Mercurial > hg > xemacs-beta
view man/lispref/debugging.texi @ 5353:38e24b8be4ea
Improve the lexical scoping in #'block, #'return-from.
lisp/ChangeLog addition:
2011-02-07 Aidan Kehoe <kehoea@parhasard.net>
* bytecomp.el:
* bytecomp.el (byte-compile-initial-macro-environment):
Shadow `block', `return-from' here, we implement them differently
when byte-compiling.
* bytecomp.el (byte-compile-active-blocks): New.
* bytecomp.el (byte-compile-block-1): New.
* bytecomp.el (byte-compile-return-from-1): New.
* bytecomp.el (return-from-1): New.
* bytecomp.el (block-1): New.
These are two aliases that exist to have their own associated
byte-compile functions, which functions implement `block' and
`return-from'.
* cl-extra.el (cl-macroexpand-all):
Fix a bug here when macros in the environment have been compiled.
* cl-macs.el (block):
* cl-macs.el (return):
* cl-macs.el (return-from):
Be more careful about lexical scope in these macros.
* cl.el:
* cl.el ('cl-block-wrapper): Removed.
* cl.el ('cl-block-throw): Removed.
These aren't needed in code generated by this XEmacs. They
shouldn't be needed in code generated by XEmacs 21.4, but if it
turns out the packages do need them, we can put them back.
2011-01-30 Mike Sperber <mike@xemacs.org>
* font-lock.el (font-lock-fontify-pending-extents): Don't fail if
`font-lock-mode' is unset, which can happen in the middle of
`revert-buffer'.
2011-01-23 Aidan Kehoe <kehoea@parhasard.net>
* cl-macs.el (delete):
* cl-macs.el (delq):
* cl-macs.el (remove):
* cl-macs.el (remq):
Don't use the compiler macro if these functions were given the
wrong number of arguments, as happens in lisp-tests.el.
* cl-seq.el (remove, remq): Removed.
I added these to subr.el, and forgot to remove them from here.
2011-01-22 Aidan Kehoe <kehoea@parhasard.net>
* bytecomp.el (byte-compile-setq, byte-compile-set):
Remove kludge allowing keywords' values to be set, all the code
that does that is gone.
* cl-compat.el (elt-satisfies-test-p):
* faces.el (set-face-parent):
* faces.el (face-doc-string):
* gtk-font-menu.el:
* gtk-font-menu.el (gtk-reset-device-font-menus):
* msw-font-menu.el:
* msw-font-menu.el (mswindows-reset-device-font-menus):
* package-get.el (package-get-installedp):
* select.el (select-convert-from-image-data):
* sound.el:
* sound.el (load-sound-file):
* x-font-menu.el (x-reset-device-font-menus-core):
Don't quote keywords, they're self-quoting, and the
win from backward-compatibility is sufficiently small now that the
style problem overrides it.
2011-01-22 Aidan Kehoe <kehoea@parhasard.net>
* cl-macs.el (block, return-from): Require that NAME be a symbol
in these macros, as always documented in the #'block docstring and
as required by Common Lisp.
* descr-text.el (unidata-initialize-unihan-database):
Correct the use of non-symbols in #'block and #'return-from in
this function.
2011-01-15 Aidan Kehoe <kehoea@parhasard.net>
* cl-extra.el (concatenate): Accept more complicated TYPEs in this
function, handing the sequences over to #'coerce if we don't
understand them here.
* cl-macs.el (inline): Don't proclaim #'concatenate as inline, its
compiler macro is more useful than doing that.
2011-01-11 Aidan Kehoe <kehoea@parhasard.net>
* subr.el (delete, delq, remove, remq): Move #'remove, #'remq
here, they don't belong in cl-seq.el; move #'delete, #'delq here
from fns.c, implement them in terms of #'delete*, allowing support
for sequences generally.
* update-elc.el (do-autoload-commands): Use #'delete*, not #'delq
here, now the latter's no longer dumped.
* cl-macs.el (delete, delq): Add compiler macros transforming
#'delete and #'delq to #'delete* calls.
2011-01-10 Aidan Kehoe <kehoea@parhasard.net>
* dialog.el (make-dialog-box): Correct a misplaced parenthesis
here, thank you Mats Lidell in 87zkr9gqrh.fsf@mail.contactor.se !
2011-01-02 Aidan Kehoe <kehoea@parhasard.net>
* dialog.el (make-dialog-box):
* list-mode.el (display-completion-list):
These functions used to use cl-parsing-keywords; change them to
use defun* instead, fixing the build. (Not sure what led to me
not including this change in d1b17a33450b!)
2011-01-02 Aidan Kehoe <kehoea@parhasard.net>
* cl-macs.el (define-star-compiler-macros):
Make sure the form has ITEM and LIST specified before attempting
to change to calls with explicit tests; necessary for some tests
in lisp-tests.el to compile correctly.
(stable-union, stable-intersection): Add compiler macros for these
functions, in the same way we do for most of the other functions
in cl-seq.el.
2011-01-01 Aidan Kehoe <kehoea@parhasard.net>
* cl-macs.el (dolist, dotimes, do-symbols, macrolet)
(symbol-macrolet):
Define these macros with defmacro* instead of parsing the argument
list by hand, for the sake of style and readability; use backquote
where appropriate, instead of calling #'list and and friends, for
the same reason.
2010-12-30 Aidan Kehoe <kehoea@parhasard.net>
* x-misc.el (device-x-display):
Provide this function, documented in the Lispref for years, but
not existing previously. Thank you Julian Bradfield, thank you
Jeff Mincy.
