Mercurial > hg > xemacs-beta
view src/search.c @ 853:2b6fa2618f76
[xemacs-hg @ 2002-05-28 08:44:22 by ben]
merge my stderr-proc ws
make-docfile.c: Fix places where we forget to check for EOF.
code-init.el: Don't use CRLF conversion by default on process output. CMD.EXE and
friends work both ways but Cygwin programs don't like the CRs.
code-process.el, multicast.el, process.el: Removed.
Improvements to call-process-internal:
-- allows a buffer to be specified for input and stderr output
-- use it on all systems
-- implement C-g as documented
-- clean up and comment
call-process-region uses new call-process facilities; no temp file.
remove duplicate funs in process.el.
comment exactly how coding systems work and fix various problems.
open-multicast-group now does similar coding-system frobbing to
open-network-stream.
dumped-lisp.el, faces.el, msw-faces.el: Fix some hidden errors due to code not being defined at the right time.
xemacs.mak: Add -DSTRICT.
================================================================
ALLOW SEPARATION OF STDOUT AND STDERR IN PROCESSES
================================================================
Standard output and standard error can be processed separately in
a process. Each can have its own buffer, its own mark in that buffer,
and its filter function. You can specify a separate buffer for stderr
in `start-process' to get things started, or use the new primitives:
set-process-stderr-buffer
process-stderr-buffer
process-stderr-mark
set-process-stderr-filter
process-stderr-filter
Also, process-send-region takes a 4th optional arg, a buffer.
Currently always uses a pipe() under Unix to read the error output.
(#### Would a PTY be better?)
sysdep.h, sysproc.h, unexfreebsd.c, unexsunos4.c, nt.c, emacs.c, callproc.c, symsinit.h, sysdep.c, Makefile.in.in, process-unix.c: Delete callproc.c. Move child_setup() to process-unix.c.
wait_for_termination() now only needed on a few really old systems.
console-msw.h, event-Xt.c, event-msw.c, event-stream.c, event-tty.c, event-unixoid.c, events.h, process-nt.c, process-unix.c, process.c, process.h, procimpl.h: Rewrite the process methods to handle a separate channel for
error input. Create Lstreams for reading in the error channel.
Many process methods need change. In general the changes are
fairly clear as they involve duplicating what's used for reading
the normal stdout and changing for stderr -- although tedious,
as such changes are required throughout the entire process code.
Rewrote the code that reads process output to do two loops, one
for stdout and one for stderr.
gpmevent.c, tooltalk.c: set_process_filter takes an argument for stderr.
================================================================
NEW ERROR-TRAPPING MECHANISM
================================================================
Totally rewrite error trapping code to be unified and support more
features. Basic function is call_trapping_problems(), which lets
you specify, by means of flags, what sorts of problems you want
trapped. these can include
-- quit
-- errors
-- throws past the function
-- creation of "display objects" (e.g. buffers)
-- deletion of already-existing "display objects" (e.g. buffers)
-- modification of already-existing buffers
-- entering the debugger
-- gc
-- errors->warnings (ala suspended errors)
etc. All other error funs rewritten in terms of this one.
Various older mechanisms removed or rewritten.
window.c, insdel.c, console.c, buffer.c, device.c, frame.c: When creating a display object, added call to
note_object_created(), for use with trapping_problems mechanism.
When deleting, call check_allowed_operation() and note_object
deleted().
The trapping-problems code records the objects created since the
call-trapping-problems began. Those objects can be deleted, but
none others (i.e. previously existing ones).
bytecode.c, cmdloop.c: internal_catch takes another arg.
eval.c: Add long comments describing the "five lists" used to maintain
state (backtrace, gcpro, specbind, etc.) in the Lisp engine.
backtrace.h, eval.c: Implement trapping-problems mechanism, eliminate old mechanisms or
redo in terms of new one.
frame.c, gutter.c: Flush out the concept of "critical display section", defined by
the in_display() var. Use an internal_bind() to get it reset,
rather than just doing it at end, because there may be a non-local
exit.
event-msw.c, event-stream.c, console-msw.h, device.c, dialog-msw.c, frame.c, frame.h, intl.c, toolbar.c, menubar-msw.c, redisplay.c, alloc.c, menubar-x.c: Make use of new trapping-errors stuff and rewrite code based on
old mechanisms.
glyphs-widget.c, redisplay.h: Protect calling Lisp in redisplay.
insdel.c: Protect hooks against deleting existing buffers.
frame-msw.c: Use EQ, not EQUAL in hash tables whose keys are just numbers.
