view src/undo.c @ 853:2b6fa2618f76

[xemacs-hg @ 2002-05-28 08:44:22 by ben] merge my stderr-proc ws make-docfile.c: Fix places where we forget to check for EOF. code-init.el: Don't use CRLF conversion by default on process output. CMD.EXE and friends work both ways but Cygwin programs don't like the CRs. code-process.el, multicast.el, process.el: Removed. Improvements to call-process-internal: -- allows a buffer to be specified for input and stderr output -- use it on all systems -- implement C-g as documented -- clean up and comment call-process-region uses new call-process facilities; no temp file. remove duplicate funs in process.el. comment exactly how coding systems work and fix various problems. open-multicast-group now does similar coding-system frobbing to open-network-stream. dumped-lisp.el, faces.el, msw-faces.el: Fix some hidden errors due to code not being defined at the right time. xemacs.mak: Add -DSTRICT. ================================================================ ALLOW SEPARATION OF STDOUT AND STDERR IN PROCESSES ================================================================ Standard output and standard error can be processed separately in a process. Each can have its own buffer, its own mark in that buffer, and its filter function. You can specify a separate buffer for stderr in `start-process' to get things started, or use the new primitives: set-process-stderr-buffer process-stderr-buffer process-stderr-mark set-process-stderr-filter process-stderr-filter Also, process-send-region takes a 4th optional arg, a buffer. Currently always uses a pipe() under Unix to read the error output. (#### Would a PTY be better?) sysdep.h, sysproc.h, unexfreebsd.c, unexsunos4.c, nt.c, emacs.c, callproc.c, symsinit.h, sysdep.c, Makefile.in.in, process-unix.c: Delete callproc.c. Move child_setup() to process-unix.c. wait_for_termination() now only needed on a few really old systems. console-msw.h, event-Xt.c, event-msw.c, event-stream.c, event-tty.c, event-unixoid.c, events.h, process-nt.c, process-unix.c, process.c, process.h, procimpl.h: Rewrite the process methods to handle a separate channel for error input. Create Lstreams for reading in the error channel. Many process methods need change. In general the changes are fairly clear as they involve duplicating what's used for reading the normal stdout and changing for stderr -- although tedious, as such changes are required throughout the entire process code. Rewrote the code that reads process output to do two loops, one for stdout and one for stderr. gpmevent.c, tooltalk.c: set_process_filter takes an argument for stderr. ================================================================ NEW ERROR-TRAPPING MECHANISM ================================================================ Totally rewrite error trapping code to be unified and support more features. Basic function is call_trapping_problems(), which lets you specify, by means of flags, what sorts of problems you want trapped. these can include -- quit -- errors -- throws past the function -- creation of "display objects" (e.g. buffers) -- deletion of already-existing "display objects" (e.g. buffers) -- modification of already-existing buffers -- entering the debugger -- gc -- errors->warnings (ala suspended errors) etc. All other error funs rewritten in terms of this one. Various older mechanisms removed or rewritten. window.c, insdel.c, console.c, buffer.c, device.c, frame.c: When creating a display object, added call to note_object_created(), for use with trapping_problems mechanism. When deleting, call check_allowed_operation() and note_object deleted(). The trapping-problems code records the objects created since the call-trapping-problems began. Those objects can be deleted, but none others (i.e. previously existing ones). bytecode.c, cmdloop.c: internal_catch takes another arg. eval.c: Add long comments describing the "five lists" used to maintain state (backtrace, gcpro, specbind, etc.) in the Lisp engine. backtrace.h, eval.c: Implement trapping-problems mechanism, eliminate old mechanisms or redo in terms of new one. frame.c, gutter.c: Flush out the concept of "critical display section", defined by the in_display() var. Use an internal_bind() to get it reset, rather than just doing it at end, because there may be a non-local exit. event-msw.c, event-stream.c, console-msw.h, device.c, dialog-msw.c, frame.c, frame.h, intl.c, toolbar.c, menubar-msw.c, redisplay.c, alloc.c, menubar-x.c: Make use of new trapping-errors stuff and rewrite code based on old mechanisms. glyphs-widget.c, redisplay.h: Protect calling Lisp in redisplay. insdel.c: Protect hooks against deleting existing buffers. frame-msw.c: Use EQ, not EQUAL in hash tables whose keys are just numbers. Otherwise we run into stickiness in redisplay because internal_equal() can QUIT. ================================================================ SIGNAL, C-G CHANGES ================================================================ Here we change the way that C-g interacts with event reading. The idea is that a C-g occurring while we're reading a user event should be read as C-g, but elsewhere should be a QUIT. The former code did all sorts of bizarreness -- requiring that no QUIT occurs anywhere in event-reading code (impossible to enforce given the stuff called or Lisp code invoked), and having some weird system involving enqueue/dequeue of a C-g and interaction with Vquit_flag -- and it didn't work. Now, we simply enclose all code where we want C-g read as an event with {begin/end}_dont_check_for_quit(). This completely turns off the mechanism that checks (and may remove or alter) C-g in the read-ahead queues, so we just get the C-g normal. Signal.c documents this very carefully. cmdloop.c: Correct use of dont_check_for_quit to new scheme, remove old out-of-date comments. event-stream.c: Fix C-g handling to actually work. device-x.c: Disable quit checking when err out. signal.c: Cleanup. Add large descriptive comment. process-unix.c, process-nt.c, sysdep.c: Use QUIT instead of REALLY_QUIT. It's not necessary to use REALLY_QUIT and just confuses the issue. lisp.h: Comment quit handlers. ================================================================ CONS CHANGES ================================================================ free_cons() now takes a Lisp_Object not the result of XCONS(). car and cdr have been renamed so that they don't get used directly; go through XCAR(), XCDR() instead. alloc.c, dired.c, editfns.c, emodules.c, fns.c, glyphs-msw.c, glyphs-x.c, glyphs.c, keymap.c, minibuf.c, search.c, eval.c, lread.c, lisp.h: Correct free_cons calling convention: now takes Lisp_Object, not Lisp_Cons chartab.c: Eliminate direct use of ->car, ->cdr, should be black box. callint.c: Rewrote using EXTERNAL_LIST_LOOP to avoid use of Lisp_Cons. ================================================================ USE INTERNAL-BIND-* ================================================================ eval.c: Cleanups of these funs. alloc.c, fileio.c, undo.c, specifier.c, text.c, profile.c, lread.c, redisplay.c, menubar-x.c, macros.c: Rewrote to use internal_bind_int() and internal_bind_lisp_object() in place of whatever varied and cumbersome mechanisms were formerly there. ================================================================ SPECBIND SANITY ================================================================ backtrace.h: - Improved comments backtrace.h, bytecode.c, eval.c: Add new mechanism check_specbind_stack_sanity() for sanity checking code each time the catchlist or specbind stack change. Removed older prototype of same mechanism. ================================================================ MISC ================================================================ lisp.h, insdel.c, window.c, device.c, console.c, buffer.c: Fleshed out authorship. device-msw.c: Correct bad Unicode-ization. print.c: Be more careful when not initialized or in fatal error handling. search.c: Eliminate running_asynch_code, an FSF holdover. alloc.c: Added comments about gc-cons-threshold. dialog-x.c: Use begin_gc_forbidden() around code to build up a widget value tree, like in menubar-x.c. gui.c: Use Qunbound not Qnil as the default for gethash. lisp-disunion.h, lisp-union.h: Added warnings on use of VOID_TO_LISP(). lisp.h: Use ERROR_CHECK_STRUCTURES to turn on ERROR_CHECK_TRAPPING_PROBLEMS and ERROR_CHECK_TYPECHECK lisp.h: Add assert_with_message. lisp.h: Add macros for gcproing entire arrays. (You could do this before but it required manual twiddling the gcpro structure.) lisp.h: Add prototypes for new functions defined elsewhere.
author ben
date Tue, 28 May 2002 08:45:36 +0000
parents e38acbeb1cae
children 13a418960a88
line wrap: on
line source

/* undo handling for XEmacs.
   Copyright (C) 1990, 1992, 1993, 1994 Free Software Foundation, Inc.