2010-12-30 Aidan Kehoe <kehoea@parhasard.net>
* cl-seq.el:
Move the heavy lifting from this file to C. Dump the
cl-parsing-keywords macro, but don't use defun* for the functions
we define that do take keywords, dynamic scope lossage makes that
not practical.
* subr.el (sort, fillarray): Move these aliases here.
(map-plist): #'nsublis is now built-in, but at this point #'eql
isn't necessarily available as a test; use #'eq.
* obsolete.el (cl-delete-duplicates): Make this available for old
compiler macros and old code.
(memql): Document that this is equivalent to #'member*, and worse.
* cl.el (adjoin, subst): Removed. These are in C.
2010-12-30 Aidan Kehoe <kehoea@parhasard.net>
* simple.el (assoc-ignore-case): Remove a duplicate definition of
this function (it's already in subr.el).
* iso8859-1.el (char-width):
On non-Mule, make this function equivalent to that produced by
(constantly 1), but preserve its docstring.
* subr.el (subst-char-in-string): Define this in terms of
#'substitute, #'nsubstitute.
(string-width): Define this using #'reduce and #'char-width.
(char-width): Give this a simpler definition, it makes far more
sense to check for mule at load time and redefine, as we do in
iso8859-1.el.
(store-substring): Implement this in terms of #'replace, now
#'replace is cheap.
2010-12-30 Aidan Kehoe <kehoea@parhasard.net>
* update-elc.el (lisp-files-needed-for-byte-compilation)
(lisp-files-needing-early-byte-compilation):
cl-macs belongs in the former, not the latter, it is as
fundamental as bytecomp.el.
2010-12-30 Aidan Kehoe <kehoea@parhasard.net>
* cl.el:
Provde the Common Lisp program-error, type-error as error
symbols. This doesn't nearly go far enough for anyone using the
Common Lisp errors.
2010-12-29 Aidan Kehoe <kehoea@parhasard.net>
* cl-macs.el (delete-duplicates):
If the form has an incorrect number of arguments, don't attempt a
compiler macroexpansion.
2010-12-29 Aidan Kehoe <kehoea@parhasard.net>
* cl-macs.el (cl-safe-expr-p):
Forms that start with the symbol lambda are also safe.
2010-12-29 Aidan Kehoe <kehoea@parhasard.net>
* cl-macs.el (= < > <= >=):
For these functions' compiler macros, the optimisation is safe
even if the first and the last arguments have side effects, since
they're only used the once.
2010-12-29 Aidan Kehoe <kehoea@parhasard.net>
* cl-macs.el (inline-side-effect-free-compiler-macros):
Unroll a loop here at macro-expansion time, so these compiler
macros are compiled. Use #'eql instead of #'eq in a couple of
places for better style.
2010-12-29 Aidan Kehoe <kehoea@parhasard.net>
* cl-extra.el (notany, notevery): Avoid some dynamic scope
stupidity with local variable names in these functions, when they
weren't prefixed with cl-; go into some more detail in the doc
strings.
2010-12-29 Aidan Kehoe <kehoea@parhasard.net>
* byte-optimize.el (side-effect-free-fns): #'remove, #'remq are
free of side-effects.
(side-effect-and-error-free-fns):
Drop dot, dot-marker from the list.
2010-11-17 Aidan Kehoe <kehoea@parhasard.net>
* cl-extra.el (coerce):
In the argument list, name the first argument OBJECT, not X; the
former name was always used in the doc string and is clearer.
Handle vector type specifications which include the length of the
target sequence, error if there's a mismatch.
* cl-macs.el (cl-make-type-test): Handle type specifications
starting with the symbol 'eql.
2010-11-14 Aidan Kehoe <kehoea@parhasard.net>
* cl-macs.el (eql): Don't remove the byte-compile property of this
symbol. That was necessary to override a bug in bytecomp.el where
#'eql was confused with #'eq, which bug we no longer have.
If neither expression is constant, don't attempt to handle the
expression in this compiler macro, leave it to byte-compile-eql,
which produces better code anyway.
* bytecomp.el (eq): #'eql is not the function associated with the
byte-eq byte code.
(byte-compile-eql): Add an explicit compile method for this
function, for cases where the cl-macs compiler macro hasn't
reduced it to #'eq or #'equal.
2010-10-25 Aidan Kehoe <kehoea@parhasard.net>
Add compiler macros and compilation sanity-checking for various
functions that take keywords.
* byte-optimize.el (side-effect-free-fns): #'symbol-value is
side-effect free and not error free.
* bytecomp.el (byte-compile-normal-call): Check keyword argument
lists for sanity; store information about the positions where
keyword arguments start using the new byte-compile-keyword-start
property.
* cl-macs.el (cl-const-expr-val): Take a new optional argument,
cl-not-constant, defaulting to nil, in this function; return it if
the expression is not constant.
(cl-non-fixnum-number-p): Make this into a separate function, we
want to pass it to #'every.
(eql): Use it.
(define-star-compiler-macros): Use the same code to generate the
member*, assoc* and rassoc* compiler macros; special-case some
code in #'add-to-list in subr.el.
(remove, remq): Add compiler macros for these two functions, in
preparation for #'remove being in C.
(define-foo-if-compiler-macros): Transform (remove-if-not ...) calls to
(remove ... :if-not) at compile time, which will be a real win
once the latter is in C.
(define-substitute-if-compiler-macros)
(define-subst-if-compiler-macros): Similarly for these functions.
(delete-duplicates): Change this compiler macro to use
#'plists-equal; if we don't have information about the type of
SEQUENCE at compile time, don't bother attempting to inline the
call, the function will be in C soon enough.
(equalp): Remove an old commented-out compiler macro for this, if
we want to see it it's in version control.
