT heap_space_step = PH_CELL_SIZE (ph); EMACS_INT mark_bit = 0; EMACS_INT mark_bit_max_index = PH_CELLS_ON_PAGE (ph); unsigned int bit = 0; for (mark_bit = 0; mark_bit < mark_bit_max_index; mark_bit++) { GET_BIT (bit, ph, mark_bit * N_MARK_BITS); if (bit == BLACK) { repushed_objects++; gc_write_barrier (wrap_pointer_1 ((heap_space + (heap_space_step * mark_bit)))); } } PH_BLACK_BIT (ph) = 0; PH_DIRTY_BIT (ph) = 0; return repushed_objects; } /* Mark black if object is currently grey. This first checks, if the object is really allocated on the mc-heap. If it is, it can be marked black; if it is not, it cannot be marked. */ EMACS_INT maybe_mark_black (void *ptr) { page_header *ph = get_page_header_internal (ptr); unsigned int bit = 0; if (ph && PH_PLH (ph) && PH_ON_USED_LIST_P (ph)) { GET_BIT (bit, ph, get_mark_bit_index (ptr, ph)); if (bit == GREY) { if (!PH_BLACK_BIT (ph)) PH_BLACK_BIT (ph) = 1; SET_BIT (ph, get_mark_bit_index (ptr, ph), BLACK); } return 1; } return 0; } /* Only for debugging --- not used anywhere in the sources. */ EMACS_INT object_on_heap_p (void *ptr) { page_header *ph = get_page_header_internal (ptr); return (ph && PH_ON_USED_LIST_P (ph)); }