view src/unicode.c @ 853:2b6fa2618f76

[xemacs-hg @ 2002-05-28 08:44:22 by ben] merge my stderr-proc ws make-docfile.c: Fix places where we forget to check for EOF. code-init.el: Don't use CRLF conversion by default on process output. CMD.EXE and friends work both ways but Cygwin programs don't like the CRs. code-process.el, multicast.el, process.el: Removed. Improvements to call-process-internal: -- allows a buffer to be specified for input and stderr output -- use it on all systems -- implement C-g as documented -- clean up and comment call-process-region uses new call-process facilities; no temp file. remove duplicate funs in process.el. comment exactly how coding systems work and fix various problems. open-multicast-group now does similar coding-system frobbing to open-network-stream. dumped-lisp.el, faces.el, msw-faces.el: Fix some hidden errors due to code not being defined at the right time. xemacs.mak: Add -DSTRICT. ================================================================ ALLOW SEPARATION OF STDOUT AND STDERR IN PROCESSES ================================================================ Standard output and standard error can be processed separately in a process. Each can have its own buffer, its own mark in that buffer, and its filter function. You can specify a separate buffer for stderr in `start-process' to get things started, or use the new primitives: set-process-stderr-buffer process-stderr-buffer process-stderr-mark set-process-stderr-filter process-stderr-filter Also, process-send-region takes a 4th optional arg, a buffer. Currently always uses a pipe() under Unix to read the error output. (#### Would a PTY be better?) sysdep.h, sysproc.h, unexfreebsd.c, unexsunos4.c, nt.c, emacs.c, callproc.c, symsinit.h, sysdep.c, Makefile.in.in, process-unix.c: Delete callproc.c. Move child_setup() to process-unix.c. wait_for_termination() now only needed on a few really old systems. console-msw.h, event-Xt.c, event-msw.c, event-stream.c, event-tty.c, event-unixoid.c, events.h, process-nt.c, process-unix.c, process.c, process.h, procimpl.h: Rewrite the process methods to handle a separate channel for error input. Create Lstreams for reading in the error channel. Many process methods need change. In general the changes are fairly clear as they involve duplicating what's used for reading the normal stdout and changing for stderr -- although tedious, as such changes are required throughout the entire process code. Rewrote the code that reads process output to do two loops, one for stdout and one for stderr. gpmevent.c, tooltalk.c: set_process_filter takes an argument for stderr. ================================================================ NEW ERROR-TRAPPING MECHANISM ================================================================ Totally rewrite error trapping code to be unified and support more features. Basic function is call_trapping_problems(), which lets you specify, by means of flags, what sorts of problems you want trapped. these can include -- quit -- errors -- throws past the function -- creation of "display objects" (e.g. buffers) -- deletion of already-existing "display objects" (e.g. buffers) -- modification of already-existing buffers -- entering the debugger -- gc -- errors->warnings (ala suspended errors) etc. All other error funs rewritten in terms of this one. Various older mechanisms removed or rewritten. window.c, insdel.c, console.c, buffer.c, device.c, frame.c: When creating a display object, added call to note_object_created(), for use with trapping_problems mechanism. When deleting, call check_allowed_operation() and note_object deleted(). The trapping-problems code records the objects created since the call-trapping-problems began. Those objects can be deleted, but none others (i.e. previously existing ones). bytecode.c, cmdloop.c: internal_catch takes another arg. eval.c: Add long comments describing the "five lists" used to maintain state (backtrace, gcpro, specbind, etc.) in the Lisp engine. backtrace.h, eval.c: Implement trapping-problems mechanism, eliminate old mechanisms or redo in terms of new one. frame.c, gutter.c: Flush out the concept of "critical display section", defined by the in_display() var. Use an internal_bind() to get it reset, rather than just doing it at end, because there may be a non-local exit. event-msw.c, event-stream.c, console-msw.h, device.c, dialog-msw.c, frame.c, frame.h, intl.c, toolbar.c, menubar-msw.c, redisplay.c, alloc.c, menubar-x.c: Make use of new trapping-errors stuff and rewrite code based on old mechanisms. glyphs-widget.c, redisplay.h: Protect calling Lisp in redisplay. insdel.c: Protect hooks against deleting existing buffers. frame-msw.c: Use EQ, not EQUAL in hash tables whose keys are just numbers. Otherwise we run into stickiness in redisplay because internal_equal() can QUIT. ================================================================ SIGNAL, C-G CHANGES ================================================================ Here we change the way that C-g interacts with event reading. The idea is that a C-g occurring while we're reading a user event should be read as C-g, but elsewhere should be a QUIT. The former code did all sorts of bizarreness -- requiring that no QUIT occurs anywhere in event-reading code (impossible to enforce given the stuff called or Lisp code invoked), and having some weird system involving enqueue/dequeue of a C-g and interaction with Vquit_flag -- and it didn't work. Now, we simply enclose all code where we want C-g read as an event with {begin/end}_dont_check_for_quit(). This completely turns off the mechanism that checks (and may remove or alter) C-g in the read-ahead queues, so we just get the C-g normal. Signal.c documents this very carefully. cmdloop.c: Correct use of dont_check_for_quit to new scheme, remove old out-of-date comments. event-stream.c: Fix C-g handling to actually work. device-x.c: Disable quit checking when err out. signal.c: Cleanup. Add large descriptive comment. process-unix.c, process-nt.c, sysdep.c: Use QUIT instead of REALLY_QUIT. It's not necessary to use REALLY_QUIT and just confuses the issue. lisp.h: Comment quit handlers. ================================================================ CONS CHANGES ================================================================ free_cons() now takes a Lisp_Object not the result of XCONS(). car and cdr have been renamed so that they don't get used directly; go through XCAR(), XCDR() instead. alloc.c, dired.c, editfns.c, emodules.c, fns.c, glyphs-msw.c, glyphs-x.c, glyphs.c, keymap.c, minibuf.c, search.c, eval.c, lread.c, lisp.h: Correct free_cons calling convention: now takes Lisp_Object, not Lisp_Cons chartab.c: Eliminate direct use of ->car, ->cdr, should be black box. callint.c: Rewrote using EXTERNAL_LIST_LOOP to avoid use of Lisp_Cons. ================================================================ USE INTERNAL-BIND-* ================================================================ eval.c: Cleanups of these funs. alloc.c, fileio.c, undo.c, specifier.c, text.c, profile.c, lread.c, redisplay.c, menubar-x.c, macros.c: Rewrote to use internal_bind_int() and internal_bind_lisp_object() in place of whatever varied and cumbersome mechanisms were formerly there. ================================================================ SPECBIND SANITY ================================================================ backtrace.h: - Improved comments backtrace.h, bytecode.c, eval.c: Add new mechanism check_specbind_stack_sanity() for sanity checking code each time the catchlist or specbind stack change. Removed older prototype of same mechanism. ================================================================ MISC ================================================================ lisp.h, insdel.c, window.c, device.c, console.c, buffer.c: Fleshed out authorship. device-msw.c: Correct bad Unicode-ization. print.c: Be more careful when not initialized or in fatal error handling. search.c: Eliminate running_asynch_code, an FSF holdover. alloc.c: Added comments about gc-cons-threshold. dialog-x.c: Use begin_gc_forbidden() around code to build up a widget value tree, like in menubar-x.c. gui.c: Use Qunbound not Qnil as the default for gethash. lisp-disunion.h, lisp-union.h: Added warnings on use of VOID_TO_LISP(). lisp.h: Use ERROR_CHECK_STRUCTURES to turn on ERROR_CHECK_TRAPPING_PROBLEMS and ERROR_CHECK_TYPECHECK lisp.h: Add assert_with_message. lisp.h: Add macros for gcproing entire arrays. (You could do this before but it required manual twiddling the gcpro structure.) lisp.h: Add prototypes for new functions defined elsewhere.
author ben
date Tue, 28 May 2002 08:45:36 +0000
parents 6728e641994e
children 804517e16990
line wrap: on
line source

/* Code to handle Unicode conversion.
   Copyright (C) 2000, 2001, 2002 Ben Wing.

This file is part of XEmacs.

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* Synched up with: FSF 20.3.  Not in FSF. */

/* Authorship:

   Current primary author: Ben Wing <ben@xemacs.org>

   Written by Ben Wing <ben@xemacs.org>, June, 2001.
   Separated out into this file, August, 2001.
   Includes Unicode coding systems, some parts of which have been written
   by someone else.

   As of September 2001, the detection code is here and abstraction of the
   detection system is finished.  the unicode detectors have been rewritten
   to include multiple levels of likelihood.
   */

#include <config.h>
#include "lisp.h"

#include "charset.h"
#include "file-coding.h"
#include "opaque.h"

#include "sysfile.h"

/* #### WARNING!  The current sledgehammer routines have a fundamental
   problem in that they can't handle two characters mapping to a
   single Unicode codepoint or vice-versa in a single charset table.
   It's not clear there is any way to handle this and still make the
   sledgehammer routines useful. */
/* #define SLEDGEHAMMER_CHECK_UNICODE */

  /* We currently use the following format for tables:

     If dimension == 1, to_unicode_table is a 96-element array of ints
     (Unicode code points); else, it's a 96-element array of int *
     pointers, each of which points to a 96-element array of ints.  If no
     elements in a row have been filled in, the pointer will point to a
     default empty table; that way, memory usage is more reasonable but
     lookup still fast.

     -- If from_unicode_levels == 1, from_unicode_table is a 256-element
     array of shorts (octet 1 in high byte, octet 2 in low byte; we don't
     store Emchars directly to save space).

     -- If from_unicode_levels == 2, from_unicode_table is a
     256-element array of short * pointers, each of which points to a
     256-element array of shorts.

     -- If from_unicode_levels == 3, from_unicode_table is a
     256-element array of short ** pointers, each of which points to
     a 256-element array of short * pointers, each of which points to
     a 256-element array of shorts.

     -- If from_unicode_levels == 4, same thing but one level deeper.

     Just as for to_unicode_table, we use default tables to fill in
     all entries with no values in them.