(subst-char-in-string): Transform this to a call to nsubstitute or
nsubstitute, if that is appropriate.
* cl.el (ldiff): Don't call setf here, this makes for a load-time
dependency problem in cl-macs.el
2010-06-14 Stephen J. Turnbull <stephen@xemacs.org>
* term/vt100.el:
Refer to XEmacs, not GNU Emacs, in permissions.
* term/bg-mouse.el:
* term/sup-mouse.el:
Put copyright notice in canonical "Copyright DATE AUTHOR" form.
Refer to XEmacs, not GNU Emacs, in permissions.
* site-load.el:
Add permission boilerplate.
* mule/canna-leim.el:
* alist.el:
Refer to XEmacs, not APEL/this program, in permissions.
* mule/canna-leim.el:
Remove my copyright, I've assigned it to the FSF.
2010-06-14 Stephen J. Turnbull <stephen@xemacs.org>
* gtk.el:
* gtk-widget-accessors.el:
* gtk-package.el:
* gtk-marshal.el:
* gtk-compose.el:
* gnome.el:
Add copyright notice based on internal evidence.
2010-06-14 Stephen J. Turnbull <stephen@xemacs.org>
* easymenu.el: Add reference to COPYING to permission notice.
* gutter.el:
* gutter-items.el:
* menubar-items.el:
Fix typo "Xmacs" in permissions notice.
2010-06-14 Stephen J. Turnbull <stephen@xemacs.org>
* auto-save.el:
* font.el:
* fontconfig.el:
* mule/kinsoku.el:
Add "part of XEmacs" text to permission notice.
2010-10-14 Aidan Kehoe <kehoea@parhasard.net>
* byte-optimize.el (side-effect-free-fns):
* cl-macs.el (remf, getf):
* cl-extra.el (tailp, cl-set-getf, cl-do-remf):
* cl.el (ldiff, endp):
Tighten up Common Lisp compatibility for #'ldiff, #'endp, #'tailp;
add circularity checking for the first two.
#'cl-set-getf and #'cl-do-remf were Lisp implementations of
#'plist-put and #'plist-remprop; change the names to aliases,
changes the macros that use them to using #'plist-put and
#'plist-remprop directly.
2010-10-12 Aidan Kehoe <kehoea@parhasard.net>
* abbrev.el (fundamental-mode-abbrev-table, global-abbrev-table):
Create both these abbrev tables using the usual
#'define-abbrev-table calls, rather than attempting to
special-case them.
* cl-extra.el: Force cl-macs to be loaded here, if cl-extra.el is
being loaded interpreted. Previously other, later files would
redundantly call (load "cl-macs") when interpreted, it's more
reasonable to do it here, once.
* cmdloop.el (read-quoted-char-radix): Use defcustom here, we
don't have any dump-order dependencies that would prevent that.
* custom.el (eval-when-compile): Don't load cl-macs when
interpreted or when byte-compiling, rely on cl-extra.el in the
former case and the appropriate entry in bytecomp-load-hook in the
latter. Get rid of custom-declare-variable-list, we have no
dump-time dependencies that would require it.
* faces.el (eval-when-compile): Don't load cl-macs when
interpreted or when byte-compiling.
* packages.el: Remove some inaccurate comments.
* post-gc.el (cleanup-simple-finalizers): Use #'delete-if-not
here, now the order of preloaded-file-list has been changed to
make it available.
* subr.el (custom-declare-variable-list): Remove. No need for it.
Also remove a stub define-abbrev-table from this file, given the
current order of preloaded-file-list there's no need for it.
2010-10-10 Aidan Kehoe <kehoea@parhasard.net>
* bytecomp.el (byte-compile-constp) Forms quoted with FUNCTION are
also constant.
(byte-compile-initial-macro-environment): In #'the, if FORM is
constant and does not match TYPE, warn at byte-compile time.
2010-10-10 Aidan Kehoe <kehoea@parhasard.net>
* backquote.el (bq-vector-contents, bq-list*): Remove; the former
is equivalent to (append VECTOR nil), the latter to (list* ...).
(bq-process-2): Use (append VECTOR nil) instead of using
#'bq-vector-contents to convert to a list.
(bq-process-1): Now we use list* instead of bq-list
* subr.el (list*): Moved from cl.el, since it is now required to
be available the first time a backquoted form is encountered.
* cl.el (list*): Move to subr.el.
2010-09-16 Aidan Kehoe <kehoea@parhasard.net>
* test-harness.el (Check-Message):
Add an omitted comma here, thank you the buildbot.
2010-09-16 Aidan Kehoe <kehoea@parhasard.net>
* hash-table.el (hash-table-key-list, hash-table-value-list)
(hash-table-key-value-alist, hash-table-key-value-plist):
Remove some useless #'nreverse calls in these files; our hash
tables have no order, it's not helpful to pretend they do.
* behavior.el (read-behavior):
Do the same in this file, in some code evidently copied from
hash-table.el.
2010-09-16 Aidan Kehoe <kehoea@parhasard.net>
* info.el (Info-insert-dir):
* format.el (format-deannotate-region):
* files.el (cd, save-buffers-kill-emacs):
Use #'some, #'every and related functions for applying boolean
operations to lists, instead of rolling our own ones that cons and
don't short-circuit.
2010-09-16 Aidan Kehoe <kehoea@parhasard.net>
* bytecomp.el (byte-compile-initial-macro-environment):
* cl-macs.el (the):
Rephrase the docstring, make its implementation when compiling
files a little nicer.
2010-09-16 Aidan Kehoe <kehoea@parhasard.net>
* descr-text.el (unidata-initialize-unicodedata-database)
(unidata-initialize-unihan-database, describe-char-unicode-data)
(describe-char-unicode-data):
Wrap calls to the database functions with (with-fboundp ...),
avoiding byte compile warnings on builds without support for the
database functions.
