Mercurial > hg > xemacs-beta
view src/hash.c @ 611:38db05db9cb5
[xemacs-hg @ 2001-06-08 12:21:09 by ben]
------ gc-in-window-procedure fixes ------
alloc.c: Create "post-gc actions", to avoid those dreaded "GC during window
procedure" problems.
event-msw.c: Abort, clean and simple, when GC in window procedure. We want
to flush these puppies out.
glyphs-msw.c: Use a post-gc action when destroying subwindows.
lisp.h: Declare register_post_gc_action().
scrollbar-msw.c: Use a post-gc action when unshowing scrollbar windows, if in gc.
redisplay.c: Add comment about the utter evilness of what's going down here.
------ cygwin setitimer fixes ------
Makefile.in.in: Compile profile.c only when HAVE_SETITIMER.
nt.c: Style fixes.
nt.c: Move setitimer() emulation to win32.c, because Cygwin needs it too.
profile.c: Make sure we don't compile if no setitimer(). Use qxe_setitimer()
instead of just plain setitimer().
signal.c: Define qxe_setitimer() as an encapsulation around setitimer() --
call setitimer() directly unless Cygwin or MS Win, in which case
we use our simulated version in win32.c.
systime.h: Prototype mswindows_setitimer() and qxe_setitimer(). Long
comment about "qxe" and the policy regarding encapsulation.
win32.c: Move setitimer() emulation here, so Cygwin can use it.
Rename a couple of functions and variables to be longer and more
descriptive. In setitimer_helper_proc(), send the signal
using either mswindows_raise() or (on Cygwin) kill(). If for
some reason we are still getting lockups, we'll change the kill()
to directly invoke the signal handlers.
------ windows shell fixes ------
callproc.c, ntproc.c: Comments about how these two files must die.
callproc.c: On MS Windows, init shell-file-name from SHELL, then COMSPEC,
not just COMSPEC. (more correct and closer to FSF.) Don't
force a value for SHELL into the environment. (Comments added
to explain why not.)
nt.c: Don't shove a fabricated SHELL into the environment. See above.
------ misc fixes ------
glyphs-shared.c: Style correction.
xemacs-faq.texi: Merge in the rest of Hrvoje's Windows FAQ. Redo section 7
to update current reality and add condensed versions of
new changes for 21.1 and 21.4. (Not quite done for 21.4.)
Lots more Windows updates.
process.el: Need to quote a null
argument, too. From Dan Holmsand.
startup.el:
startup.el: Call MS Windows init function.
win32-native.el: Correct comments at top. Correctly handle passing arguments
to Cygwin programs and to bash. Fix quoting of zero-length
arguments (from Dan Holmsand). Set shell-command-switch based
on shell-file-name, which in turn comes from env var SHELL.
author | ben |
---|---|
date | Fri, 08 Jun 2001 12:21:27 +0000 |
parents | abe6d1db359e |
children | b39c14581166 |
line wrap: on
line source
/* Hash tables. Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: Not in FSF. */ #include <config.h> #include "lisp.h" #include "hash.h" #define NULL_ENTRY ((void *) 0xdeadbeef) #define COMFORTABLE_SIZE(size) (21 * (size) / 16) #define KEYS_DIFFER_P(old, new, testfun) \ (((old) != (new)) && (!(testfun) || !