This file is part of XEmacs.

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* Synched up with: FSF 19.28. */

/* This file has been Mule-ized. */

#include <config.h>
#include "lisp.h"
#include "buffer.h"
#include "extents.h"

/* Maintained in event-stream.c */
extern Charbpos last_point_position;
extern Lisp_Object last_point_position_buffer;

/* Extent code needs to know about undo because the behavior of insert()
   with regard to extents varies depending on whether we are inside
   an undo or not. */
int inside_undo;

/* Last buffer for which undo information was recorded.  */
static Lisp_Object last_undo_buffer;

Lisp_Object Qinhibit_read_only;

/* The first time a command records something for undo.
   it also allocates the undo-boundary object
   which will be added to the list at the end of the command.
   This ensures we can't run out of space while trying to make
   an undo-boundary.  */
static Lisp_Object pending_boundary;

static void
undo_boundary (struct buffer *b)
{
  Lisp_Object tem = Fcar (b->undo_list);
  if (!NILP (tem))
    {
      /* One way or another, cons nil onto the front of the undo list.  */
      if (CONSP (pending_boundary))
	{
	  /* If we have preallocated the cons cell to use here,
	     use that one.  */
	  XCDR (pending_boundary) = b->undo_list;
	  b->undo_list = pending_boundary;
	  pending_boundary = Qnil;
	}
      else
	b->undo_list = Fcons (Qnil, b->undo_list);
    }
}


static int
undo_prelude (struct buffer *b, int hack_pending_boundary)
{
  if (EQ (b->undo_list, Qt))
    return (0);

  if (NILP (last_undo_buffer)
      || (BUFFER_BASE_BUFFER (b)
	  != BUFFER_BASE_BUFFER (XBUFFER (last_undo_buffer))))
    {
      undo_boundary (b);
      last_undo_buffer = wrap_buffer (b);
    }

  /* Allocate a cons cell to be the undo boundary after this command.  */
  if (hack_pending_boundary && NILP (pending_boundary))
    pending_boundary = Fcons (Qnil, Qnil);

  if (BUF_MODIFF (b) <= BUF_SAVE_MODIFF (b))
    {
      /* Record that an unmodified buffer is about to be changed.
	 Record the file modification date so that when undoing this
	 entry we can tell whether it is obsolete because the file was
	 saved again.  */
      b->undo_list
	= Fcons (Fcons (Qt,
			Fcons (make_int ((b->modtime >> 16) & 0xffff),
			       make_int (b->modtime & 0xffff))),
		 b->undo_list);
    }
  return 1;
}



/* Record an insertion that just happened or is about to happen,
   for LENGTH characters at position BEG.
   (It is possible to record an insertion before or after the fact
   because we don't need to record the contents.)  */

void
record_insert (struct buffer *b, Charbpos beg, Charcount length)
{
  if (!undo_prelude (b, 1))
    return;

  /* If this is following another insertion and consecutive with it
     in the buffer, combine the two.  */
  if (CONSP (b->undo_list))
    {
      Lisp_Object elt;
      elt = XCAR (b->undo_list);
      if (CONSP (elt)
	  && INTP (XCAR (elt))
	  && INTP (XCDR (elt))
	  && XINT (XCDR (elt)) == beg)
	{
	  XCDR (elt) = make_int (beg + length);
	  return;
	}
    }

  b->undo_list = Fcons (Fcons (make_int (beg),
                               make_int (beg + length)),
                        b->undo_list);
}

/* Record that a deletion is about to take place,
   for LENGTH characters at location BEG.  */

void
record_delete (struct buffer *b, Charbpos beg, Charcount length)
{
  /* This function can GC */
  Lisp_Object sbeg;
  int at_boundary;

  if (!undo_prelude (b, 1))
    return;

  at_boundary = (CONSP (b->undo_list)
		 && NILP (XCAR (b->undo_list)));

  if (BUF_PT (b) == beg + length)
    sbeg = make_int (-beg);
  else
    sbeg = make_int (beg);