     #### An obvious space-saving optimization is to use variable-sized
     tables, where each table instead of just being a 256-element array,
     is a structure with a start value, an end value, and a variable
     number of entries (END - START + 1).  Only 8 bits are needed for
     END and START, and could be stored at the end to avoid alignment
     problems.  However, before charging off and implementing this,
     we need to consider whether it's worth it:

     (1) Most tables will be highly localized in which code points are
     defined, heavily reducing the possible memory waste.  Before
     doing any rewriting, write some code to see how much memory is
     actually being wasted (i.e. ratio of empty entries to total # of
     entries) and only start rewriting if it's unacceptably high.  You
     have to check over all charsets.

     (2) Since entries are usually added one at a time, you have to be
     very careful when creating the tables to avoid realloc()/free()
     thrashing in the common case when you are in an area of high
     localization and are going to end up using most entries in the
     table.  You'd certainly want to allow only certain sizes, not
     arbitrary ones (probably powers of 2, where you want the entire
     block including the START/END values to fit into a power of 2,
     minus any malloc overhead if there is any -- there's none under
     gmalloc.c, and probably most system malloc() functions are quite
     smart nowadays and also have no overhead).  You could optimize
     somewhat during the in-C initializations, because you can compute
     the actual usage of various tables by scanning the entries you're
     going to add in a separate pass before adding them. (You could
     actually do the same thing when entries are added on the Lisp
     level by making the assumption that all the entries will come in
     one after another before any use is made of the data.  So as
     they're coming in, you just store them in a big long list, and
     the first time you need to retrieve an entry, you compute the
     whole table at once.) You'd still have to deal with the
     possibility of later entries coming in, though.

     (3) You do lose some speed using START/END values, since you need
     a couple of comparisons at each level.  This could easily make
     each single lookup become 3-4 times slower.  The Unicode book
     considers this a big issue, and recommends against variable-sized
     tables for this reason; however, they almost certainly have in
     mind applications that primarily involve conversion of large
     amounts of data.  Most Unicode strings that are translated in
     XEmacs are fairly small.  The only place where this might matter
     is in loading large files -- e.g. a 3-megabyte Unicode-encoded
     file.  So think about this, and maybe do a trial implementation
     where you don't worry too much about the intricacies of (2) and
     just implement some basic "multiply by 1.5" trick or something to
     do the resizing.  There is a very good FAQ on Unicode called
     something like the Linux-Unicode How-To (it should be part of the
     Linux How-To's, I think), that lists the url of a guy with a
     whole bunch of unicode files you can use to stress-test your
     implementations, and he's highly likely to have a good
     multi-megabyte Unicode-encoded file (with normal text in it -- if
     you created your own just by creating repeated strings of letters
     and numbers, you probably wouldn't get accurate results).
     */

/* When MULE is not defined, we may still need some Unicode support --
   in particular, some Windows API's always want Unicode, and the way
   we've set up the Unicode encapsulation, we may as well go ahead and
   always use the Unicode versions of split API's. (It would be
   trickier to not use them, and pointless -- under NT, the ANSI API's
   call the Unicode ones anyway, so in the case of structures, we'd be
   converting from Unicode to ANSI structures, only to have the OS
   convert them back.) */

Lisp_Object Qunicode;
Lisp_Object Qutf_16, Qutf_8, Qucs_4, Qutf_7;
Lisp_Object Qneed_bom;

Lisp_Object Qutf_16_little_endian, Qutf_16_bom;
Lisp_Object Qutf_16_little_endian_bom;

#ifdef MULE 

static int *to_unicode_blank_1;
static int **to_unicode_blank_2;

static short *from_unicode_blank_1;
static short **from_unicode_blank_2;
static short ***from_unicode_blank_3;
static short ****from_unicode_blank_4;

#if 0

static const struct lrecord_description to_unicode_level_0_desc[] = {
  { XD_END }
};

static const struct struct_description to_unicode_level_0_ptr_desc = {
  sizeof (int), to_unicode_level_0_desc
};

static const struct lrecord_description to_unicode_level_1_desc[] = {
  { XD_STRUCT_PTR, 0, 96, &to_unicode_level_0_ptr_desc },
  { XD_END }
};

static const struct struct_description to_unicode_level_1_ptr_desc = {
  0, to_unicode_level_1_desc
};

static const struct lrecord_description to_unicode_level_2_desc[] = {
  { XD_STRUCT_PTR, 0, 96, &to_unicode_level_1_ptr_desc },
  { XD_END }
};

/* Not static because each charset has a set of to and from tables and
   needs to describe them to pdump. */
const struct struct_description to_unicode_description[] = {
  { 1, to_unicode_level_1_desc },
  { 2, to_unicode_level_2_desc },
  { XD_END }
};

static const struct lrecord_description from_unicode_level_0_desc[] = {
  { XD_END }
};

static const struct struct_description from_unicode_level_0_ptr_desc = {
   sizeof (short), from_unicode_level_0_desc
};

static const struct lrecord_description from_unicode_level_1_desc[] = {
  { XD_STRUCT_PTR, 0, 256, &from_unicode_level_0_ptr_desc },
  { XD_END }
};

static const struct struct_description from_unicode_level_1_ptr_desc = {
  0, from_unicode_level_1_desc
};

static const struct lrecord_description from_unicode_level_2_desc[] = {
  { XD_STRUCT_PTR, 0, 256, &from_unicode_level_1_ptr_desc },
  { XD_END }
};

static const struct struct_description from_unicode_level_2_ptr_desc = {
  0, from_unicode_level_2_desc
};

static const struct lrecord_description from_unicode_level_3_desc[] = {
  { XD_STRUCT_PTR, 0, 256, &from_unicode_level_2_ptr_desc },
  { XD_END }
};

static const struct struct_description from_unicode_level_3_ptr_desc = {
  0, from_unicode_level_3_desc
};

static const struct lrecord_description from_unicode_level_4_desc[] = {
  { XD_STRUCT_PTR, 0, 256, &from_unicode_level_3_ptr_desc },
  { XD_END }
};

/* Not static because each charset has a set of to and from tables and
   needs to describe them to pdump. */
const struct struct_description from_unicode_description[] = {
  { 1, from_unicode_level_1_desc },
  { 2, from_unicode_level_2_desc },
  { 3, from_unicode_level_3_desc },
  { 4, from_unicode_level_4_desc },
  { XD_END }
};

#endif /* 0 */

static Lisp_Object_dynarr *unicode_precedence_dynarr;

static const struct lrecord_description lo_description_1[] = {
  { XD_LISP_OBJECT, 0 },
  { XD_END }
};

static const struct struct_description lo_description = {
  sizeof (Lisp_Object),
  lo_description_1
};

static const struct lrecord_description lod_description_1[] = {
  XD_DYNARR_DESC (Lisp_Object_dynarr, &lo_description),
  { XD_END }
};

static const struct struct_description lisp_object_dynarr_description = {
  sizeof (Lisp_Object_dynarr),
  lod_description_1
};

Lisp_Object Vlanguage_unicode_precedence_list;
Lisp_Object Vdefault_unicode_precedence_list;

Lisp_Object Qignore_first_column;


/************************************************************************/
/*                        Unicode implementation                        */
/************************************************************************/

#define BREAKUP_UNICODE_CODE(val, u1, u2, u3, u4, levels)	\
do {								\
  int buc_val = (val);						\
								\
  (u1) = buc_val >> 24;						\
  (u2) = (buc_val >> 16) & 255;					\
  (u3) = (buc_val >> 8) & 255;					\
  (u4) = buc_val & 255;						\
  (levels) = (buc_val <= 0xFF ? 1 :				\
	      buc_val <= 0xFFFF ? 2 :				\
	      buc_val <= 0xFFFFFF ? 3 :				\
	      4);						\
} while (0)

static void
init_blank_unicode_tables (void)
{
  int i;

  from_unicode_blank_1 = xnew_array (short, 256);
  from_unicode_blank_2 = xnew_array (short *, 256);
  from_unicode_blank_3 = xnew_array (short **, 256);
  from_unicode_blank_4 = xnew_array (short ***, 256);
  for (i = 0; i < 256; i++)
    {
      from_unicode_blank_1[i] = (short) -1;
      from_unicode_blank_2[i] = from_unicode_blank_1;
      from_unicode_blank_3[i] = from_unicode_blank_2;
      from_unicode_blank_4[i] = from_unicode_blank_3;
    }

  to_unicode_blank_1 = xnew_array (int, 96);
  to_unicode_blank_2 = xnew_array (int *, 96);
  for (i = 0; i < 96; i++)
    {
      to_unicode_blank_1[i] = -1;
      to_unicode_blank_2[i] = to_unicode_blank_1;
    }
}

static void *
create_new_from_unicode_table (int level)
{
  switch (level)
    {
      /* WARNING: If you are thinking of compressing these, keep in
	 mind that sizeof (short) does not equal sizeof (short *). */
    case 1:
      {
	short *newtab = xnew_array (short, 256);
	memcpy (newtab, from_unicode_blank_1, 256 * sizeof (short));
	return newtab;
      }
    case 2:
      {
	short **newtab = xnew_array (short *, 256);
	memcpy (newtab, from_unicode_blank_2, 256 * sizeof (short *));
	return newtab;
      }
    case 3:
      {
	short ***newtab = xnew_array (short **, 256);
	memcpy (newtab, from_unicode_blank_3, 256 * sizeof (short **));
	return newtab;
      }
    case 4:
      {
	short ****newtab = xnew_array (short ***, 256);
	memcpy (newtab, from_unicode_blank_4, 256 * sizeof (short ***));
	return newtab;
      }
    default:
      abort ();
      return 0;
    }
}

void
init_charset_unicode_tables (Lisp_Object charset)
{
  if (XCHARSET_DIMENSION (charset) == 1)
    {
      int *to_table = xnew_array (int, 96);
      memcpy (to_table, to_unicode_blank_1, 96 * sizeof (int));
      XCHARSET_TO_UNICODE_TABLE (charset) = to_table;
    }
  else
    {
      int **to_table = xnew_array (int *, 96);
      memcpy (to_table, to_unicode_blank_2, 96 * sizeof (int *));
      XCHARSET_TO_UNICODE_TABLE (charset) = to_table;
    }