(describe-char): (reduce #'max ...), not (apply #'max ...), no
need to cons needlessly.
(describe-char): Remove a redundant lambda wrapping
#'extent-properties.
(describe-char-unicode-data): Call #'nsubst when replacing "" with
nil in the result of #'split-string, instead of consing inside
mapcar.
2010-09-16 Aidan Kehoe <kehoea@parhasard.net>
* x-faces.el (x-available-font-sizes):
* specifier.el (let-specifier):
* package-ui.el (pui-add-required-packages):
* msw-faces.el (mswindows-available-font-sizes):
* modeline.el (modeline-minor-mode-menu):
* minibuf.el (minibuf-directory-files):
Replace the O2N (delq nil (mapcar (lambda (W) (and X Y)) Z)) with
the ON (mapcan (lambda (W) (and X (list Y))) Z) in these files.
2010-09-16 Aidan Kehoe <kehoea@parhasard.net>
* cl-macs.el (= < > <= >=):
When these functions are handed more than two arguments, and those
arguments have no side effects, transform to a series of two
argument calls, avoiding funcall in the byte-compiled code.
* mule/mule-cmds.el (finish-set-language-environment):
Take advantage of this change in a function called 256 times at
startup.
2010-09-16 Aidan Kehoe <kehoea@parhasard.net>
* bytecomp.el (byte-compile-function-form, byte-compile-quote)
(byte-compile-quote-form):
Warn at compile time, and error at runtime, if a (quote ...) or a
(function ...) form attempts to quote more than one object.
2010-09-16 Aidan Kehoe <kehoea@parhasard.net>
* byte-optimize.el (byte-optimize-apply): Transform (apply 'nconc
(mapcar ...)) to (mapcan ...); warn about use of the first idiom.
* update-elc.el (do-autoload-commands):
* packages.el (packages-find-package-library-path):
* frame.el (frame-list):
* extents.el (extent-descendants):
* etags.el (buffer-tag-table-files):
* dumped-lisp.el (preloaded-file-list):
* device.el (device-list):
* bytecomp-runtime.el (proclaim-inline, proclaim-notinline)
Use #'mapcan, not (apply #'nconc (mapcar ...) in all these files.
* bytecomp-runtime.el (eval-when-compile, eval-and-compile):
In passing, mention that these macros also evaluate the body when
interpreted.
tests/ChangeLog addition:
2011-02-07 Aidan Kehoe <kehoea@parhasard.net>
* automated/lisp-tests.el:
Test lexical scope for `block', `return-from'; add a
Known-Bug-Expect-Failure for a contorted example that fails when
byte-compiled.
author | Aidan Kehoe <kehoea@parhasard.net> |
---|---|
date | Mon, 07 Feb 2011 12:01:24 +0000 |
parents | 755ae5b97edb |
children | 9fae6227ede5 |
line wrap: on
line source
@c -*-texinfo-*- @c This is part of the XEmacs Lisp Reference Manual. @c Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc. @c See the file lispref.texi for copying conditions. @setfilename ../../info/debugging.info @node Debugging, Read and Print, Byte Compilation, Top @chapter Debugging Lisp Programs There are three ways to investigate a problem in an XEmacs Lisp program, depending on what you are doing with the program when the problem appears. @itemize @bullet @item If the problem occurs when you run the program, you can use a Lisp debugger (either the default debugger or Edebug) to investigate what is happening during execution. @item If the problem is syntactic, so that Lisp cannot even read the program, you can use the XEmacs facilities for editing Lisp to localize it. @item If the problem occurs when trying to compile the program with the byte compiler, you need to know how to examine the compiler's input buffer. @end itemize @menu * Debugger:: How the XEmacs Lisp debugger is implemented. * Syntax Errors:: How to find syntax errors. * Compilation Errors:: How to find errors that show up in byte compilation. * Edebug:: A source-level XEmacs Lisp debugger. @end menu Another useful debugging tool is the dribble file. When a dribble file is open, XEmacs copies all keyboard input characters to that file. Afterward, you can examine the file to find out what input was used. @xref{Terminal Input}. For debugging problems in terminal descriptions, the @code{open-termscript} function can be useful. @xref{Terminal Output}. @node Debugger @section The Lisp Debugger @cindex debugger @cindex Lisp debugger @cindex break The @dfn{Lisp debugger} provides the ability to suspend evaluation of a form. While evaluation is suspended (a state that is commonly known as a @dfn{break}), you may examine the run time stack, examine the values of local or global variables, or change those values. Since a break is a recursive edit, all the usual editing facilities of XEmacs are available; you can even run programs that will enter the debugger recursively. @xref{Recursive Editing}. @menu * Error Debugging:: Entering the debugger when an error happens. * Infinite Loops:: Stopping and debugging a program that doesn't exit. * Function Debugging:: Entering it when a certain function is called. * Explicit Debug:: Entering it at a certain point in the program. * Using Debugger:: What the debugger does; what you see while in it. * Debugger Commands:: Commands used while in the debugger. * Invoking the Debugger:: How to call the function @code{debug}. * Internals of Debugger:: Subroutines of the debugger, and global variables. @end menu @node Error Debugging @subsection Entering the Debugger on an Error @cindex error debugging @cindex debugging errors The most important time to enter the debugger is when a Lisp error happens. This allows you to investigate the immediate causes of the error. However, entry to the debugger is not a normal consequence of an error. Many commands frequently get Lisp errors when invoked in inappropriate contexts (such as @kbd{C-f} at the end of the buffer) and during ordinary editing it would be very unpleasant to enter the debugger each time this happens. If you want errors to enter the debugger, set the variable @code{debug-on-error} to non-@code{nil}. @defopt debug-on-error This variable determines whether the debugger is called when an error is signaled and not handled. If @code{debug-on-error} is @code{t}, all errors call the debugger. If it is @code{nil}, none call the debugger. The value can also be a list of error conditions that should call the debugger. For example, if you set it to the list @code{(void-variable)}, then only errors about a variable that has no value invoke the debugger. When this variable is non-@code{nil}, Emacs does not catch errors that happen in process filter functions and sentinels. Therefore, these errors also can invoke the debugger. @xref{Processes}. @end defopt @defopt debug-on-signal This variable is similar to @code{debug-on-error} but breaks whenever an error is signalled, regardless