  /* If we are just after an undo boundary, and
     point wasn't at start of deleted range, record where it was.  */
  if (at_boundary
      && BUFFERP (last_point_position_buffer)
      && b == XBUFFER (last_point_position_buffer)
      && last_point_position != XINT (sbeg))
    b->undo_list = Fcons (make_int (last_point_position), b->undo_list);

  b->undo_list = Fcons (Fcons (make_string_from_buffer (b, beg,
							length),
                               sbeg),
                        b->undo_list);
}

/* Record that a replacement is about to take place,
   for LENGTH characters at location BEG.
   The replacement does not change the number of characters.  */

void
record_change (struct buffer *b, Charbpos beg, Charcount length)
{
  record_delete (b, beg, length);
  record_insert (b, beg, length);
}

/* Record that an EXTENT is about to be attached or detached in its buffer.
   This works much like a deletion or insertion, except that there's no string.
   The tricky part is that the buffer we operate on comes from EXTENT.
   Most extent changes happen as a side effect of string insertion and
   deletion; this call is solely for Fdetach_extent() and Finsert_extent().
   */
void
record_extent (Lisp_Object extent, int attached)
{
  Lisp_Object obj = Fextent_object (extent);

  if (BUFFERP (obj))
    {
      Lisp_Object token;
      struct buffer *b = XBUFFER (obj);
      if (!undo_prelude (b, 1))
	return;
      if (attached)
	token = extent;
      else
	token = list3 (extent, Fextent_start_position (extent),
		       Fextent_end_position (extent));
      b->undo_list = Fcons (token, b->undo_list);
    }
  else
    return;
}

#if 0 /* FSFmacs */
/* Record a change in property PROP (whose old value was VAL)
   for LENGTH characters starting at position BEG in BUFFER.  */

record_property_change (Charbpos beg, Charcount length,
                        Lisp_Object prop, Lisp_Object value,
                        Lisp_Object buffer)
{
  Lisp_Object lbeg, lend, entry;
  struct buffer *b = XBUFFER (buffer);

  if (!undo_prelude (b, 1))
    return;

  lbeg = make_int (beg);
  lend = make_int (beg + length);
  entry = Fcons (Qnil, Fcons (prop, Fcons (value, Fcons (lbeg, lend))));
  b->undo_list = Fcons (entry, b->undo_list);
}
#endif /* FSFmacs */


DEFUN ("undo-boundary", Fundo_boundary, 0, 0, 0, /*
Mark a boundary between units of undo.
An undo command will stop at this point,
but another undo command will undo to the previous boundary.
*/
       ())
{
  if (EQ (current_buffer->undo_list, Qt))
    return Qnil;
  undo_boundary (current_buffer);
  return Qnil;
}

/* At garbage collection time, make an undo list shorter at the end,
   returning the truncated list.
   MINSIZE and MAXSIZE are the limits on size allowed, as described below.
   In practice, these are the values of undo-threshold and
   undo-high-threshold.  */

Lisp_Object
truncate_undo_list (Lisp_Object list, int minsize, int maxsize)
{
  Lisp_Object prev, next, last_boundary;
  int size_so_far = 0;

  if (!(minsize > 0 || maxsize > 0))
    return list;

  prev = Qnil;
  next = list;
  last_boundary = Qnil;

  if (!CONSP (list))
    return (list);

  /* Always preserve at least the most recent undo record.
     If the first element is an undo boundary, skip past it. */
  if (CONSP (next)
      && NILP (XCAR (next)))
    {
      /* Add in the space occupied by this element and its chain link.  */
      size_so_far += sizeof (Lisp_Cons);

      /* Advance to next element.  */
      prev = next;
      next = XCDR (next);
    }
  while (CONSP (next)
	 && !NILP (XCAR (next)))
    {
      Lisp_Object elt;
      elt = XCAR (next);

      /* Add in the space occupied by this element and its chain link.  */
      size_so_far += sizeof (Lisp_Cons);
      if (CONSP (elt))
	{
	  size_so_far += sizeof (Lisp_Cons);
	  if (STRINGP (XCAR (elt)))
	    size_so_far += (sizeof (Lisp_String) - 1
			    + XSTRING_LENGTH (XCAR (elt)));
	}