  {
    XCHARSET_FROM_UNICODE_TABLE (charset) = create_new_from_unicode_table (1);
    XCHARSET_FROM_UNICODE_LEVELS (charset) = 1;
  }
}

static void
free_from_unicode_table (void *table, int level)
{
  int i;

  switch (level)
    {
    case 2:
      {
	short **tab = (short **) table;
	for (i = 0; i < 256; i++)
	  {
	    if (tab[i] != from_unicode_blank_1)
	      free_from_unicode_table (tab[i], 1);
	  }
	break;
      }
    case 3:
      {
	short ***tab = (short ***) table;
	for (i = 0; i < 256; i++)
	  {
	    if (tab[i] != from_unicode_blank_2)
	      free_from_unicode_table (tab[i], 2);
	  }
	break;
      }
    case 4:
      {
	short ****tab = (short ****) table;
	for (i = 0; i < 256; i++)
	  {
	    if (tab[i] != from_unicode_blank_3)
	      free_from_unicode_table (tab[i], 3);
	  }
	break;
      }
    }

  xfree (table);
}

static void
free_to_unicode_table (void *table, int level)
{
  if (level == 2)
    {
      int i;
      int **tab = (int **) table;

      for (i = 0; i < 96; i++)
	{
	  if (tab[i] != to_unicode_blank_1)
	    free_to_unicode_table (tab[i], 1);
	}
    }

  xfree (table);
}

void
free_charset_unicode_tables (Lisp_Object charset)
{
  free_to_unicode_table (XCHARSET_TO_UNICODE_TABLE (charset),
			 XCHARSET_DIMENSION (charset));
  free_from_unicode_table (XCHARSET_FROM_UNICODE_TABLE (charset),
			   XCHARSET_FROM_UNICODE_LEVELS (charset));
}

#ifdef MEMORY_USAGE_STATS

static Bytecount
compute_from_unicode_table_size_1 (void *table, int level,
				   struct overhead_stats *stats)
{
  int i;
  Bytecount size = 0;

  switch (level)
    {
    case 2:
      {
	short **tab = (short **) table;
	for (i = 0; i < 256; i++)
	  {
	    if (tab[i] != from_unicode_blank_1)
	      size += compute_from_unicode_table_size_1 (tab[i], 1, stats);
	  }
	break;
      }
    case 3:
      {
	short ***tab = (short ***) table;
	for (i = 0; i < 256; i++)
	  {
	    if (tab[i] != from_unicode_blank_2)
	      size += compute_from_unicode_table_size_1 (tab[i], 2, stats);
	  }
	break;
      }
    case 4:
      {
	short ****tab = (short ****) table;
	for (i = 0; i < 256; i++)
	  {
	    if (tab[i] != from_unicode_blank_3)
	      size += compute_from_unicode_table_size_1 (tab[i], 3, stats);
	  }
	break;
      }
    }

  size += malloced_storage_size (table,
				 256 * (level == 1 ? sizeof (short) :
					sizeof (void *)),
				 stats);
  return size;
}

static Bytecount
compute_to_unicode_table_size_1 (void *table, int level,
				 struct overhead_stats *stats)
{
  Bytecount size = 0;

  if (level == 2)
    {
      int i;
      int **tab = (int **) table;

      for (i = 0; i < 96; i++)
	{
	  if (tab[i] != to_unicode_blank_1)
	    size += compute_to_unicode_table_size_1 (tab[i], 1, stats);
	}
    }

  size += malloced_storage_size (table,
				 96 * (level == 1 ? sizeof (int) :
				       sizeof (void *)),
				 stats);
  return size;
}

Bytecount
compute_from_unicode_table_size (Lisp_Object charset,
				 struct overhead_stats *stats)
{
  return (compute_from_unicode_table_size_1
	  (XCHARSET_FROM_UNICODE_TABLE (charset),
	   XCHARSET_FROM_UNICODE_LEVELS (charset),
	   stats));
}

Bytecount
compute_to_unicode_table_size (Lisp_Object charset,
			       struct overhead_stats *stats)
{
  return (compute_to_unicode_table_size_1
	  (XCHARSET_TO_UNICODE_TABLE (charset),
	   XCHARSET_DIMENSION (charset),
	   stats));
}

#endif

#ifdef SLEDGEHAMMER_CHECK_UNICODE

/* "Sledgehammer checks" are checks that verify the self-consistency
   of an entire structure every time a change is about to be made or
   has been made to the structure.  Not fast but a pretty much
   sure-fire way of flushing out any incorrectnesses in the algorithms
   that create the structure.

   Checking only after a change has been made will speed things up by
   a factor of 2, but it doesn't absolutely prove that the code just
   checked caused the problem; perhaps it happened elsewhere, either
   in some code you forgot to sledgehammer check or as a result of
   data corruption. */

static void
assert_not_any_blank_table (void *tab)
{
  assert (tab != from_unicode_blank_1);
  assert (tab != from_unicode_blank_2);
  assert (tab != from_unicode_blank_3);
  assert (tab != from_unicode_blank_4);
  assert (tab != to_unicode_blank_1);
  assert (tab != to_unicode_blank_2);
  assert (tab);
}

static void
sledgehammer_check_from_table (Lisp_Object charset, void *table, int level,
			       int codetop)
{
  int i;

  switch (level)
    {
    case 1:
      {
	short *tab = (short *) table;
	for (i = 0; i < 256; i++)
	  {
	    if (tab[i] != -1)
	      {
		Lisp_Object char_charset;
		int c1, c2;

		assert (valid_emchar_p (tab[i]));
		BREAKUP_EMCHAR (tab[i], char_charset, c1, c2);
		assert (EQ (charset, char_charset));
		if (XCHARSET_DIMENSION (charset) == 1)
		  {
		    int *to_table =
		      (int *) XCHARSET_TO_UNICODE_TABLE (charset);
		    assert_not_any_blank_table (to_table);
		    assert (to_table[c1 - 32] == (codetop << 8) + i);
		  }
		else
		  {
		    int **to_table =
		      (int **) XCHARSET_TO_UNICODE_TABLE (charset);
		    assert_not_any_blank_table (to_table);
		    assert_not_any_blank_table (to_table[c1 - 32]);
		    assert (to_table[c1 - 32][c2 - 32] == (codetop << 8) + i);
		  }
	      }
	  }
	break;
      }
    case 2:
      {
	short **tab = (short **) table;
	for (i = 0; i < 256; i++)
	  {
	    if (tab[i] != from_unicode_blank_1)
	      sledgehammer_check_from_table (charset, tab[i], 1,
					     (codetop << 8) + i);
	  }
	break;
      }
    case 3:
      {
	short ***tab = (short ***) table;
	for (i = 0; i < 256; i++)
	  {
	    if (tab[i] != from_unicode_blank_2)
	      sledgehammer_check_from_table (charset, tab[i], 2,
					     (codetop << 8) + i);
	  }
	break;
      }
    case 4:
      {
	short ****tab = (short ****) table;
	for (i = 0; i < 256; i++)
	  {
	    if (tab[i] != from_unicode_blank_3)
	      sledgehammer_check_from_table (charset, tab[i], 3,
					     (codetop << 8) + i);
	  }
	break;
      }
    default:
      abort ();
    }
}

static void
sledgehammer_check_to_table (Lisp_Object charset, void *table, int level,
			     int codetop)
{
  int i;

  switch (level)
    {
    case 1:
      {
	int *tab = (int *) table;

	if (XCHARSET_CHARS (charset) == 94)
	  {
	    assert (tab[0] == -1);
	    assert (tab[95] == -1);
	  }

	for (i = 0; i < 96; i++)
	  {
	    if (tab[i] != -1)
	      {
		int u4, u3, u2, u1, levels;
		Emchar ch;
		Emchar this_ch;
		short val;
		void *frtab = XCHARSET_FROM_UNICODE_TABLE (charset);

		if (XCHARSET_DIMENSION (charset) == 1)
		  this_ch = make_emchar (charset, i + 32, 0);
		else
		  this_ch = make_emchar (charset, codetop + 32, i + 32);

		assert (tab[i] >= 0);
		BREAKUP_UNICODE_CODE (tab[i], u4, u3, u2, u1, levels);
		assert (levels <= XCHARSET_FROM_UNICODE_LEVELS (charset));

		switch (XCHARSET_FROM_UNICODE_LEVELS (charset))
		  {
		  case 1: val = ((short *) frtab)[u1]; break;
		  case 2: val = ((short **) frtab)[u2][u1]; break;
		  case 3: val = ((short ***) frtab)[u3][u2][u1]; break;
		  case 4: val = ((short ****) frtab)[u4][u3][u2][u1]; break;
		  default: abort ();
		  }

		ch = make_emchar (charset, val >> 8, val & 0xFF);
		assert (ch == this_ch);

		switch (XCHARSET_FROM_UNICODE_LEVELS (charset))
		  {
		  case 4:
		    assert_not_any_blank_table (frtab);
		    frtab = ((short ****) frtab)[u4];
		    /* fall through */
		  case 3:
		    assert_not_any_blank_table (frtab);
		    frtab = ((short ***) frtab)[u3];
		    /* fall through */
		  case 2:
		    assert_not_any_blank_table (frtab);
		    frtab = ((short **) frtab)[u2];
		    /* fall through */
		  case 1:
		    assert_not_any_blank_table (frtab);
		    break;
		  default: abort ();
		  }
	      }
	  }
	break;
      }
    case 2:
      {
	int **tab = (int **) table;

	if (XCHARSET_CHARS (charset) == 94)
	  {
	    assert (tab[0] == to_unicode_blank_1);
	    assert (tab[95] == to_unicode_blank_1);
	  }

	for (i = 0; i < 96; i++)
	  {
	    if (tab[i] != to_unicode_blank_1)
	      sledgehammer_check_to_table (charset, tab[i], 1, i);
	  }
	break;
      }
    default:
      abort ();
    }
}

static void
sledgehammer_check_unicode_tables (Lisp_Object charset)
{
  /* verify that the blank tables have not been modified */
  int i;
  int from_level = XCHARSET_FROM_UNICODE_LEVELS (charset);
  int to_level = XCHARSET_FROM_UNICODE_LEVELS (charset);

  for (i = 0; i < 256; i++)
    {
      assert (from_unicode_blank_1[i] == (short) -1);
      assert (from_unicode_blank_2[i] == from_unicode_blank_1);
      assert (from_unicode_blank_3[i] == from_unicode_blank_2);
      assert (from_unicode_blank_4[i] == from_unicode_blank_3);
    }

  for (i = 0; i < 96; i++)
    {
      assert (to_unicode_blank_1[i] == -1);
      assert (to_unicode_blank_2[i] == to_unicode_blank_1);
    }

  assert (from_level >= 1 && from_level <= 4);

  sledgehammer_check_from_table (charset,
				 XCHARSET_FROM_UNICODE_TABLE (charset),
				 from_level, 0);

  sledgehammer_check_to_table (charset,
			       XCHARSET_TO_UNICODE_TABLE (charset),
			       XCHARSET_DIMENSION (charset), 0);
}