of whether it would be handled. @end defopt @defopt debug-ignored-errors This variable specifies certain kinds of errors that should not enter the debugger. Its value is a list of error condition symbols and/or regular expressions. If the error has any of those condition symbols, or if the error message matches any of the regular expressions, then that error does not enter the debugger, regardless of the value of @code{debug-on-error}. The normal value of this variable lists several errors that happen often during editing but rarely result from bugs in Lisp programs. @end defopt To debug an error that happens during loading of the @file{.emacs} file, use the option @samp{-debug-init}, which binds @code{debug-on-error} to @code{t} while @file{.emacs} is loaded and inhibits use of @code{condition-case} to catch init file errors. If your @file{.emacs} file sets @code{debug-on-error}, the effect may not last past the end of loading @file{.emacs}. (This is an undesirable byproduct of the code that implements the @samp{-debug-init} command line option.) The best way to make @file{.emacs} set @code{debug-on-error} permanently is with @code{after-init-hook}, like this: @example (add-hook 'after-init-hook '(lambda () (setq debug-on-error t))) @end example @node Infinite Loops @subsection Debugging Infinite Loops @cindex infinite loops @cindex loops, infinite @cindex quitting from infinite loop @cindex stopping an infinite loop When a program loops infinitely and fails to return, your first problem is to stop the loop. On most operating systems, you can do this with @kbd{C-g}, which causes quit. Ordinary quitting gives no information about why the program was looping. To get more information, you can set the variable @code{debug-on-quit} to non-@code{nil}. Quitting with @kbd{C-g} is not considered an error, and @code{debug-on-error} has no effect on the handling of @kbd{C-g}. Likewise, @code{debug-on-quit} has no effect on errors. Once you have the debugger running in the middle of the infinite loop, you can proceed from the debugger using the stepping commands. If you step through the entire loop, you will probably get enough information to solve the problem. @defopt debug-on-quit This variable determines whether the debugger is called when @code{quit} is signaled and not handled. If @code{debug-on-quit} is non-@code{nil}, then the debugger is called whenever you quit (that is, type @kbd{C-g}). If @code{debug-on-quit} is @code{nil}, then the debugger is not called when you quit. @xref{Quitting}. @end defopt @node Function Debugging @subsection Entering the Debugger on a Function Call @cindex function call debugging @cindex debugging specific functions To investigate a problem that happens in the middle of a program, one useful technique is to enter the debugger whenever a certain function is called. You can do this to the function in which the problem occurs, and then step through the function, or you can do this to a function called shortly before the problem, step quickly over the call to that function, and then step through its caller. @deffn Command debug-on-entry function-name This function requests @var{function-name} to invoke the debugger each time it is called. It works by inserting the form @code{(debug 'debug)} into the function definition as the first form. Any function defined as Lisp code may be set to break on entry, regardless of whether it is interpreted code or compiled code. If the function is a command, it will enter the debugger when called from Lisp and when called interactively (after the reading of the arguments). You can't debug primitive functions (i.e., those written in C) this way. When @code{debug-on-entry} is called interactively, it prompts for @var{function-name} in the minibuffer. If the function is already set up to invoke the debugger on entry, @code{debug-on-entry} does nothing. @strong{Please note:} if you redefine a function after using @code{debug-on-entry} on it, the code to enter the debugger is lost. @code{debug-on-entry} returns @var{function-name}. @example @group (defun fact (n) (if (zerop n) 1 (* n (fact (1- n))))) @result{} fact @end group @group (debug-on-entry 'fact) @result{} fact @end group @group (fact 3) @end group @group ------ Buffer: *Backtrace* ------ Entering: * fact(3) eval-region(4870 4878 t) byte-code("...") eval-last-sexp(nil) (let ...) eval-insert-last-sexp(nil) * call-interactively(eval-insert-last-sexp) ------ Buffer: *Backtrace* ------ @end group @group (symbol-function 'fact) @result{} (lambda (n) (debug (quote debug)) (if (zerop n) 1 (* n (fact (1- n))))) @end group @end example @end deffn @deffn Command cancel-debug-on-entry &optional function-name This function undoes the effect of @code{debug-on-entry} on @var{function-name}. When called interactively, it prompts for @var{function-name} in the minibuffer. If @var{function-name} is @code{nil} or the empty string, it cancels debugging for all functions. If @code{cancel-debug-on-entry} is called more than once on the same function, the second call does nothing. @code{cancel-debug-on-entry} returns @var{function-name}. @end deffn @node Explicit Debug @subsection Explicit Entry to the Debugger You can cause the debugger to be called at a certain point in your program by writing the expression @code{(debug)} at that point. To do this, visit the source file, insert the text @samp{(debug)} at the proper place, and type @kbd{C-M-x}. Be sure to undo this insertion before you save the file! The place where you insert @samp{(debug)} must be a place where an additional form can be evaluated and its value ignored. (If the value of @code{(debug)} isn't ignored, it will alter the execution of the program!) The most common suitable places are inside a @code{progn} or an implicit @code{progn} (@pxref{Sequencing}). @node Using Debugger @subsection Using the Debugger When the debugger is entered, it displays the previously selected buffer in one window and a buffer named @samp{*Backtrace*} in another window. The backtrace buffer contains one line for each level of Lisp function execution currently going on. At the beginning of this buffer is a message describing the reason that the debugger was invoked (such as the error message and associated data, if it was invoked due to an error). The backtrace buffer is read-only and uses a special major mode, Debugger mode, in which letters are defined as debugger commands. The usual XEmacs editing commands are available; thus, you can switch windows to examine the buffer that was being edited at the time of the