Otherwise we run into stickiness in redisplay because
internal_equal() can QUIT.
================================================================
SIGNAL, C-G CHANGES
================================================================
Here we change the way that C-g interacts with event reading. The
idea is that a C-g occurring while we're reading a user event
should be read as C-g, but elsewhere should be a QUIT. The former
code did all sorts of bizarreness -- requiring that no QUIT occurs
anywhere in event-reading code (impossible to enforce given the
stuff called or Lisp code invoked), and having some weird system
involving enqueue/dequeue of a C-g and interaction with Vquit_flag
-- and it didn't work.
Now, we simply enclose all code where we want C-g read as an event
with {begin/end}_dont_check_for_quit(). This completely turns off
the mechanism that checks (and may remove or alter) C-g in the
read-ahead queues, so we just get the C-g normal.
Signal.c documents this very carefully.
cmdloop.c: Correct use of dont_check_for_quit to new scheme, remove old
out-of-date comments.
event-stream.c: Fix C-g handling to actually work.
device-x.c: Disable quit checking when err out.
signal.c: Cleanup. Add large descriptive comment.
process-unix.c, process-nt.c, sysdep.c: Use QUIT instead of REALLY_QUIT.
It's not necessary to use REALLY_QUIT and just confuses the issue.
lisp.h: Comment quit handlers.
================================================================
CONS CHANGES
================================================================
free_cons() now takes a Lisp_Object not the result of XCONS().
car and cdr have been renamed so that they don't get used directly;
go through XCAR(), XCDR() instead.
alloc.c, dired.c, editfns.c, emodules.c, fns.c, glyphs-msw.c, glyphs-x.c, glyphs.c, keymap.c, minibuf.c, search.c, eval.c, lread.c, lisp.h: Correct free_cons calling convention: now takes Lisp_Object,
not Lisp_Cons
chartab.c: Eliminate direct use of ->car, ->cdr, should be black box.
callint.c: Rewrote using EXTERNAL_LIST_LOOP to avoid use of Lisp_Cons.
================================================================
USE INTERNAL-BIND-*
================================================================
eval.c: Cleanups of these funs.
alloc.c, fileio.c, undo.c, specifier.c, text.c, profile.c, lread.c, redisplay.c, menubar-x.c, macros.c: Rewrote to use internal_bind_int() and internal_bind_lisp_object()
in place of whatever varied and cumbersome mechanisms were
formerly there.
================================================================
SPECBIND SANITY
================================================================
backtrace.h: - Improved comments
backtrace.h, bytecode.c, eval.c: Add new mechanism check_specbind_stack_sanity() for sanity
checking code each time the catchlist or specbind stack change.
Removed older prototype of same mechanism.
================================================================
MISC
================================================================
lisp.h, insdel.c, window.c, device.c, console.c, buffer.c: Fleshed out authorship.
device-msw.c: Correct bad Unicode-ization.
print.c: Be more careful when not initialized or in fatal error handling.
search.c: Eliminate running_asynch_code, an FSF holdover.
alloc.c: Added comments about gc-cons-threshold.
dialog-x.c: Use begin_gc_forbidden() around code to build up a widget value
tree, like in menubar-x.c.
gui.c: Use Qunbound not Qnil as the default for
gethash.
lisp-disunion.h, lisp-union.h: Added warnings on use of VOID_TO_LISP().
lisp.h: Use ERROR_CHECK_STRUCTURES to turn on
ERROR_CHECK_TRAPPING_PROBLEMS and ERROR_CHECK_TYPECHECK
lisp.h: Add assert_with_message.
