Mercurial > hg > xemacs-beta
view man/lispref/range-tables.texi @ 5252:378a34562cbe
Fix style, documentation for rounding functions and multiple values.
src/ChangeLog addition:
2010-08-30 Aidan Kehoe <kehoea@parhasard.net>
* floatfns.c (ceiling_one_mundane_arg, floor_one_mundane_arg)
(round_one_mundane_arg, truncate_one_mundane_arg):
INTEGERP is always available, no need to wrap calls to it with
#ifdef HAVE_BIGNUM.
(Fceiling, Ffloor, Fround, Ftruncate, Ffceiling, Fffloor)
(Ffround, Fftruncate):
Correct some code formatting here.
* doprnt.c (emacs_doprnt_1):
Remove some needless #ifdef WITH_NUMBER_TYPES, now number.h is
always #included.
man/ChangeLog addition:
2010-08-30 Aidan Kehoe <kehoea@parhasard.net>
* lispref/eval.texi (Evaluation, Multiple values):
Document our implementation of multiple values; point the reader
to the CLTL or the Hyperspec for details of exactly when values
are discarded.
* lispref/numbers.texi (Numeric Conversions): Document the
optional DIVISOR arguments to the rounding functions, and
document that they all return multiple values.
(Rounding Operations): Ditto.
* cl.texi (Multiple Values):
Document that we've moved the multiple values implementation to
core code, and cross-reference to the Lispref.
(Numerical Functions): The various rounding functions are now
identical to the built-in rounding functions, with the exception
that they return lists, not multiple values; document this.
author | Aidan Kehoe <kehoea@parhasard.net> |
---|---|
date | Mon, 30 Aug 2010 15:23:42 +0100 |
parents | 6772ce4d982b |
children | 9fae6227ede5 |
line wrap: on
line source
@c -*-texinfo-*- @c This is part of the XEmacs Lisp Reference Manual. @c Copyright (C) 1996 Ben Wing. @c See the file lispref.texi for copying conditions. @setfilename ../../info/range-tables.info @node Range Tables, Databases, Hash Tables, top @chapter Range Tables @cindex Range Tables A range table is a table that efficiently associates values with ranges of fixnums. Note that range tables have a read syntax, like this: @example #s(range-table type start-closed-end-open data ((-3 2) foo (5 20) bar)) @end example This maps integers in the range [-3, 2) to @code{foo} and integers in the range [5, 20) to @code{bar}. By default, range tables have a @var{type} of @code{start-closed-end-open}. (@strong{NOTE}: This is a change from 21.4 and earlier, where there was no @var{type} and range tables were always closed on both ends.) This makes them work like text properties. @defun range-table-p object Return non-@code{nil} if @var{object} is a range table. @end defun @menu * Introduction to Range Tables:: Range tables efficiently map ranges of integers to values. * Working With Range Tables:: Range table functions. @end menu @node Introduction to Range Tables @section Introduction to Range Tables @defun make-range-table &optional type Make a new, empty range table. @var{type} is a symbol indicating how ranges are assumed to function at their ends. It can be one of @example SYMBOL RANGE-START RANGE-END ------ ----------- --------- `start-closed-end-open' (the default) closed open `start-closed-end-closed' closed closed `start-open-end-open' open open `start-open-end-closed' open closed @end example A @dfn{closed} endpoint of a range means that the number at that end is included in the range. For an @dfn{open} endpoint, the number would not be included. For example, a closed-open range from 5 to 20 would be indicated as @samp{[5, 20)} where a bracket indicates a closed end and a parenthesis an open end, and would mean `all the numbers between 5 and 20', including 5 but not 20. This seems a little strange at first but is in fact extremely common in the outside world as well as in computers and makes things work sensibly. For example, if I say "there are seven days between today and next week today", I'm including today but not next week today; if I included both, there would be eight days. Similarly, there are 15 (= 20 - 5) elements in the range @samp{[5, 20)}, but 16 in the range @samp{[5, 20]}. @end defun @defun copy-range-table range-table This function returns a new range table which contains the same values for the same ranges as @var{range-table}. The values will not themselves be copied. @end defun @node Working With Range Tables @section Working With Range Tables @defun get-range-table pos range-table &optional default This function finds value for position @var{pos} in @var{range-table}. If there is no corresponding value, return @var{default} (defaults to @code{nil}). @strong{NOTE}: If you are working with ranges that are closed at the start and open at the end (the default), and you put a value for a range with @var{start} equal to @var{end}, @code{get-range-table} will @strong{not} return that value! You would need to set @var{end} one greater than @var{start}. @end defun @defun put-range-table start end value range-table This function sets the value for range (@var{start}, @var{end}) to be @var{value} in @var{range-table}. @strong{NOTE}: Unless you are working with ranges that are closed at both ends, nothing will happen if @var{start} equals @var{end}. @end defun @defun remove-range-table start end range-table This function removes the value for range (@var{start}, @var{end}) in @var{range-table}. @end defun @defun clear-range-table range-table This function flushes @var{range-table}. @end defun @defun map-range-table function range-table This function maps @var{function} over entries in @var{range-table}, calling it with three args, the beginning and end of the range and the corresponding value. @end defun