#endif /* SLEDGEHAMMER_CHECK_UNICODE */

static void
set_unicode_conversion (Emchar chr, int code)
{
  Lisp_Object charset;
  int c1, c2;

  BREAKUP_EMCHAR (chr, charset, c1, c2);

  assert (!EQ (charset, Vcharset_ascii));
  assert (!EQ (charset, Vcharset_control_1));
  assert (!EQ (charset, Vcharset_composite));

#ifdef SLEDGEHAMMER_CHECK_UNICODE
  sledgehammer_check_unicode_tables (charset);
#endif

  /* First, the char -> unicode translation */

  if (XCHARSET_DIMENSION (charset) == 1)
    {
      int *to_table = (int *) XCHARSET_TO_UNICODE_TABLE (charset);
      to_table[c1 - 32] = code;
    }
  else
    {
      int **to_table_2 = (int **) XCHARSET_TO_UNICODE_TABLE (charset);
      int *to_table_1;

      assert (XCHARSET_DIMENSION (charset) == 2);
      to_table_1 = to_table_2[c1 - 32];
      if (to_table_1 == to_unicode_blank_1)
	{
	  to_table_1 = xnew_array (int, 96);
	  memcpy (to_table_1, to_unicode_blank_1, 96 * sizeof (int));
	  to_table_2[c1 - 32] = to_table_1;
	}
      to_table_1[c2 - 32] = code;
    }

  /* Then, unicode -> char: much harder */

  {
    int charset_levels;
    int u4, u3, u2, u1;
    int code_levels;
    BREAKUP_UNICODE_CODE (code, u4, u3, u2, u1, code_levels);

    charset_levels = XCHARSET_FROM_UNICODE_LEVELS (charset);

    /* Make sure the charset's tables have at least as many levels as
       the code point has: Note that the charset is guaranteed to have
       at least one level, because it was created that way */
    if (charset_levels < code_levels)
      {
	int i;

	assert (charset_levels > 0);
	for (i = 2; i <= code_levels; i++)
	  {
	    if (charset_levels < i)
	      {
		void *old_table = XCHARSET_FROM_UNICODE_TABLE (charset);
		void *table = create_new_from_unicode_table (i);
		XCHARSET_FROM_UNICODE_TABLE (charset) = table;
		  
		switch (i)
		  {
		  case 2:
		    ((short **) table)[0] = (short *) old_table;
		    break;
		  case 3:
		    ((short ***) table)[0] = (short **) old_table;
		    break;
		  case 4:
		    ((short ****) table)[0] = (short ***) old_table;
		    break;
		  default: abort ();
		  }
	      }
	  }

	charset_levels = code_levels;
	XCHARSET_FROM_UNICODE_LEVELS (charset) = code_levels;
      }

    /* Now, make sure there is a non-default table at each level */
    {
      int i;
      void *table = XCHARSET_FROM_UNICODE_TABLE (charset);

      for (i = charset_levels; i >= 2; i--)
	{
	  switch (i)
	    {
	    case 4:
	      if (((short ****) table)[u4] == from_unicode_blank_3)
		((short ****) table)[u4] =
		  ((short ***) create_new_from_unicode_table (3));
	      table = ((short ****) table)[u4];
	      break;
	    case 3:
	      if (((short ***) table)[u3] == from_unicode_blank_2)
		((short ***) table)[u3] =
		  ((short **) create_new_from_unicode_table (2));
	      table = ((short ***) table)[u3];
	      break;
	    case 2:
	      if (((short **) table)[u2] == from_unicode_blank_1)
		((short **) table)[u2] =
		  ((short *) create_new_from_unicode_table (1));
	      table = ((short **) table)[u2];
	      break;
	    default: abort ();
	    }
	}
    }

    /* Finally, set the character */
	  
    {
      void *table = XCHARSET_FROM_UNICODE_TABLE (charset);
      switch (charset_levels)
	{
	case 1: ((short *) table)[u1] = (c1 << 8) + c2; break;
	case 2: ((short **) table)[u2][u1] = (c1 << 8) + c2; break;
	case 3: ((short ***) table)[u3][u2][u1] = (c1 << 8) + c2; break;
	case 4: ((short ****) table)[u4][u3][u2][u1] = (c1 << 8) + c2; break;
	default:  abort ();
	}
    }
  }

#ifdef SLEDGEHAMMER_CHECK_UNICODE
  sledgehammer_check_unicode_tables (charset);
#endif
}

int
emchar_to_unicode (Emchar chr)
{
  Lisp_Object charset;
  int c1, c2;

  type_checking_assert (valid_emchar_p (chr));
  if (chr < 256)
    return (int) chr;

  BREAKUP_EMCHAR (chr, charset, c1, c2);
  if (EQ (charset, Vcharset_composite))
    return -1; /* #### don't know how to handle */
  else if (XCHARSET_DIMENSION (charset) == 1)
    return ((int *) XCHARSET_TO_UNICODE_TABLE (charset))[c1 - 32];
  else
    return ((int **) XCHARSET_TO_UNICODE_TABLE (charset))[c1 - 32][c2 - 32];
}

static Emchar
unicode_to_char (int code, Lisp_Object_dynarr *charsets)
{
  int u1, u2, u3, u4;
  int code_levels;
  int i;
  int n = Dynarr_length (charsets);

  type_checking_assert (code >= 0);
  if (code < 256)
    return (Emchar) code;

  BREAKUP_UNICODE_CODE (code, u4, u3, u2, u1, code_levels);

  for (i = 0; i < n; i++)
    {
      Lisp_Object charset = Dynarr_at (charsets, i);
      int charset_levels = XCHARSET_FROM_UNICODE_LEVELS (charset);
      if (charset_levels >= code_levels)
	{
	  void *table = XCHARSET_FROM_UNICODE_TABLE (charset);
	  short retval;

	  switch (charset_levels)
	    {
	    case 1: retval = ((short *) table)[u1]; break;
	    case 2: retval = ((short **) table)[u2][u1]; break;
	    case 3: retval = ((short ***) table)[u3][u2][u1]; break;
	    case 4: retval = ((short ****) table)[u4][u3][u2][u1]; break;
	    default: abort (); retval = 0;
	    }

	  if (retval != -1)
	    return make_emchar (charset, retval >> 8, retval & 0xFF);
	}
    }

  return (Emchar) -1;
}

static void
add_charsets_to_precedence_list (Lisp_Object list, int *lbs,
				 Lisp_Object_dynarr *dynarr)
{
  {
    EXTERNAL_LIST_LOOP_2 (elt, list)
      {
	Lisp_Object charset = Fget_charset (elt);
	int lb = XCHARSET_LEADING_BYTE (charset);
	if (lbs[lb - MIN_LEADING_BYTE] == 0)
	  {
	    Dynarr_add (unicode_precedence_dynarr, charset);
	    lbs[lb - MIN_LEADING_BYTE] = 1;
	  }
      }
  }
}

void
recalculate_unicode_precedence (void)
{
  int lbs[NUM_LEADING_BYTES];
  int i;

  for (i = 0; i < NUM_LEADING_BYTES; i++)
    lbs[i] = 0;

  Dynarr_reset (unicode_precedence_dynarr);

  add_charsets_to_precedence_list (Vlanguage_unicode_precedence_list,
				   lbs, unicode_precedence_dynarr);
  add_charsets_to_precedence_list (Vdefault_unicode_precedence_list,
				   lbs, unicode_precedence_dynarr);

  for (i = 0; i < NUM_LEADING_BYTES; i++)
    {
      if (lbs[i] == 0)
	{
	  Lisp_Object charset = charset_by_leading_byte (i + MIN_LEADING_BYTE);
	  if (!NILP (charset))
	    Dynarr_add (unicode_precedence_dynarr, charset);
	}
    }
}

DEFUN ("set-language-unicode-precedence-list",
       Fset_language_unicode_precedence_list,
       1, 1, 0, /*
Set the language-specific precedence list used for Unicode decoding.
This is a list of charsets, which are consulted in order for a translation
matching a given Unicode character.  If no matches are found, the charsets
in the default precedence list (see `set-default-unicode-precedence-list')
are consulted, and then all remaining charsets, in some arbitrary order.