(testfun) ((old),(new)))) static void rehash (hentry *harray, struct hash_table *ht, hash_size_t size); unsigned long memory_hash (const void *xv, size_t size) { unsigned int h = 0; unsigned const char *x = (unsigned const char *) xv; if (!x) return 0; while (size--) { unsigned int g; h = (h << 4) + *x++; if ((g = h & 0xf0000000) != 0) h = (h ^ (g >> 24)) ^ g; } return h; } unsigned long string_hash (const char *xv) { unsigned int h = 0; unsigned const char *x = (unsigned const char *) xv; if (!x) return 0; while (*x) { unsigned int g; h = (h << 4) + *x++; if ((g = h & 0xf0000000) != 0) h = (h ^ (g >> 24)) ^ g; } return h; } /* Return a suitable size for a hash table, with at least SIZE slots. */ static size_t hash_table_size (size_t requested_size) { /* Return some prime near, but greater than or equal to, SIZE. Decades from the time of writing, someone will have a system large enough that the list below will be too short... */ static const size_t primes [] = { 19, 29, 41, 59, 79, 107, 149, 197, 263, 347, 457, 599, 787, 1031, 1361, 1777, 2333, 3037, 3967, 5167, 6719, 8737, 11369, 14783, 19219, 24989, 32491, 42257, 54941, 71429, 92861, 120721, 156941, 204047, 265271, 344857, 448321, 582821, 757693, 985003, 1280519, 1664681, 2164111, 2813353, 3657361, 4754591, 6180989, 8035301, 10445899, 13579681, 17653589, 22949669, 29834603, 38784989, 50420551, 65546729, 85210757, 110774011, 144006217, 187208107, 243370577, 316381771, 411296309, 534685237, 695090819, 903618083, 1174703521, 1527114613, 1985248999, 2580823717UL, 3355070839UL }; /* We've heard of binary search. */ int low, high; for (low = 0, high = countof (primes) - 1; high - low > 1;) { /* Loop Invariant: size < primes [high] */ int mid = (low + high) / 2; if (primes [mid] < requested_size) low = mid; else high = mid; } return primes [high]; } const void * gethash (const void *key, struct hash_table *hash_table, const void **ret_value) { if (!key) { *ret_value = hash_table->zero_entry; return (void *) hash_table->zero_set; } else { hentry *harray = hash_table->harray; hash_table_test_function test_function = hash_table->test_function; hash_size_t size = hash_table->size; unsigned int hcode_initial = hash_table->hash_function ? hash_table->hash_function (key) : (unsigned long) key; unsigned int hcode = hcode_initial % size; hentry *e = &harray [hcode]; const void *e_key = e->key; if (e_key ? KEYS_DIFFER_P (e_key, key, test_function) : e->contents == NULL_ENTRY) { size_t h2 = size - 2; unsigned int incr = 1 + (hcode_initial % h2); do { hcode += incr; if (hcode >= size) hcode -= size; e = &harray [hcode]; e_key = e->key; } while (e_key ? KEYS_DIFFER_P (e_key, key, test_function) : e->contents == NULL_ENTRY); } *ret_value = e->contents; return e->key; } } void clrhash (struct hash_table *hash_table) { memset (hash_table->harray, 0, sizeof (hentry) * hash_table->size); hash_table->zero_entry = 0; hash_table->zero_set = 0; hash_table->fullness = 0; } void free_hash_table (struct hash_table *hash_table) { xfree (hash_table->harray); xfree (hash_table); } struct hash_table* make_hash_table (hash_size_t size) { struct hash_table *hash_table = xnew_and_zero (struct hash_table); hash_table->size = hash_table_size (COMFORTABLE_SIZE (size)); hash_table->harray = xnew_array (hentry, hash_table->size); clrhash (hash_table); return hash_table; } struct hash_table * make_general_hash_table (hash_size_t size, hash_table_hash_function hash_function, hash_table_test_function test_function) { struct hash_table* hash_table = make_hash_table (size); hash_table->hash_function = hash_function; hash_table->test_function = test_function; return hash_table; } static void grow_hash_table (struct hash_table *hash_table, hash_size_t new_size) { hash_size_t old_size = hash_table->size; hentry *old_harray = hash_table->harray; hash_table->size = hash_table_size (new_size); hash_table->harray = xnew_array (hentry, hash_table->size); /* do the rehash on the "grown" table */ { long old_zero_set = hash_table->zero_set; void *old_zero_entry = hash_table->zero_entry; clrhash (hash_table); hash_table->zero_set = old_zero_set; hash_table->zero_entry = old_zero_entry; rehash (old_harray, hash_table, old_size); } xfree (old_harray); } void puthash (const void *key, void *contents, struct hash_table *hash_table) { if (!key) { hash_table->zero_entry = contents; hash_table->zero_set = 1; } else { hash_table_test_function test_function = hash_table->test_function; hash_size_t size = hash_table->size; hentry *harray = hash_table->harray; unsigned int hcode_initial = hash_table->hash_function ? hash_table->hash_function (key) : (unsigned long) key; unsigned int hcode = hcode_initial % size; size_t h2 = size - 2; unsigned int incr = 1 + (hcode_initial % h2); const void *e_key = harray [hcode].key; const void *oldcontents; if (e_key && KEYS_DIFFER_P (e_key, key, test_function)) { do { hcode += incr; if (hcode >= size) hcode -= size; e_key = harray [hcode].key; } while (e_key && KEYS_DIFFER_P (e_key, key, test_function)); } oldcontents = harray [hcode].contents; harray [hcode].key = key; harray [hcode].contents = contents; /* If the entry that we used was a deleted entry, check for a non deleted entry of the same key, then delete it. */ if (!e_key && oldcontents == NULL_ENTRY) { hentry *e; do { hcode += incr; if (hcode >= size) hcode -= size; e = &harray [hcode]; e_key = e->key; } while (e_key ? KEYS_DIFFER_P (e_key, key, test_function): e->contents == NULL_ENTRY); if (e_key) { e->key = 0; e->contents = NULL_ENTRY; } } /* only increment the fullness when we used up a new hentry */ if (!e_key || KEYS_DIFFER_P (e_key, key, test_function)) { hash_size_t comfortable_size = COMFORTABLE_SIZE (++(hash_table->fullness)); if (hash_table->size < comfortable_size) grow_hash_table (hash_table, comfortable_size + 1); } } } static void rehash (hentry *harray, struct hash_table *hash_table, hash_size_t size) { hentry *limit = harray + size; hentry *e; for (e = harray; e < limit; e++) { if (e->key) puthash (e->key, e->contents, hash_table); } } void remhash (const void *key, struct hash_table *hash_table) { if (!key) { hash_table->zero_entry = 0; hash_table->zero_set = 0; } else { hentry *harray = hash_table->harray; hash_table_test_function test_function = hash_table->test_function; hash_size_t size = hash_table->size; unsigned int hcode_initial = (hash_table->hash_function) ? (hash_table->hash_function (key)) : ((unsigned long) key); unsigned int hcode = hcode_initial % size; hentry *e = &harray [hcode]; const void *e_key = e->key; if (e_key ? KEYS_DIFFER_P (e_key, key, test_function) : e->contents == NULL_ENTRY) { size_t h2 = size - 2; unsigned int incr = 1 + (hcode_initial % h2); do { hcode += incr; if (hcode >= size) hcode -= size; e = &harray [hcode]; e_key = e->key; } while (e_key? KEYS_DIFFER_P (e_key, key, test_function): e->contents == NULL_ENTRY); } if (e_key) { e->key = 0; e->contents = NULL_ENTRY; /* Note: you can't do fullness-- here, it breaks the world. */ } } } void maphash (maphash_function mf, struct hash_table *hash_table, void *arg) { hentry *e; hentry *limit; if (hash_table->zero_set) { if (mf (0, hash_table->zero_entry, arg)) return; } for (e = hash_table->harray, limit = e + hash_table->size; e < limit; e++) { if (e->key && mf (e->key, e->contents, arg)) return; } } void map_remhash (remhash_predicate predicate, struct hash_table *hash_table, void *arg) { hentry *e; hentry *limit; if (hash_table->zero_set && predicate (0, hash_table->zero_entry, arg)) { hash_table->zero_set = 0; hash_table->zero_entry = 0; } for (e = hash_table->harray, limit = e + hash_table->size; e < limit; e++) if (predicate (e->key, e->contents, arg)) { e->key = 0; e->contents = NULL_ENTRY; } }