error, switch buffers, visit files, or do any other sort of editing. However, the debugger is a recursive editing level (@pxref{Recursive Editing}) and it is wise to go back to the backtrace buffer and exit the debugger (with the @kbd{q} command) when you are finished with it. Exiting the debugger gets out of the recursive edit and kills the backtrace buffer. @cindex current stack frame The backtrace buffer shows you the functions that are executing and their argument values. It also allows you to specify a stack frame by moving point to the line describing that frame. (A stack frame is the place where the Lisp interpreter records information about a particular invocation of a function.) The frame whose line point is on is considered the @dfn{current frame}. Some of the debugger commands operate on the current frame. The debugger itself must be run byte-compiled, since it makes assumptions about how many stack frames are used for the debugger itself. These assumptions are false if the debugger is running interpreted. @need 3000 @node Debugger Commands @subsection Debugger Commands @cindex debugger command list Inside the debugger (in Debugger mode), these special commands are available in addition to the usual cursor motion commands. (Keep in mind that all the usual facilities of XEmacs, such as switching windows or buffers, are still available.) The most important use of debugger commands is for stepping through code, so that you can see how control flows. The debugger can step through the control structures of an interpreted function, but cannot do so in a byte-compiled function. If you would like to step through a byte-compiled function, replace it with an interpreted definition of the same function. (To do this, visit the source file for the function and type @kbd{C-M-x} on its definition.) Here is a list of Debugger mode commands: @table @kbd @item c Exit the debugger and continue execution. This resumes execution of the program as if the debugger had never been entered (aside from the effect of any variables or data structures you may have changed while inside the debugger). Continuing when an error or quit was signalled will cause the normal action of the signalling to take place. If you do not want this to happen, but instead want the program execution to continue as if the call to @code{signal} did not occur, use the @kbd{r} command. @item d Continue execution, but enter the debugger the next time any Lisp function is called. This allows you to step through the subexpressions of an expression, seeing what values the subexpressions compute, and what else they do. The stack frame made for the function call which enters the debugger in this way will be flagged automatically so that the debugger will be called again when the frame is exited. You can use the @kbd{u} command to cancel this flag. @item b Flag the current frame so that the debugger will be entered when the frame is exited. Frames flagged in this way are marked with stars in the backtrace buffer. @item u Don't enter the debugger when the current frame is exited. This cancels a @kbd{b} command on that frame. @item e Read a Lisp expression in the minibuffer, evaluate it, and print the value in the echo area. The debugger alters certain important variables, and the current buffer, as part of its operation; @kbd{e} temporarily restores their outside-the-debugger values so you can examine them. This makes the debugger more transparent. By contrast, @kbd{M-:} does nothing special in the debugger; it shows you the variable values within the debugger. @item q Terminate the program being debugged; return to top-level XEmacs command execution. If the debugger was entered due to a @kbd{C-g} but you really want to quit, and not debug, use the @kbd{q} command. @item r Return a value from the debugger. The value is computed by reading an expression with the minibuffer and evaluating it. The @kbd{r} command is useful when the debugger was invoked due to exit from a Lisp call frame (as requested with @kbd{b}); then the value specified in the @kbd{r} command is used as the value of that frame. It is also useful if you call @code{debug} and use its return value. If the debugger was entered at the beginning of a function call, @kbd{r} has the same effect as @kbd{c}, and the specified return value does not matter. If the debugger was entered through a call to @code{signal} (i.e. as a result of an error or quit), then returning a value will cause the call to @code{signal} itself to return, rather than throwing to top-level or invoking a handler, as is normal. This allows you to correct an error (e.g. the type of an argument was wrong) or continue from a @code{debug-on-quit} as if it never happened. Note that some errors (e.g. any error signalled using the @code{error} function, and many errors signalled from a primitive function) are not continuable. If you return a value from them and continue execution, then the error will immediately be signalled again. Other errors (e.g. wrong-type-argument errors) will be continually resignalled until the problem is corrected. @end table @node Invoking the Debugger @subsection Invoking the Debugger Here we describe fully the function used to invoke the debugger. @defun debug &rest debugger-args This function enters the debugger. It switches buffers to a buffer named @samp{*Backtrace*} (or @samp{*Backtrace*<2>} if it is the second recursive entry to the debugger, etc.), and fills it with information about the stack of Lisp function calls. It then enters a recursive edit, showing the backtrace buffer in Debugger mode. The Debugger mode @kbd{c} and @kbd{r} commands exit the recursive edit; then @code{debug} switches back to the previous buffer and returns to whatever called @code{debug}. This is the only way the function @code{debug} can return to its caller. If the first of the @var{debugger-args} passed to @code{debug} is @code{nil} (or if it is not one of the special values in the table below), then @code{debug} displays the rest of its arguments at the top of the @samp{*Backtrace*} buffer. This mechanism is used to display a message to the user. However, if the first argument passed to @code{debug} is one of the following special values, then it has special significance. Normally, these values are passed to @code{debug} only by the internals of XEmacs and the debugger, and not by programmers calling @code{debug}. The special values are: @table @code @item lambda @cindex @code{lambda} in debug A first argument of @code{lambda} means @code{debug} was called because of