The language-specific precedence list is meant to be set as part of the
language environment initialization; the default precedence list is meant
to be set by the user.
*/
       (list))
{
  {
    EXTERNAL_LIST_LOOP_2 (elt, list)
      Fget_charset (elt);
  }

  Vlanguage_unicode_precedence_list = list;
  recalculate_unicode_precedence ();
  return Qnil;
}

DEFUN ("language-unicode-precedence-list",
       Flanguage_unicode_precedence_list,
       0, 0, 0, /*
Return the language-specific precedence list used for Unicode decoding.
See `set-language-unicode-precedence-list' for more information.
*/
       ())
{
  return Vlanguage_unicode_precedence_list;
}

DEFUN ("set-default-unicode-precedence-list",
       Fset_default_unicode_precedence_list,
       1, 1, 0, /*
Set the default precedence list used for Unicode decoding.
This is meant to be set by the user.  See
`set-language-unicode-precedence-list' for more information.
*/
       (list))
{
  {
    EXTERNAL_LIST_LOOP_2 (elt, list)
      Fget_charset (elt);
  }

  Vdefault_unicode_precedence_list = list;
  recalculate_unicode_precedence ();
  return Qnil;
}

DEFUN ("default-unicode-precedence-list",
       Fdefault_unicode_precedence_list,
       0, 0, 0, /*
Return the default precedence list used for Unicode decoding.
See `set-language-unicode-precedence-list' for more information.
*/
       ())
{
  return Vdefault_unicode_precedence_list;
}

DEFUN ("set-unicode-conversion", Fset_unicode_conversion,
       2, 2, 0, /*
Add conversion information between Unicode codepoints and characters.
CHARACTER is one of the following:

-- A character (in which case CODE must be a non-negative integer; values
   above 2^20 - 1 are allowed for the purpose of specifying private
   characters, but will cause errors when converted to utf-16)
-- A vector of characters (in which case CODE must be a vector of integers
   of the same length)
*/
       (character, code))
{
  Lisp_Object charset;

  CHECK_CHAR (character);
  CHECK_NATNUM (code);

  charset = emchar_charset (XCHAR (character));
  if (EQ (charset, Vcharset_ascii) ||
      EQ (charset, Vcharset_control_1) ||
      EQ (charset, Vcharset_composite))
    signal_error (Qinvalid_argument, "Cannot set Unicode translation for ASCII, Control-1 or Composite chars",
		  character);

  set_unicode_conversion (XCHAR (character), XINT (code));
  return Qnil;
}

#endif /* MULE */

DEFUN ("char-to-unicode", Fchar_to_unicode, 1, 1, 0, /*
Convert character to Unicode codepoint.
When there is no international support (i.e. MULE is not defined),
this function simply does `char-to-int'.
*/
       (character))
{
  CHECK_CHAR (character);
#ifdef MULE
  return make_int (emchar_to_unicode (XCHAR (character)));
#else
  return Fchar_to_int (character);
#endif /* MULE */
}

DEFUN ("unicode-to-char", Funicode_to_char, 1, 2, 0, /*
Convert Unicode codepoint to character.
CODE should be a non-negative integer.
If CHARSETS is given, it should be a list of charsets, and only those
charsets will be consulted, in the given order, for a translation.
Otherwise, the default ordering of all charsets will be given (see
`set-unicode-charset-precedence').

When there is no international support (i.e. MULE is not defined),
this function simply does `int-to-char' and ignores the CHARSETS
argument..
*/
       (code, charsets))
{
#ifdef MULE
  Lisp_Object_dynarr *dyn;
  int lbs[NUM_LEADING_BYTES];
  int c;

  CHECK_NATNUM (code);
  c = XINT (code);
  {
    EXTERNAL_LIST_LOOP_2 (elt, charsets)
      Fget_charset (elt);
  }

  if (NILP (charsets))
    {
      Emchar ret = unicode_to_char (c, unicode_precedence_dynarr);
      if (ret == -1)
	return Qnil;
      return make_char (ret);
    }

  dyn = Dynarr_new (Lisp_Object);
  memset (lbs, 0, NUM_LEADING_BYTES * sizeof (int));
  add_charsets_to_precedence_list (charsets, lbs, dyn);
  {
    Emchar ret = unicode_to_char (c, unicode_precedence_dynarr);
    Dynarr_free (dyn);
    if (ret == -1)
      return Qnil;
    return make_char (ret);
  }
#else
  CHECK_NATNUM (code);
  return Fint_to_char (code);
#endif /* MULE */
}

static Lisp_Object
cerrar_el_fulano (Lisp_Object fulano)
{
  FILE *file = (FILE *) get_opaque_ptr (fulano);
  retry_fclose (file);
  return Qnil;
}

#ifdef MULE

DEFUN ("parse-unicode-translation-table", Fparse_unicode_translation_table,
       2, 6, 0, /*
Parse Unicode translation data in FILENAME for CHARSET.
Data is text, in the form of one translation per line -- charset
codepoint followed by Unicode codepoint.  Numbers are decimal or hex
\(preceded by 0x).  Comments are marked with a #.  Charset codepoints
for two-dimensional charsets should have the first octet stored in the
high 8 bits of the hex number and the second in the low 8 bits.

If START and END are given, only charset codepoints within the given
range will be processed.  If OFFSET is given, that value will be added
to all charset codepoints in the file to obtain the internal charset
codepoint.  START and END apply to the codepoints in the file, before
OFFSET is applied.

\(Note that, as usual, we assume that octets are in the range 32 to
127 or 33 to 126.  If you have a table in kuten form, with octets in
the range 1 to 94, you will have to use an offset of 5140,
i.e. 0x2020.)

FLAGS, if specified, control further how the tables are interpreted
and are used to special-case certain known table weirdnesses in the
Unicode tables:

`ignore-first-column'
  Exactly as it sounds.  The JIS X 0208 tables have 3 columns of data instead
  of 2; the first is the Shift-JIS codepoint.
`big5'
  The charset codepoint is a Big Five codepoint; convert it to the
  proper hacked-up codepoint in `chinese-big5-1' or `chinese-big5-2'.
*/
     (filename, charset, start, end, offset, flags))
{
  int st = 0, en = INT_MAX, of = 0;
  FILE *file;
  struct gcpro gcpro1;
  char line[1025];
  int fondo = specpdl_depth ();
  int ignore_first_column = 0;
  int big5 = 0;

  CHECK_STRING (filename);
  charset = Fget_charset (charset);
  if (!NILP (start))
    {
      CHECK_INT (start);
      st = XINT (start);
    }
  if (!NILP (end))
    {
      CHECK_INT (end);
      en = XINT (end);
    }
  if (!NILP (offset))
    {
      CHECK_INT (offset);
      of = XINT (offset);
    }

  if (!LISTP (flags))
    flags = list1 (flags);

  {
    EXTERNAL_LIST_LOOP_2 (elt, flags)
      {
	if (EQ (elt, Qignore_first_column))
	  ignore_first_column = 1;
	else if (EQ (elt, Qbig5))
	  big5 = 1;
	else
	  invalid_constant
	    ("Unrecognized `parse-unicode-table' flag", elt);
      }
  }

  GCPRO1 (filename);
  filename = Fexpand_file_name (filename, Qnil);
  file = qxe_fopen (XSTRING_DATA (filename), READ_TEXT);
  if (!file)
    report_file_error ("Cannot open", filename);
  record_unwind_protect (cerrar_el_fulano, make_opaque_ptr (file));
  while (fgets (line, sizeof (line), file))
    {
      char *p = line;
      int cp1, cp2, endcount;
      int cp1high, cp1low;
      int dummy;

      while (*p) /* erase all comments out of the line */
	{
	  if (*p == '#')
	    *p = '\0';
	  else
	    p++;
	}
      /* see if line is nothing but whitespace and skip if so */
      p = line + strspn (line, " \t\n\r\f");
      if (!*p)
	continue;
      /* NOTE: It appears that MS Windows and Newlib sscanf() have
	 different interpretations for whitespace (== "skip all whitespace
	 at processing point"): Newlib requires at least one corresponding
	 whitespace character in the input, but MS allows none.  The
	 following would be easier to write if we could count on the MS
	 interpretation.

	 Also, the return value does NOT include %n storage. */
      if ((!ignore_first_column ?
	   sscanf (p, "%i %i%n", &cp1, &cp2, &endcount) < 2 :
	   sscanf (p, "%i %i %i%n", &dummy, &cp1, &cp2, &endcount) < 3)
	  || *(p + endcount + strspn (p + endcount, " \t\n\r\f")))
	{
	  warn_when_safe (Qunicode, Qwarning,
			  "Unrecognized line in translation file %s:\n%s",
			  XSTRING_DATA (filename), line);
	  continue;
	}
      if (cp1 >= st && cp1 <= en)
	{
	  cp1 += of;
	  if (cp1 < 0 || cp1 >= 65536)
	    {
	    out_of_range:
	      warn_when_safe (Qunicode, Qwarning,
			      "Out of range first codepoint 0x%x in "
			      "translation file %s:\n%s",
			      cp1, XSTRING_DATA (filename), line);
	      continue;
	    }

	  cp1high = cp1 >> 8;
	  cp1low = cp1 & 255;

	  if (big5)
	    {
	      Emchar ch = decode_big5_char (cp1high, cp1low);
	      if (ch == -1)

		warn_when_safe (Qunicode, Qwarning,
				"Out of range Big5 codepoint 0x%x in "
				"translation file %s:\n%s",
				cp1, XSTRING_DATA (filename), line);
	      else
		set_unicode_conversion (ch, cp2);
	    }
	  else
	    {
	      int l1, h1, l2, h2;
	      Emchar emch;

	      switch (XCHARSET_TYPE (charset))
		{
		case CHARSET_TYPE_94: l1 = 33; h1 = 126; l2 = 0; h2 = 0; break;
		case CHARSET_TYPE_96: l1 = 32; h1 = 127; l2 = 0; h2 = 0; break;
		case CHARSET_TYPE_94X94: l1 = 33; h1 = 126; l2 = 33; h2 = 126;
		  break;
		case CHARSET_TYPE_96X96: l1 = 32; h1 = 127; l2 = 32; h2 = 127;
		  break;
		default: abort (); l1 = 0; h1 = 0; l2 = 0; h2 = 0;
		}

	      if (cp1high < l2 || cp1high > h2 || cp1low < l1 || cp1low > h1)
		goto out_of_range;

	      emch = (cp1high == 0 ? make_emchar (charset, cp1low, 0) :
		      make_emchar (charset, cp1high, cp1low));
	      set_unicode_conversion (emch, cp2);
	    }
	}
    }

  if (ferror (file))
    report_file_error ("IO error when reading", filename);

  unbind_to (fondo); /* close file */
  UNGCPRO;
  return Qnil;
}

#endif /* MULE */


/************************************************************************/
/*                         Unicode coding system                        */
/************************************************************************/