      /* Advance to next element.  */
      prev = next;
      next = XCDR (next);
    }
  if (CONSP (next))
    last_boundary = prev;

  while (CONSP (next))
    {
      Lisp_Object elt;
      elt = XCAR (next);

      /* When we get to a boundary, decide whether to truncate
	 either before or after it.  The lower threshold, MINSIZE,
	 tells us to truncate after it.  If its size pushes past
	 the higher threshold MAXSIZE as well, we truncate before it.  */
      if (NILP (elt))
	{
	  if (size_so_far > maxsize && maxsize > 0)
	    break;
	  last_boundary = prev;
	  if (size_so_far > minsize && minsize > 0)
	    break;
	}

      /* Add in the space occupied by this element and its chain link.  */
      size_so_far += sizeof (Lisp_Cons);
      if (CONSP (elt))
	{
	  size_so_far += sizeof (Lisp_Cons);
	  if (STRINGP (XCAR (elt)))
	    size_so_far += (sizeof (Lisp_String) - 1
                            + XSTRING_LENGTH (XCAR (elt)));
	}

      /* Advance to next element.  */
      prev = next;
      next = XCDR (next);
    }

  /* If we scanned the whole list, it is short enough; don't change it.  */
  if (NILP (next))
    return list;

  /* Truncate at the boundary where we decided to truncate.  */
  if (!NILP (last_boundary))
    {
      XCDR (last_boundary) = Qnil;
      return list;
    }
  else
    return Qnil;
}

DEFUN ("primitive-undo", Fprimitive_undo, 2, 2, 0, /*
Undo COUNT records from the front of the list LIST.
Return what remains of the list.
*/
       (count, list))
{
  struct gcpro gcpro1, gcpro2;
  Lisp_Object next = Qnil;
  /* This function can GC */
  int arg;
  int speccount = internal_bind_int (&inside_undo, 1);

#if 0  /* This is a good feature, but would make undo-start
	  unable to do what is expected.  */
  Lisp_Object tem;

  /* If the head of the list is a boundary, it is the boundary
     preceding this command.  Get rid of it and don't count it.  */
  tem = Fcar (list);
  if (NILP (tem))
    list = Fcdr (list);
#endif

  CHECK_INT (count);
  arg = XINT (count);
  next = Qnil;
  GCPRO2 (next, list);

  /* Don't let read-only properties interfere with undo.  */
  if (NILP (current_buffer->read_only))
    specbind (Qinhibit_read_only, Qt);

  while (arg > 0)
    {
      while (1)
	{
          if (NILP (list))
            break;
          else if (!CONSP (list))
            goto rotten;
	  next = XCAR (list);
	  list = XCDR (list);
	  /* Exit inner loop at undo boundary.  */
	  if (NILP (next))
	    break;
	  /* Handle an integer by setting point to that value.  */
	  else if (INTP (next))
	    BUF_SET_PT (current_buffer,
			charbpos_clip_to_bounds (BUF_BEGV (current_buffer),
					       XINT (next),
					       BUF_ZV (current_buffer)));
	  else if (CONSP (next))
	    {
	      Lisp_Object car = XCAR (next);
              Lisp_Object cdr = XCDR (next);

              if (EQ (car, Qt))
		{
		  /* Element (t high . low) records previous modtime.  */
		  Lisp_Object high, low;
		  int mod_time;
		  if (!CONSP (cdr)) goto rotten;
		  high = XCAR (cdr);
		  low = XCDR (cdr);
		  if (!INTP (high) || !INTP (low)) goto rotten;
		  mod_time = (XINT (high) << 16) + XINT (low);
		  /* If this records an obsolete save
		     (not matching the actual disk file)
		     then don't mark unmodified.  */
		  if (mod_time != current_buffer->modtime)
		    break;
#ifdef CLASH_DETECTION
		  Funlock_buffer ();
#endif /* CLASH_DETECTION */
		  /* may GC under ENERGIZE: */
		  Fset_buffer_modified_p (Qnil, Qnil);
		}
	      else if (EXTENTP (car))
		{
		  /* Element (extent start end) means that EXTENT was
		     detached, and we need to reattach it. */
		  Lisp_Object extent_obj, start, end;