entry to a function when @code{debug-on-next-call} was non-@code{nil}. The debugger displays @samp{Entering:} as a line of text at the top of the buffer. @item debug @code{debug} as first argument indicates a call to @code{debug} because of entry to a function that was set to debug on entry. The debugger displays @samp{Entering:}, just as in the @code{lambda} case. It also marks the stack frame for that function so that it will invoke the debugger when exited. @item t When the first argument is @code{t}, this indicates a call to @code{debug} due to evaluation of a list form when @code{debug-on-next-call} is non-@code{nil}. The debugger displays the following as the top line in the buffer: @smallexample Beginning evaluation of function call form: @end smallexample @item exit When the first argument is @code{exit}, it indicates the exit of a stack frame previously marked to invoke the debugger on exit. The second argument given to @code{debug} in this case is the value being returned from the frame. The debugger displays @samp{Return value:} on the top line of the buffer, followed by the value being returned. @item error @cindex @code{error} in debug When the first argument is @code{error}, the debugger indicates that it is being entered because an error or @code{quit} was signaled and not handled, by displaying @samp{Signaling:} followed by the error signaled and any arguments to @code{signal}. For example, @example @group (let ((debug-on-error t)) (/ 1 0)) @end group @group ------ Buffer: *Backtrace* ------ Signaling: (arith-error) /(1 0) ... ------ Buffer: *Backtrace* ------ @end group @end example If an error was signaled, presumably the variable @code{debug-on-error} is non-@code{nil}. If @code{quit} was signaled, then presumably the variable @code{debug-on-quit} is non-@code{nil}. @item nil Use @code{nil} as the first of the @var{debugger-args} when you want to enter the debugger explicitly. The rest of the @var{debugger-args} are printed on the top line of the buffer. You can use this feature to display messages---for example, to remind yourself of the conditions under which @code{debug} is called. @end table @end defun @need 5000 @node Internals of Debugger @subsection Internals of the Debugger This section describes functions and variables used internally by the debugger. @defvar debugger The value of this variable is the function to call to invoke the debugger. Its value must be a function of any number of arguments (or, more typically, the name of a function). Presumably this function will enter some kind of debugger. The default value of the variable is @code{debug}. The first argument that Lisp hands to the function indicates why it was called. The convention for arguments is detailed in the description of @code{debug}. @end defvar @deffn Command backtrace &optional stream detailed @cindex run time stack @cindex call stack This function prints a trace of Lisp function calls currently active. This is the function used by @code{debug} to fill up the @samp{*Backtrace*} buffer. It is written in C, since it must have access to the stack to determine which function calls are active. The return value is always @code{nil}. The backtrace is normally printed to @code{standard-output}, but this can be changed by specifying a value for @var{stream}. If @var{detailed} is non-@code{nil}, the backtrace also shows places where currently active variable bindings, catches, condition-cases, and unwind-protects were made as well as function calls. In the following example, a Lisp expression calls @code{backtrace} explicitly. This prints the backtrace to the stream @code{standard-output}: in this case, to the buffer @samp{backtrace-output}. Each line of the backtrace represents one function call. The line shows the values of the function's arguments if they are all known. If they are still being computed, the line says so. The arguments of special operators are elided. @smallexample @group (with-output-to-temp-buffer "backtrace-output" (let ((var 1)) (save-excursion (setq var (eval '(progn (1+ var) (list 'testing (backtrace)))))))) @result{} nil @end group @group ----------- Buffer: backtrace-output ------------ backtrace() (list ...computing arguments...) (progn ...) eval((progn (1+ var) (list (quote testing) (backtrace)))) (setq ...) (save-excursion ...) (let ...) (with-output-to-temp-buffer ...) eval-region(1973 2142 #<buffer *scratch*>) byte-code("... for eval-print-last-sexp ...") eval-print-last-sexp(nil) * call-interactively(eval-print-last-sexp) ----------- Buffer: backtrace-output ------------ @end group @end smallexample The character @samp{*} indicates a frame whose debug-on-exit flag is set. @end deffn @ignore @c Not worth mentioning @defopt stack-trace-on-error @cindex stack trace This variable controls whether Lisp automatically displays a backtrace buffer after every error that is not handled. A quit signal counts as an error for this variable. If it is non-@code{nil} then a backtrace is shown in a pop-up buffer named @samp{*Backtrace*} on every error. If it is @code{nil}, then a backtrace is not shown. When a backtrace is shown, that buffer is not selected. If either @code{debug-on-quit} or @code{debug-on-error} is also non-@code{nil}, then a backtrace is shown in one buffer, and the debugger is popped up in another buffer with its own backtrace. We consider this feature to be obsolete and superseded by the debugger itself. @end defopt @end ignore @defvar debug-on-next-call @cindex @code{eval}, and debugging @cindex @code{apply}, and debugging @cindex @code{funcall}, and debugging If this variable is non-@code{nil}, it says to call the debugger before the next @code{eval}, @code{apply} or @code{funcall}. Entering the debugger sets @code{debug-on-next-call} to @code{nil}. The @kbd{d} command in the debugger works by setting this variable. @end defvar @defun backtrace-debug level flag This function sets the debug-on-exit flag of the stack frame @var{level} levels down the stack, giving it the value @var{flag}. If @var{flag} is non-@code{nil}, this will cause the debugger to be entered when that frame later exits. Even a nonlocal exit through that frame will enter the debugger. This function is used only by the debugger. @end defun @defvar command-debug-status This variable records the debugging status of the current interactive command. Each time a command is called interactively, this variable is bound to @code{nil}. The debugger can set this variable to leave information for future debugger invocations during the same command. The advantage, for