/* ISO 10646 UTF-16, UCS-4, UTF-8, UTF-7, etc. */
DEFINE_CODING_SYSTEM_TYPE (unicode);

enum unicode_type
{
  UNICODE_UTF_16,
  UNICODE_UTF_8,
  UNICODE_UTF_7,
  UNICODE_UCS_4,
};

struct unicode_coding_system
{
  enum unicode_type type;
  int little_endian :1;
  int need_bom :1;
};

#define CODING_SYSTEM_UNICODE_TYPE(codesys) \
  (CODING_SYSTEM_TYPE_DATA (codesys, unicode)->type)
#define XCODING_SYSTEM_UNICODE_TYPE(codesys) \
  CODING_SYSTEM_UNICODE_TYPE (XCODING_SYSTEM (codesys))
#define CODING_SYSTEM_UNICODE_LITTLE_ENDIAN(codesys) \
  (CODING_SYSTEM_TYPE_DATA (codesys, unicode)->little_endian)
#define XCODING_SYSTEM_UNICODE_LITTLE_ENDIAN(codesys) \
  CODING_SYSTEM_UNICODE_LITTLE_ENDIAN (XCODING_SYSTEM (codesys))
#define CODING_SYSTEM_UNICODE_NEED_BOM(codesys) \
  (CODING_SYSTEM_TYPE_DATA (codesys, unicode)->need_bom)
#define XCODING_SYSTEM_UNICODE_NEED_BOM(codesys) \
  CODING_SYSTEM_UNICODE_NEED_BOM (XCODING_SYSTEM (codesys))

struct unicode_coding_stream
{
  /* decode */
  unsigned char counter;
  int seen_char;
  /* encode */
  Lisp_Object current_charset;
  int current_char_boundary;
  int wrote_bom;
};

static const struct lrecord_description unicode_coding_system_description[] = {
  { XD_END }
};

/* Decode a UCS-2 or UCS-4 character into a buffer.  If the lookup fails, use
   <GETA MARK> (U+3013) of JIS X 0208, which means correct character
   is not found, instead.
   #### do something more appropriate (use blob?)
        Danger, Will Robinson!  Data loss.  Should we signal user? */
static void
decode_unicode_char (int ch, unsigned_char_dynarr *dst,
		     struct unicode_coding_stream *data, int ignore_bom)
{
  if (ch == 0xFEFF && !data->seen_char && ignore_bom)
    ;
  else
    {
#ifdef MULE
      Emchar chr = unicode_to_char (ch, unicode_precedence_dynarr);

      if (chr != -1)
	{
	  Intbyte work[MAX_EMCHAR_LEN];
	  int len;

	  len = set_charptr_emchar (work, chr);
	  Dynarr_add_many (dst, work, len);
	}
      else
	{
	  Dynarr_add (dst, LEADING_BYTE_JAPANESE_JISX0208);
	  Dynarr_add (dst, 34 + 128);
	  Dynarr_add (dst, 46 + 128);
	}
#else
      Dynarr_add (dst, (Intbyte) ch);
#endif /* MULE */
    }

  data->seen_char = 1;
}

static void
encode_unicode_char_1 (int code, unsigned_char_dynarr *dst,
		       enum unicode_type type, int little_endian)
{
  switch (type)
    {
    case UNICODE_UTF_16:
      if (little_endian)
	{
	  Dynarr_add (dst, (unsigned char) (code & 255));
	  Dynarr_add (dst, (unsigned char) ((code >> 8) & 255));
	}
      else
	{
	  Dynarr_add (dst, (unsigned char) ((code >> 8) & 255));
	  Dynarr_add (dst, (unsigned char) (code & 255));
	}
      break;

    case UNICODE_UCS_4:
      if (little_endian)
	{
	  Dynarr_add (dst, (unsigned char) (code & 255));
	  Dynarr_add (dst, (unsigned char) ((code >> 8) & 255));
	  Dynarr_add (dst, (unsigned char) ((code >> 16) & 255));
	  Dynarr_add (dst, (unsigned char) (code >> 24));
	}
      else
	{
	  Dynarr_add (dst, (unsigned char) (code >> 24));
	  Dynarr_add (dst, (unsigned char) ((code >> 16) & 255));
	  Dynarr_add (dst, (unsigned char) ((code >> 8) & 255));
	  Dynarr_add (dst, (unsigned char) (code & 255));
	}
      break;

    case UNICODE_UTF_8:
      if (code <= 0x7f)
	{
	  Dynarr_add (dst, (unsigned char) code);
	}
      else if (code <= 0x7ff)
	{
	  Dynarr_add (dst, (unsigned char) ((code >> 6) | 0xc0));
	  Dynarr_add (dst, (unsigned char) ((code & 0x3f) | 0x80));
	}
      else if (code <= 0xffff)
	{
	  Dynarr_add (dst, (unsigned char) ((code >> 12) | 0xe0));
	  Dynarr_add (dst, (unsigned char) (((code >>  6) & 0x3f) | 0x80));
	  Dynarr_add (dst, (unsigned char) ((code        & 0x3f) | 0x80));
	}
      else if (code <= 0x1fffff)
	{
	  Dynarr_add (dst, (unsigned char) ((code >> 18) | 0xf0));
	  Dynarr_add (dst, (unsigned char) (((code >> 12) & 0x3f) | 0x80));
	  Dynarr_add (dst, (unsigned char) (((code >>  6) & 0x3f) | 0x80));
	  Dynarr_add (dst, (unsigned char) ((code        & 0x3f) | 0x80));
	}
      else if (code <= 0x3ffffff)
	{
	  Dynarr_add (dst, (unsigned char) ((code >> 24) | 0xf8));
	  Dynarr_add (dst, (unsigned char) (((code >> 18) & 0x3f) | 0x80));
	  Dynarr_add (dst, (unsigned char) (((code >> 12) & 0x3f) | 0x80));
	  Dynarr_add (dst, (unsigned char) (((code >>  6) & 0x3f) | 0x80));
	  Dynarr_add (dst, (unsigned char) ((code        & 0x3f) | 0x80));
	}
      else
	{
	  Dynarr_add (dst, (unsigned char) ((code >> 30) | 0xfc));
	  Dynarr_add (dst, (unsigned char) (((code >> 24) & 0x3f) | 0x80));
	  Dynarr_add (dst, (unsigned char) (((code >> 18) & 0x3f) | 0x80));
	  Dynarr_add (dst, (unsigned char) (((code >> 12) & 0x3f) | 0x80));
	  Dynarr_add (dst, (unsigned char) (((code >>  6) & 0x3f) | 0x80));
	  Dynarr_add (dst, (unsigned char) ((code        & 0x3f) | 0x80));
	}
      break;

    case UNICODE_UTF_7: abort ();

    default: abort ();
    }
}

static void
encode_unicode_char (Lisp_Object charset, int h, int l,
		     unsigned_char_dynarr *dst, enum unicode_type type,
		     int little_endian)
{
#ifdef MULE
  int code = emchar_to_unicode (make_emchar (charset, h & 127, l & 127));

  if (code == -1)
    {
      if (type != UNICODE_UTF_16 &&
	  XCHARSET_DIMENSION (charset) == 2 &&
	  XCHARSET_CHARS (charset) == 94)
	{
	  unsigned char final = XCHARSET_FINAL (charset);

	  if (('@' <= final) && (final < 0x7f))
	    code = (0xe00000 + (final - '@') * 94 * 94
		    + ((h & 127) - 33) * 94 + (l & 127) - 33);
	  else
	    code = '?';
	}
      else
	code = '?';
    }
#else
  int code = h;
#endif /* MULE */

  encode_unicode_char_1 (code, dst, type, little_endian);
}

static Bytecount
unicode_convert (struct coding_stream *str, const UExtbyte *src,
		 unsigned_char_dynarr *dst, Bytecount n)
{
  unsigned int ch    = str->ch;
  struct unicode_coding_stream *data = CODING_STREAM_TYPE_DATA (str, unicode);
  enum unicode_type type =
    XCODING_SYSTEM_UNICODE_TYPE (str->codesys);
  int little_endian = XCODING_SYSTEM_UNICODE_LITTLE_ENDIAN (str->codesys);
  int ignore_bom = XCODING_SYSTEM_UNICODE_NEED_BOM (str->codesys);
  Bytecount orign = n;

  if (str->direction == CODING_DECODE)
    {
      unsigned char counter = data->counter;

      while (n--)
	{
	  UExtbyte c = *src++;

	  switch (type)
	    {
	    case UNICODE_UTF_8:
	      switch (counter)
		{
		case 0:
		  if (c >= 0xfc)
		    {
		      ch = c & 0x01;
		      counter = 5;
		    }
		  else if (c >= 0xf8)
		    {
		      ch = c & 0x03;
		      counter = 4;
		    }
		  else if (c >= 0xf0)
		    {
		      ch = c & 0x07;
		      counter = 3;
		    }
		  else if (c >= 0xe0)
		    {
		      ch = c & 0x0f;
		      counter = 2;
		    }
		  else if (c >= 0xc0)
		    {
		      ch = c & 0x1f;
		      counter = 1;
		    }
		  else
		    decode_unicode_char (c, dst, data, ignore_bom);
		  break;
		case 1:
		  ch = (ch << 6) | (c & 0x3f);
		  decode_unicode_char (ch, dst, data, ignore_bom);
		  ch = 0;
		  counter = 0;
		  break;
		default:
		  ch = (ch << 6) | (c & 0x3f);
		  counter--;
		}
	      break;

	    case UNICODE_UTF_16:
	      if (little_endian)
		ch = (c << counter) | ch;
	      else
		ch = (ch << 8) | c;
	      counter += 8;
	      if (counter == 16)
		{
		  int tempch = ch;
		  ch = 0;
		  counter = 0;
		  decode_unicode_char (tempch, dst, data, ignore_bom);
		}
	      break;

	    case UNICODE_UCS_4:
	      if (little_endian)
		ch = (c << counter) | ch;
	      else
		ch = (ch << 8) | c;
	      counter += 8;
	      if (counter == 32)
		{
		  int tempch = ch;
		  ch = 0;
		  counter = 0;
		  if (tempch < 0)
		    {
		      /* !!#### indicate an error */
		      tempch = '~';
		    }
		  decode_unicode_char (tempch, dst, data, ignore_bom);
		}
	      break;

	    case UNICODE_UTF_7:
	      abort ();
	      break;

	    default: abort ();
	    }

	}
      if (str->eof)
	DECODE_OUTPUT_PARTIAL_CHAR (ch, dst);

      data->counter = counter;
    }
  else
    {
      unsigned char char_boundary = data->current_char_boundary;
      Lisp_Object charset = data->current_charset;