		  extent_obj = car;
		  start = Fcar (cdr);
		  end = Fcar (Fcdr (cdr));

		  if (!INTP (start) || !INTP (end))
		    goto rotten;
		  Fset_extent_endpoints (extent_obj, start, end,
					 Fcurrent_buffer ());
		}
#if 0 /* FSFmacs */
	      else if (EQ (car, Qnil))
		{
		  /* Element (nil prop val beg . end) is property change.  */
		  Lisp_Object beg, end, prop, val;

		  prop = Fcar (cdr);
		  cdr = Fcdr (cdr);
		  val = Fcar (cdr);
		  cdr = Fcdr (cdr);
		  beg = Fcar (cdr);
		  end = Fcdr (cdr);

		  Fput_text_property (beg, end, prop, val, Qnil);
		}
#endif /* FSFmacs */
	      else if (INTP (car) && INTP (cdr))
		{
		  /* Element (BEG . END) means range was inserted.  */

		  if (XINT (car) < BUF_BEGV (current_buffer)
		      || XINT (cdr) > BUF_ZV (current_buffer))
		    signal_error (Qinvalid_operation, "Changes to be undone are outside visible portion of buffer", Qunbound);
		  /* Set point first thing, so that undoing this undo
		     does not send point back to where it is now.  */
		  Fgoto_char (car, Qnil);
		  Fdelete_region (car, cdr, Qnil);
		}
	      else if (STRINGP (car) && INTP (cdr))
		{
		  /* Element (STRING . POS) means STRING was deleted.  */
		  Lisp_Object membuf = car;
		  int pos = XINT (cdr);

		  if (pos < 0)
		    {
		      if (-pos < BUF_BEGV (current_buffer) || -pos > BUF_ZV (current_buffer))
			signal_error (Qinvalid_operation, "Changes to be undone are outside visible portion of buffer", Qunbound);
		      BUF_SET_PT (current_buffer, -pos);
		      Finsert (1, &membuf);
		    }
		  else
		    {
		      if (pos < BUF_BEGV (current_buffer) || pos > BUF_ZV (current_buffer))
			signal_error (Qinvalid_operation, "Changes to be undone are outside visible portion of buffer", Qunbound);
		      BUF_SET_PT (current_buffer, pos);

		      /* Insert before markers so that if the mark is
			 currently on the boundary of this deletion, it
			 ends up on the other side of the now-undeleted
			 text from point.  Since undo doesn't even keep
			 track of the mark, this isn't really necessary,
			 but it may lead to better behavior in certain
			 situations.

			 I'm doubtful that this is safe; you could mess
			 up the process-output mark in shell buffers, so
			 until I hear a compelling reason for this change,
			 I'm leaving it out. -jwz
			 */
		      /* Finsert_before_markers (1, &membuf); */
		      Finsert (1, &membuf);
		      BUF_SET_PT (current_buffer, pos);
		    }
		}
	      else
		{
		  goto rotten;
		}
	    }
	  else if (EXTENTP (next))
	    Fdetach_extent (next);
          else
	    {
	    rotten:
	      signal_continuable_error
		(Qinvalid_state,
		 "Something rotten in the state of undo", next);
	    }
        }
      arg--;
    }

  UNGCPRO;
  return unbind_to_1 (speccount, list);
}

void
syms_of_undo (void)
{
  DEFSUBR (Fprimitive_undo);
  DEFSUBR (Fundo_boundary);
  DEFSYMBOL (Qinhibit_read_only);
}

void
reinit_vars_of_undo (void)
{
  inside_undo = 0;
}

void
vars_of_undo (void)
{
  reinit_vars_of_undo ();

  pending_boundary = Qnil;
  staticpro (&pending_boundary);
  last_undo_buffer = Qnil;
  staticpro (&last_undo_buffer);
}