lisp.h: Add macros for gcproing entire arrays. (You could do this before
but it required manual twiddling the gcpro structure.)
lisp.h: Add prototypes for new functions defined elsewhere.
author | ben |
---|---|
date | Tue, 28 May 2002 08:45:36 +0000 |
parents | e7ee5f8bde58 |
children | 804517e16990 |
line wrap: on
line source
/* String search routines for XEmacs. Copyright (C) 1985, 1986, 1987, 1992-1995 Free Software Foundation, Inc. Copyright (C) 1995 Sun Microsystems, Inc. Copyright (C) 2001, 2002 Ben Wing. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: FSF 19.29, except for region-cache stuff. */ /* Hacked on for Mule by Ben Wing, December 1994 and August 1995. */ /* This file has been Mule-ized. */ #include <config.h> #include "lisp.h" #include "buffer.h" #include "insdel.h" #include "opaque.h" #ifdef REGION_CACHE_NEEDS_WORK #include "region-cache.h" #endif #include "syntax.h" #include <sys/types.h> #include "regex.h" #include "casetab.h" #include "chartab.h" #define TRANSLATE(table, pos) \ (!NILP (table) ? TRT_TABLE_OF (table, (Emchar) pos) : pos) #define REGEXP_CACHE_SIZE 20 /* If the regexp is non-nil, then the buffer contains the compiled form of that regexp, suitable for searching. */ struct regexp_cache { struct regexp_cache *next; Lisp_Object regexp; struct re_pattern_buffer buf; char fastmap[0400]; /* Nonzero means regexp was compiled to do full POSIX backtracking. */ char posix; }; /* The instances of that struct. */ static struct regexp_cache searchbufs[REGEXP_CACHE_SIZE]; /* The head of the linked list; points to the most recently used buffer. */ static struct regexp_cache *searchbuf_head; /* Every call to re_match, etc., must pass &search_regs as the regs argument unless you can show it is unnecessary (i.e., if re_match is certainly going to be called again before region-around-match can be called). Since the registers are now dynamically allocated, we need to make sure not to refer to the Nth register before checking that it has been allocated by checking search_regs.num_regs. The regex code keeps track of whether it has allocated the search buffer using bits in the re_pattern_buffer. This means that whenever you compile a new pattern, it completely forgets whether it has allocated any registers, and will allocate new registers the next time you call a searching or matching function. Therefore, we need to call re_set_registers after compiling a new pattern or after setting the match registers, so that the regex functions will be able to free or re-allocate it properly. */ /* Note: things get trickier under Mule because the values returned from the regexp routines are in Bytebpos's but we need them to be in Charbpos's. We take the easy way out for the moment and just convert them immediately. We could be more clever by not converting them until necessary, but that gets real ugly real fast since the buffer might have changed and the positions might be out of sync or out of range. */ static struct re_registers search_regs; /* The buffer in which the last search was performed, or Qt if the last search was done in a string; Qnil if no searching has been done yet. */ static Lisp_Object last_thing_searched; /* error condition signalled when regexp compile_pattern fails */ Lisp_Object Qinvalid_regexp; /* Regular expressions used in forward/backward-word */ Lisp_Object Vforward_word_regexp, Vbackward_word_regexp; Fixnum warn_about_possibly_incompatible_back_references; /* range table for use with skip_chars. Only needed for Mule. */ Lisp_Object Vskip_chars_range_table; static void set_search_regs (struct buffer *buf, Charbpos beg, Charcount len); static void save_search_regs (void); static Charbpos simple_search (struct buffer *buf, Intbyte *base_pat, Bytecount len, Bytebpos pos, Bytebpos lim, EMACS_INT n, Lisp_Object trt); static Charbpos boyer_moore (struct buffer *buf, Intbyte *base_pat, Bytecount