the debugger, of using this variable rather than another global variable is that the data will never carry over to a subsequent command invocation. @end defvar @defun backtrace-frame frame-number The function @code{backtrace-frame} is intended for use in Lisp debuggers. It returns information about what computation is happening in the stack frame @var{frame-number} levels down. If that frame has not evaluated the arguments yet (or is a special form), the value is @code{(nil @var{function} @var{arg-forms}@dots{})}. If that frame has evaluated its arguments and called its function already, the value is @code{(t @var{function} @var{arg-values}@dots{})}. In the return value, @var{function} is whatever was supplied as the @sc{car} of the evaluated list, or a @code{lambda} expression in the case of a macro call. If the function has a @code{&rest} argument, that is represented as the tail of the list @var{arg-values}. If @var{frame-number} is out of range, @code{backtrace-frame} returns @code{nil}. @end defun @node Syntax Errors @section Debugging Invalid Lisp Syntax The Lisp reader reports invalid syntax, but cannot say where the real problem is. For example, the error ``End of file during parsing'' in evaluating an expression indicates an excess of open parentheses (or square brackets). The reader detects this imbalance at the end of the file, but it cannot figure out where the close parenthesis should have been. Likewise, ``Invalid read syntax: ")"'' indicates an excess close parenthesis or missing open parenthesis, but does not say where the missing parenthesis belongs. How, then, to find what to change? If the problem is not simply an imbalance of parentheses, a useful technique is to try @kbd{C-M-e} at the beginning of each defun, and see if it goes to the place where that defun appears to end. If it does not, there is a problem in that defun. However, unmatched parentheses are the most common syntax errors in Lisp, and we can give further advice for those cases. @menu * Excess Open:: How to find a spurious open paren or missing close. * Excess Close:: How to find a spurious close paren or missing open. @end menu @node Excess Open @subsection Excess Open Parentheses The first step is to find the defun that is unbalanced. If there is an excess open parenthesis, the way to do this is to insert a close parenthesis at the end of the file and type @kbd{C-M-b} (@code{backward-sexp}). This will move you to the beginning of the defun that is unbalanced. (Then type @kbd{C-@key{SPC} C-_ C-u C-@key{SPC}} to set the mark there, undo the insertion of the close parenthesis, and finally return to the mark.) The next step is to determine precisely what is wrong. There is no way to be sure of this except to study the program, but often the existing indentation is a clue to where the parentheses should have been. The easiest way to use this clue is to reindent with @kbd{C-M-q} and see what moves. Before you do this, make sure the defun has enough close parentheses. Otherwise, @kbd{C-M-q} will get an error, or will reindent all the rest of the file until the end. So move to the end of the defun and insert a close parenthesis there. Don't use @kbd{C-M-e} to move there, since that too will fail to work until the defun is balanced. Now you can go to the beginning of the defun and type @kbd{C-M-q}. Usually all the lines from a certain point to the end of the function will shift to the right. There is probably a missing close parenthesis, or a superfluous open parenthesis, near that point. (However, don't assume this is true; study the code to make sure.) Once you have found the discrepancy, undo the @kbd{C-M-q} with @kbd{C-_}, since the old indentation is probably appropriate to the intended parentheses. After you think you have fixed the problem, use @kbd{C-M-q} again. If the old indentation actually fit the intended nesting of parentheses, and you have put back those parentheses, @kbd{C-M-q} should not change anything. @node Excess Close @subsection Excess Close Parentheses To deal with an excess close parenthesis, first insert an open parenthesis at the beginning of the file, back up over it, and type @kbd{C-M-f} to find the end of the unbalanced defun. (Then type @kbd{C-@key{SPC} C-_ C-u C-@key{SPC}} to set the mark there, undo the insertion of the open parenthesis, and finally return to the mark.) Then find the actual matching close parenthesis by typing @kbd{C-M-f} at the beginning of the defun. This will leave you somewhere short of the place where the defun ought to end. It is possible that you will find a spurious close parenthesis in that vicinity. If you don't see a problem at that point, the next thing to do is to type @kbd{C-M-q} at the beginning of the defun. A range of lines will probably shift left; if so, the missing open parenthesis or spurious close parenthesis is probably near the first of those lines. (However, don't assume this is true; study the code to make sure.) Once you have found the discrepancy, undo the @kbd{C-M-q} with @kbd{C-_}, since the old indentation is probably appropriate to the intended parentheses. After you think you have fixed the problem, use @kbd{C-M-q} again. If the old indentation actually fit the intended nesting of parentheses, and you have put back those parentheses, @kbd{C-M-q} should not change anything. @node Compilation Errors, Edebug, Syntax Errors, Debugging @section Debugging Problems in Compilation When an error happens during byte compilation, it is normally due to invalid syntax in the program you are compiling. The compiler prints a suitable error message in the @samp{*Compile-Log*} buffer, and then stops. The message may state a function name in which the error was found, or it may not. Either way, here is how to find out where in the file the error occurred. What you should do is switch to the buffer @w{@samp{ *Compiler Input*}}. (Note that the buffer name starts with a space, so it does not show up in @kbd{M-x list-buffers}.) This buffer contains the program being compiled, and point shows how far the byte compiler was able to read. If the error was due to invalid Lisp syntax, point shows exactly where the invalid syntax was @emph{detected}. The cause of the error is not necessarily near by! Use the techniques in the previous section to find the error. If the error was detected while compiling a form that had been read successfully, then point is located at the end of the form. In this case, this technique can't localize the error precisely, but can still show you which function to check. @include edebug-inc.texi