#ifdef ENABLE_COMPOSITE_CHARS
      /* flags for handling composite chars.  We do a little switcheroo
	 on the source while we're outputting the composite char. */
      Bytecount saved_n = 0;
      const Intbyte *saved_src = NULL;
      int in_composite = 0;

    back_to_square_n:
#endif /* ENABLE_COMPOSITE_CHARS */

      if (XCODING_SYSTEM_UNICODE_NEED_BOM (str->codesys) && !data->wrote_bom)
	{
	  encode_unicode_char_1 (0xFEFF, dst, type, little_endian);
	  data->wrote_bom = 1;
	}

      while (n--)
	{
	  Intbyte c = *src++;

#ifdef MULE
	  if (byte_ascii_p (c))
#endif /* MULE */
	    {			/* Processing ASCII character */
	      ch = 0;
	      encode_unicode_char (Vcharset_ascii, c, 0, dst, type,
				   little_endian);

	      char_boundary = 1;
	    }
#ifdef MULE
	  else if (intbyte_leading_byte_p (c) || intbyte_leading_byte_p (ch))
	    {			/* Processing Leading Byte */
	      ch = 0;
	      charset = charset_by_leading_byte (c);
	      if (leading_byte_prefix_p(c))
		ch = c;
	      char_boundary = 0;
	    }
	  else
	    {			/* Processing Non-ASCII character */
	      char_boundary = 1;
	      if (EQ (charset, Vcharset_control_1))
		encode_unicode_char (Vcharset_control_1, c, 0, dst,
				     type, little_endian);
	      else
		{
		  switch (XCHARSET_REP_BYTES (charset))
		    {
		    case 2:
		      encode_unicode_char (charset, c, 0, dst, type,
					   little_endian);
		      break;
		    case 3:
		      if (XCHARSET_PRIVATE_P (charset))
			{
			  encode_unicode_char (charset, c, 0, dst, type,
					       little_endian);
			  ch = 0;
			}
		      else if (ch)
			{
#ifdef ENABLE_COMPOSITE_CHARS
			  if (EQ (charset, Vcharset_composite))
			    {
			      if (in_composite)
				{
				  /* #### Bother! We don't know how to
				     handle this yet. */
				  encode_unicode_char (Vcharset_ascii, '~', 0,
						       dst, type,
						       little_endian);
				}
			      else
				{
				  Emchar emch = make_emchar (Vcharset_composite,
							   ch & 0x7F,
							   c & 0x7F);
				  Lisp_Object lstr =
				    composite_char_string (emch);
				  saved_n = n;
				  saved_src = src;
				  in_composite = 1;
				  src = XSTRING_DATA   (lstr);
				  n   = XSTRING_LENGTH (lstr);
				}
			    }
			  else
#endif /* ENABLE_COMPOSITE_CHARS */
			    encode_unicode_char (charset, ch, c, dst, type,
						 little_endian);
			  ch = 0;
			}
		      else
			{
			  ch = c;
			  char_boundary = 0;
			}
		      break;
		    case 4:
		      if (ch)
			{
			  encode_unicode_char (charset, ch, c, dst, type,
					       little_endian);
			  ch = 0;
			}
		      else
			{
			  ch = c;
			  char_boundary = 0;
			}
		      break;
		    default:
		      abort ();
		    }
		}
	    }
#endif /* MULE */
	}

#ifdef ENABLE_COMPOSITE_CHARS
      if (in_composite)
	{
	  n = saved_n;
	  src = saved_src;
	  in_composite = 0;
	  goto back_to_square_n; /* Wheeeeeeeee ..... */
	}
#endif /* ENABLE_COMPOSITE_CHARS */

      data->current_char_boundary = char_boundary;
      data->current_charset = charset;

      /* La palabra se hizo carne! */
      /* A palavra fez-se carne! */
      /* Whatever. */
    }

  str->ch    = ch;
  return orign;
}

/* DEFINE_DETECTOR (utf_7); */
DEFINE_DETECTOR (utf_8);
DEFINE_DETECTOR_CATEGORY (utf_8, utf_8);
DEFINE_DETECTOR (ucs_4);
DEFINE_DETECTOR_CATEGORY (ucs_4, ucs_4);
DEFINE_DETECTOR (utf_16);
DEFINE_DETECTOR_CATEGORY (utf_16, utf_16);
DEFINE_DETECTOR_CATEGORY (utf_16, utf_16_little_endian);
DEFINE_DETECTOR_CATEGORY (utf_16, utf_16_bom);
DEFINE_DETECTOR_CATEGORY (utf_16, utf_16_little_endian_bom);

struct ucs_4_detector
{
  int in_ucs_4_byte;
};

static void
ucs_4_detect (struct detection_state *st, const UExtbyte *src,
	      Bytecount n)
{
  struct ucs_4_detector *data = DETECTION_STATE_DATA (st, ucs_4);

  while (n--)
    {
      UExtbyte c = *src++;
      switch (data->in_ucs_4_byte)
	{
	case 0:
	  if (c >= 128)
	    {
	      DET_RESULT (st, ucs_4) = DET_NEARLY_IMPOSSIBLE;
	      return;
	    }
	  else
	    data->in_ucs_4_byte++;
	  break;
	case 3:
	  data->in_ucs_4_byte = 0;
	  break;
	default:
	  data->in_ucs_4_byte++;
	}
    }

  /* !!#### write this for real */
  DET_RESULT (st, ucs_4) = DET_AS_LIKELY_AS_UNLIKELY;
}

struct utf_16_detector
{
  unsigned int seen_ffff:1;
  unsigned int seen_forward_bom:1;
  unsigned int seen_rev_bom:1;
  int byteno;
  int prev_char;
  int text, rev_text;
};

static void
utf_16_detect (struct detection_state *st, const UExtbyte *src,
	       Bytecount n)
{
  struct utf_16_detector *data = DETECTION_STATE_DATA (st, utf_16);
  
  while (n--)
    {
      UExtbyte c = *src++;
      int prevc = data->prev_char;
      if (data->byteno == 1 && c == 0xFF && prevc == 0xFE)
	data->seen_forward_bom = 1;
      else if (data->byteno == 1 && c == 0xFE && prevc == 0xFF)
	data->seen_rev_bom = 1;

      if (data->byteno & 1)
	{
	  if (c == 0xFF && prevc == 0xFF)
	    data->seen_ffff = 1;
	  if (prevc == 0
	      && (c == '\r' || c == '\n'
		  || (c >= 0x20 && c <= 0x7E)))
	    data->text++;
	  if (c == 0
	      && (prevc == '\r' || prevc == '\n'
		  || (prevc >= 0x20 && prevc <= 0x7E)))
	    data->rev_text++;
	  if (prevc == 0x20 && (c == 0x28 || c == 0x29))
	    data->text++;
	  if (c == 0x20 && (prevc == 0x28 || prevc == 0x29))
	    data->rev_text++;
	}

      data->byteno++;
      data->prev_char = c;
    }

  {
    int variance_indicates_big_endian =
      (data->text >= 10
       && (data->rev_text == 0
	   || data->text / data->rev_text >= 10));
    int variance_indicates_little_endian =
      (data->rev_text >= 10
       && (data->text == 0
	   || data->rev_text / data->text >= 10));

    if (data->seen_ffff)
      SET_DET_RESULTS (st, utf_16, DET_NEARLY_IMPOSSIBLE);
    else if (data->seen_forward_bom)
      {
	SET_DET_RESULTS (st, utf_16, DET_NEARLY_IMPOSSIBLE);
	if (variance_indicates_big_endian)
	  DET_RESULT (st, utf_16_bom) = DET_NEAR_CERTAINTY;
	else if (variance_indicates_little_endian)
	  DET_RESULT (st, utf_16_bom) = DET_SOMEWHAT_LIKELY;
	else
	  DET_RESULT (st, utf_16_bom) = DET_QUITE_PROBABLE;
      }
    else if (data->seen_forward_bom)
      {
	SET_DET_RESULTS (st, utf_16, DET_NEARLY_IMPOSSIBLE);
	if (variance_indicates_big_endian)
	  DET_RESULT (st, utf_16_bom) = DET_NEAR_CERTAINTY;
	else if (variance_indicates_little_endian)
	  /* #### may need to rethink */
	  DET_RESULT (st, utf_16_bom) = DET_SOMEWHAT_LIKELY;
	else
	  /* #### may need to rethink */
	  DET_RESULT (st, utf_16_bom) = DET_QUITE_PROBABLE;
      }
    else if (data->seen_rev_bom)
      {
	SET_DET_RESULTS (st, utf_16, DET_NEARLY_IMPOSSIBLE);
	if (variance_indicates_little_endian)
	  DET_RESULT (st, utf_16_little_endian_bom) = DET_NEAR_CERTAINTY;
	else if (variance_indicates_big_endian)
	  /* #### may need to rethink */
	  DET_RESULT (st, utf_16_little_endian_bom) = DET_SOMEWHAT_LIKELY;
	else
	  /* #### may need to rethink */
	  DET_RESULT (st, utf_16_little_endian_bom) = DET_QUITE_PROBABLE;
      }
    else if (variance_indicates_big_endian)
      {
	SET_DET_RESULTS (st, utf_16, DET_NEARLY_IMPOSSIBLE);
	DET_RESULT (st, utf_16) = DET_SOMEWHAT_LIKELY;
	DET_RESULT (st, utf_16_little_endian) = DET_SOMEWHAT_UNLIKELY;
      }
    else if (variance_indicates_little_endian)
      {
	SET_DET_RESULTS (st, utf_16, DET_NEARLY_IMPOSSIBLE);
	DET_RESULT (st, utf_16) = DET_SOMEWHAT_UNLIKELY;
	DET_RESULT (st, utf_16_little_endian) = DET_SOMEWHAT_LIKELY;
      }
    else
      SET_DET_RESULTS (st, utf_16, DET_AS_LIKELY_AS_UNLIKELY);
  }
}