len, Bytebpos pos, Bytebpos lim, EMACS_INT n, Lisp_Object trt, Lisp_Object inverse_trt, int charset_base); static Charbpos search_buffer (struct buffer *buf, Lisp_Object str, Charbpos charbpos, Charbpos buflim, EMACS_INT n, int RE, Lisp_Object trt, Lisp_Object inverse_trt, int posix); static void matcher_overflow (void) { stack_overflow ("Stack overflow in regexp matcher", Qunbound); } /* Compile a regexp and signal a Lisp error if anything goes wrong. PATTERN is the pattern to compile. CP is the place to put the result. TRANSLATE is a translation table for ignoring case, or Qnil for none. REGP is the structure that says where to store the "register" values that will result from matching this pattern. If it is 0, we should compile the pattern not to record any subexpression bounds. POSIX is nonzero if we want full backtracking (POSIX style) for this pattern. 0 means backtrack only enough to get a valid match. */ static int compile_pattern_1 (struct regexp_cache *cp, Lisp_Object pattern, struct re_registers *regp, Lisp_Object translate, int posix, Error_Behavior errb) { const char *val; reg_syntax_t old; cp->regexp = Qnil; cp->buf.translate = translate; cp->posix = posix; old = re_set_syntax (RE_SYNTAX_EMACS | (posix ? 0 : RE_NO_POSIX_BACKTRACKING)); val = (const char *) re_compile_pattern ((char *) XSTRING_DATA (pattern), XSTRING_LENGTH (pattern), &cp->buf); re_set_syntax (old); if (val) { maybe_signal_error (Qinvalid_regexp, 0, build_string (val), Qsearch, errb); return 0; } cp->regexp = Fcopy_sequence (pattern); return 1; } /* Compile a regexp if necessary, but first check to see if there's one in the cache. PATTERN is the pattern to compile. TRANSLATE is a translation table for ignoring case, or Qnil for none. REGP is the structure that says where to store the "register" values that will result from matching this pattern. If it is 0, we should compile the pattern not to record any subexpression bounds. POSIX is nonzero if we want full backtracking (POSIX style) for this pattern. 0 means backtrack only enough to get a valid match. */ struct re_pattern_buffer * compile_pattern (Lisp_Object pattern, struct re_registers *regp, Lisp_Object translate, Lisp_Object searchobj, struct buffer *searchbuf, int posix, Error_Behavior errb) { struct regexp_cache *cp, **cpp; for (cpp = &searchbuf_head; ; cpp = &cp->next) { cp = *cpp; /* &&#### once we fix up the fastmap code in regex.c for 8-bit-fixed, we need to record and compare the buffer and format, since the fastmap will reflect the state of the buffer -- and things get more complicated if the buffer has changed formats or (esp.) has kept the format but changed its interpretation! may need to have the code that changes the interpretation go through and invalidate cache entries for that buffer. */ if (!NILP (Fstring_equal (cp->regexp, pattern)) && EQ (cp->buf.translate, translate) && cp->posix == posix) break; /* If we're at the end of the cache, compile into the last cell. */ if (cp->next == 0) { if (!compile_pattern_1 (cp, pattern, regp, translate, posix, errb)) return 0; break; } } /* When we get here, cp (aka *cpp) contains the compiled pattern, either because we found it in the cache or because we just compiled it. Move it to the front of the queue to mark it as most recently used. */ *cpp = cp->next; cp->next = searchbuf_head; searchbuf_head = cp; /* Advise the searching functions about the space we have allocated for register data. */ if (regp) re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end); return &cp->buf; } /* Error condition used for failing searches */ Lisp_Object Qsearch_failed; static Lisp_Object signal_failure (Lisp_Object arg) { for (;;) Fsignal (Qsearch_failed, list1 (arg)); return Qnil; /* Not reached. */ } /* Convert the search registers from Bytebpos's to Charbpos's. Needs to be done after each regexp match that uses the search regs. We could get a potential speedup by not converting the search registers until it's really necessary, e.g. when match-data or replace-match is called. However, this complexifies the code a lot (e.g. the buffer could have changed and the Bytebpos's stored might be invalid) and is probably not a great time-saver. */ static void fixup_search_regs_for_buffer (struct buffer *buf) { int i; int num_regs = search_regs.num_regs; for (i = 0; i < num_regs; i++) { if (search_regs.start[i] >= 0) search_regs.start[i] = bytebpos_to_charbpos (buf, search_regs.start[i]); if (search_regs.end[i] >= 0) search_regs.end[i] = bytebpos_to_charbpos (buf, search_regs.end[i]); } } /* Similar but for strings. */ static void fixup_search_regs_for_string (Lisp_Object string) { int i; int num_regs = search_regs.num_regs; /* #### bytecount_to_charcount() is not that efficient. This function could be faster if it did its own conversion (using INC_CHARPTR() and such), because the register ends are likely to be somewhat ordered. (Even if not, you could sort them.) Think about this if this function is a time hog, which it's probably not. */ for (i = 0; i < num_regs; i++) { if (search_regs.start[i] > 0) { search_regs.start[i] = string_index_byte_to_char (string, search_regs.start[i]); } if (search_regs.end[i] > 0) { search_regs.end[i] = string_index_byte_to_char (string, search_regs.end[i]); } } } static Lisp_Object looking_at_1 (Lisp_Object string, struct buffer *buf, int posix) { Lisp_Object val; Bytebpos p1, p2; Bytecount s1, s2; REGISTER int i; struct re_pattern_buffer *bufp; struct syntax_cache scache_struct; struct syntax_cache *scache = &scache_struct; CHECK_STRING (string); bufp = compile_pattern (string, &search_regs, (!NILP (buf->case_fold_search) ? XCASE_TABLE_DOWNCASE (buf->case_table) : Qnil), wrap_buffer (buf), buf, posix, ERROR_ME); QUIT; /* Get pointers and sizes of the two strings that make up the visible portion of the buffer. */ p1 = BYTE_BUF_BEGV (buf); p2 = BYTE_BUF_CEILING_OF (buf, p1); s1 = p2 - p1; s2 = BYTE_BUF_ZV (buf) - p2; /* By making the regex object, regex buffer, and syntax cache arguments to re_{search,match}{,_2}, we've removed the need to do nasty things to deal with regex reentrancy. (See stack trace in signal.c for proof that this can happen.) #### there is still a potential problem with the regex cache -- the compiled regex could be overwritten. we'd need 20-fold reentrancy, though. Fix this. */ i = re_match_2 (bufp, (char *) BYTE_BUF_BYTE_ADDRESS (buf, p1), s1, (char *) BYTE_BUF_BYTE_ADDRESS (buf, p2), s2, BYTE_BUF_PT (buf) - BYTE_BUF_BEGV (buf), &search_regs, BYTE_BUF_ZV (buf) - BYTE_BUF_BEGV (buf), wrap_buffer (buf), buf, scache); if (i == -2) matcher_overflow (); val = (0 <= i ? Qt : Qnil); if (NILP (val)) return Qnil; { int num_regs = search_regs.num_regs; for (i = 0; i < num_regs; i++) if (search_regs.start[i] >= 0) { search_regs.start[i] += BYTE_BUF_BEGV (buf); search_regs.end[i] += BYTE_BUF_BEGV (buf); } } last_thing_searched = wrap_buffer (buf); fixup_search_regs_for_buffer (buf); return val; } DEFUN ("looking-at", Flooking_at, 1, 2, 0, /* Return t if text after point matches regular expression REGEXP. This function modifies the match data that `match-beginning', `match-end' and `match-data' access; save and restore the match data if you want to preserve them. Optional argument BUFFER defaults to the current buffer. */ (regexp, buffer)) { return looking_at_1 (regexp, decode_buffer (buffer, 0), 0); } DEFUN ("posix-looking-at", Fposix_looking_at, 1, 2, 0, /* Return t if text after point matches regular expression REGEXP. Find the longest match, in accord with Posix regular expression rules. This function modifies the match data that `match-beginning', `match-end' and `match-data' access; save and restore the match data if you want to preserve them. Optional argument BUFFER defaults to the current buffer. */ (regexp, buffer)) { return