struct utf_8_detector
{
  int in_utf_8_byte;
};

static void
utf_8_detect (struct detection_state *st, const UExtbyte *src,
 	      Bytecount n)
{
  struct utf_8_detector *data = DETECTION_STATE_DATA (st, utf_8);

  while (n--)
    {
      UExtbyte c = *src++;
      switch (data->in_utf_8_byte)
	{
	case 0:
	  if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
	    {
	      DET_RESULT (st, utf_8) = DET_SOMEWHAT_UNLIKELY;
	      return;
	    }
	  else if (c >= 0xfc)
	    data->in_utf_8_byte = 5;
	  else if (c >= 0xf8)
	    data->in_utf_8_byte = 4;
	  else if (c >= 0xf0)
	    data->in_utf_8_byte = 3;
	  else if (c >= 0xe0)
	    data->in_utf_8_byte = 2;
	  else if (c >= 0xc0)
	    data->in_utf_8_byte = 1;
	  else if (c >= 0x80)
	    {
	      DET_RESULT (st, utf_8) = DET_SOMEWHAT_UNLIKELY;
	      return;
	    }
	  break;
	default:
	  if ((c & 0xc0) != 0x80)
	    {
	      DET_RESULT (st, utf_8) = DET_SOMEWHAT_UNLIKELY;
	      return;
	    }
	  else
	    data->in_utf_8_byte--;
	}
    }
  DET_RESULT (st, utf_8) = DET_SOMEWHAT_LIKELY;
}

static void
unicode_init_coding_stream (struct coding_stream *str)
{
  struct unicode_coding_stream *data =
    CODING_STREAM_TYPE_DATA (str, unicode);
  xzero (*data);
  data->current_charset = Qnil;
}

static void
unicode_rewind_coding_stream (struct coding_stream *str)
{
  unicode_init_coding_stream (str);
}

static int
unicode_putprop (Lisp_Object codesys, Lisp_Object key, Lisp_Object value)
{
  if (EQ (key, Qtype))
    {
      enum unicode_type type;

      if (EQ (value, Qutf_8))
	type = UNICODE_UTF_8;
      else if (EQ (value, Qutf_16))
	type = UNICODE_UTF_16;
      else if (EQ (value, Qutf_7))
	type = UNICODE_UTF_7;
      else if (EQ (value, Qucs_4))
	type = UNICODE_UCS_4;
      else
	invalid_constant ("Invalid Unicode type", key);
      
      XCODING_SYSTEM_UNICODE_TYPE (codesys) = type;
    }
  else if (EQ (key, Qlittle_endian))
    XCODING_SYSTEM_UNICODE_LITTLE_ENDIAN (codesys) = !NILP (value);
  else if (EQ (key, Qneed_bom))
    XCODING_SYSTEM_UNICODE_NEED_BOM (codesys) = !NILP (value);
  else
    return 0;
  return 1;
}

static Lisp_Object
unicode_getprop (Lisp_Object coding_system, Lisp_Object prop)
{
  if (EQ (prop, Qtype))
    {
      switch (XCODING_SYSTEM_UNICODE_TYPE (coding_system))
	{
	case UNICODE_UTF_16: return Qutf_16;
	case UNICODE_UTF_8: return Qutf_8;
	case UNICODE_UTF_7: return Qutf_7;
	case UNICODE_UCS_4: return Qucs_4;
	default: abort ();
	}
    }
  else if (EQ (prop, Qlittle_endian))
    return XCODING_SYSTEM_UNICODE_LITTLE_ENDIAN (coding_system) ? Qt : Qnil;
  else if (EQ (prop, Qneed_bom))
    return XCODING_SYSTEM_UNICODE_NEED_BOM (coding_system) ? Qt : Qnil;
  return Qunbound;
}

static void
unicode_print (Lisp_Object cs, Lisp_Object printcharfun, int escapeflag)
{
  write_fmt_string_lisp (printcharfun, "(%s", 1, unicode_getprop (cs, Qtype));
  if (XCODING_SYSTEM_UNICODE_LITTLE_ENDIAN (cs))
    write_c_string (printcharfun, ", little-endian");
  if (XCODING_SYSTEM_UNICODE_NEED_BOM (cs))
    write_c_string (printcharfun, ", need-bom");
  write_c_string (printcharfun, ")");
}

int
dfc_coding_system_is_unicode (Lisp_Object codesys)
{
#ifdef HAVE_WIN32_CODING_SYSTEMS
  codesys = Fget_coding_system (codesys);
  return (EQ (XCODING_SYSTEM_TYPE (codesys), Qunicode) &&
	  XCODING_SYSTEM_UNICODE_TYPE (codesys) == UNICODE_UTF_16 &&
	  XCODING_SYSTEM_UNICODE_LITTLE_ENDIAN (codesys));
	      
#else
  return 0;
#endif
}


/************************************************************************/
/*                             Initialization                           */
/************************************************************************/

void
syms_of_unicode (void)
{
#ifdef MULE
  DEFSUBR (Fset_language_unicode_precedence_list);
  DEFSUBR (Flanguage_unicode_precedence_list);
  DEFSUBR (Fset_default_unicode_precedence_list);
  DEFSUBR (Fdefault_unicode_precedence_list);
  DEFSUBR (Fset_unicode_conversion);

  DEFSUBR (Fparse_unicode_translation_table);

  DEFSYMBOL (Qignore_first_column);
#endif /* MULE */

  DEFSUBR (Fchar_to_unicode);
  DEFSUBR (Funicode_to_char);

  DEFSYMBOL (Qunicode);
  DEFSYMBOL (Qucs_4);
  DEFSYMBOL (Qutf_16);
  DEFSYMBOL (Qutf_8);
  DEFSYMBOL (Qutf_7);

  DEFSYMBOL (Qneed_bom);

  DEFSYMBOL (Qutf_16);
  DEFSYMBOL (Qutf_16_little_endian);
  DEFSYMBOL (Qutf_16_bom);
  DEFSYMBOL (Qutf_16_little_endian_bom);
}

void
coding_system_type_create_unicode (void)
{
  INITIALIZE_CODING_SYSTEM_TYPE_WITH_DATA (unicode, "unicode-coding-system-p");
  CODING_SYSTEM_HAS_METHOD (unicode, print);
  CODING_SYSTEM_HAS_METHOD (unicode, convert);
  CODING_SYSTEM_HAS_METHOD (unicode, init_coding_stream);
  CODING_SYSTEM_HAS_METHOD (unicode, rewind_coding_stream);
  CODING_SYSTEM_HAS_METHOD (unicode, putprop);
  CODING_SYSTEM_HAS_METHOD (unicode, getprop);

  INITIALIZE_DETECTOR (utf_8);
  DETECTOR_HAS_METHOD (utf_8, detect);
  INITIALIZE_DETECTOR_CATEGORY (utf_8, utf_8);

  INITIALIZE_DETECTOR (ucs_4);
  DETECTOR_HAS_METHOD (ucs_4, detect);
  INITIALIZE_DETECTOR_CATEGORY (ucs_4, ucs_4);

  INITIALIZE_DETECTOR (utf_16);
  DETECTOR_HAS_METHOD (utf_16, detect);
  INITIALIZE_DETECTOR_CATEGORY (utf_16, utf_16);
  INITIALIZE_DETECTOR_CATEGORY (utf_16, utf_16_little_endian);
  INITIALIZE_DETECTOR_CATEGORY (utf_16, utf_16_bom);
  INITIALIZE_DETECTOR_CATEGORY (utf_16, utf_16_little_endian_bom);
}

void
reinit_coding_system_type_create_unicode (void)
{
  REINITIALIZE_CODING_SYSTEM_TYPE (unicode);
}

void
reinit_vars_of_unicode (void)
{
#ifdef MULE
  init_blank_unicode_tables ();
#endif /* MULE */
}

void
vars_of_unicode (void)
{
  reinit_vars_of_unicode ();

  Fprovide (intern ("unicode"));

#ifdef MULE
  staticpro (&Vlanguage_unicode_precedence_list);
  Vlanguage_unicode_precedence_list = Qnil;

  staticpro (&Vdefault_unicode_precedence_list);
  Vdefault_unicode_precedence_list = Qnil;

  unicode_precedence_dynarr = Dynarr_new (Lisp_Object);
  dump_add_root_struct_ptr (&unicode_precedence_dynarr,
			    &lisp_object_dynarr_description);
#if 0
  dump_add_root_thing (&to_unicode_blank_1, to_unicode_level_1_desc);
  dump_add_root_thing (&to_unicode_blank_2, to_unicode_level_2_desc);

  dump_add_root_thing (&from_unicode_blank_1, from_unicode_level_1_desc);
  dump_add_root_thing (&from_unicode_blank_2, from_unicode_level_2_desc);
  dump_add_root_thing (&from_unicode_blank_3, from_unicode_level_3_desc);
  dump_add_root_thing (&from_unicode_blank_4, from_unicode_level_4_desc);
#endif

#endif /* MULE */
}