looking_at_1 (regexp, decode_buffer (buffer, 0), 1); } static Lisp_Object string_match_1 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start, struct buffer *buf, int posix) { Bytecount val; Charcount s; struct re_pattern_buffer *bufp; /* Some FSF junk with running_asynch_code, to preserve the match data. Not necessary because we don't call process filters asynchronously (i.e. from within QUIT). */ CHECK_STRING (regexp); CHECK_STRING (string); if (NILP (start)) s = 0; else { Charcount len = string_char_length (string); CHECK_INT (start); s = XINT (start); if (s < 0 && -s <= len) s = len + s; else if (0 > s || s > len) args_out_of_range (string, start); } bufp = compile_pattern (regexp, &search_regs, (!NILP (buf->case_fold_search) ? XCASE_TABLE_DOWNCASE (buf->case_table) : Qnil), string, buf, 0, ERROR_ME); QUIT; { Bytecount bis = string_index_char_to_byte (string, s); struct syntax_cache scache_struct; struct syntax_cache *scache = &scache_struct; /* By making the regex object, regex buffer, and syntax cache arguments to re_{search,match}{,_2}, we've removed the need to do nasty things to deal with regex reentrancy. (See stack trace in signal.c for proof that this can happen.) #### there is still a potential problem with the regex cache -- the compiled regex could be overwritten. we'd need 20-fold reentrancy, though. Fix this. */ val = re_search (bufp, (char *) XSTRING_DATA (string), XSTRING_LENGTH (string), bis, XSTRING_LENGTH (string) - bis, &search_regs, string, buf, scache); } if (val == -2) matcher_overflow (); if (val < 0) return Qnil; last_thing_searched = Qt; fixup_search_regs_for_string (string); return make_int (string_index_byte_to_char (string, val)); } DEFUN ("string-match", Fstring_match, 2, 4, 0, /* Return index of start of first match for REGEXP in STRING, or nil. If third arg START is non-nil, start search at that index in STRING. For index of first char beyond the match, do (match-end 0). `match-end' and `match-beginning' also give indices of substrings matched by parenthesis constructs in the pattern. Optional arg BUFFER controls how case folding and syntax and category lookup is done (according to the value of `case-fold-search' in that buffer and that buffer's case tables, syntax tables, and category table). If nil or unspecified, it defaults *NOT* to the current buffer but instead: -- the value of `case-fold-search' in the current buffer is still respected because of idioms like (let ((case-fold-search nil)) (string-match "^foo.*bar" string)) but the case, syntax, and category tables come from the standard tables, which are accessed through functions `default-{case,syntax,category}-table' and serve as the parents of the tables in particular buffer */ (regexp, string, start, buffer)) { /* &&#### implement new interp for buffer arg; check code to see if it makes more sense than prev */ return string_match_1 (regexp, string, start, decode_buffer (buffer, 0), 0); } DEFUN ("posix-string-match", Fposix_string_match, 2, 4, 0, /* Return index of start of first match for REGEXP in STRING, or nil. Find the longest match, in accord with Posix regular expression rules. If third arg START is non-nil, start search at that index in STRING. For index of first char beyond the match, do (match-end 0). `match-end' and `match-beginning' also give indices of substrings matched by parenthesis constructs in the pattern. Optional arg BUFFER controls how case folding is done (according to the value of `case-fold-search' in that buffer and that buffer's case tables) and defaults to the current buffer. */ (regexp, string, start, buffer)) { return string_match_1 (regexp, string, start, decode_buffer (buffer, 0), 1); } /* Match REGEXP against STRING, searching all of STRING, and return the index of the match, or negative on failure. This does not clobber the match data. */ Bytecount fast_string_match (Lisp_Object regexp, const Intbyte *nonreloc, Lisp_Object reloc, Bytecount offset, Bytecount length, int case_fold_search, Error_Behavior errb, int no_quit) { Bytecount val; Intbyte *newnonreloc = (Intbyte *) nonreloc; struct re_pattern_buffer *bufp; struct syntax_cache scache_struct; struct syntax_cache *scache = &scache_struct; bufp = compile_pattern (regexp, 0, (case_fold_search ? XCASE_TABLE_DOWNCASE (Vstandard_case_table) : Qnil), reloc, 0, 0, errb); if (!bufp) return -1; /* will only do this when errb != ERROR_ME */ if (!no_quit) QUIT; else no_quit_in_re_search = 1; fixup_internal_substring (nonreloc, reloc, offset, &length); /* Don't need to protect against GC inside of re_search() due to QUIT; QUIT is GC-inhibited. */ if (!NILP (reloc)) newnonreloc = XSTRING_DATA (reloc); /* By making the regex object, regex buffer, and syntax cache arguments to re_{search,match}{,_2}, we've removed the need to do nasty things to deal with regex reentrancy. (See stack trace in signal.c for proof that this can happen.) #### there is still a potential problem with the regex cache -- the compiled regex could be overwritten. we'd need 20-fold reentrancy, though. Fix this. */ val = re_search (bufp, (char *) newnonreloc + offset, length, 0, length, 0, reloc, 0, scache); no_quit_in_re_search = 0; return val; } Bytecount fast_lisp_string_match (Lisp_Object regex, Lisp_Object string) { return fast_string_match (regex, 0, string, 0, -1, 0, ERROR_ME, 0); } #ifdef REGION_CACHE_NEEDS_WORK /* The newline cache: remembering which sections of text have no newlines. */ /* If the user has requested newline caching, make sure it's on. Otherwise, make sure it's off. This is our cheezy way of associating an action with the change of state of a buffer-local variable. */ static void newline_cache_on_off (struct buffer *buf) { if (NILP (buf->cache_long_line_scans)) { /* It should be off. */ if (buf->newline_cache) { free_region_cache (buf->newline_cache); buf->newline_cache = 0; } } else { /* It should be on. */ if (buf->newline_cache == 0) buf->newline_cache = new_region_cache (); } } #endif /* Search in BUF for COUNT instances of the character TARGET between START and END. If COUNT is positive, search forwards; END must be >= START. If COUNT is negative, search backwards for the -COUNTth instance; END must be <= START. If COUNT is zero, do anything you please; run rogue, for all I care. If END is zero, use BEGV or ZV instead, as appropriate for the direction indicated by COUNT. If we find COUNT instances, set *SHORTAGE to zero, and return the position after the COUNTth match. Note that for reverse motion this is not the same as the usual convention for Emacs motion commands. If we don't find COUNT instances before reaching END, set *SHORTAGE to the number of TARGETs left unfound, and return END. If ALLOW_QUIT is non-zero, call QUIT periodically. */ static Bytebpos byte_scan_buffer (struct buffer *buf, Emchar target, Bytebpos st, Bytebpos en, EMACS_INT count, EMACS_INT *shortage, int allow_quit) { Bytebpos lim = en > 0 ? en : ((count > 0) ? BYTE_BUF_ZV (buf) : BYTE_BUF_BEGV (buf)); /* #### newline cache stuff in this function not yet ported */ assert (count != 0); if (shortage) *shortage = 0; if (count > 0) { #ifdef MULE Internal_Format fmt = buf->text->format; /* Check for char that's unrepresentable in the buffer -- it certainly can't be there. */ if (!emchar_fits_in_format (target, fmt, wrap_buffer (buf))) { *shortage = count; return lim; } /* Due to the Mule representation of characters in a buffer, we can simply search for characters in the range 0 - 127 directly; for 8-bit-fixed, we can do this for all characters. In other cases, we do it the "hard" way. Note that this way works for all characters and all formats, but the other way is faster. */ else if (! (fmt == FORMAT_8_BIT_FIXED || (fmt == FORMAT_DEFAULT && emchar_ascii_p (target)))) { Raw_Emchar raw = emchar_to_raw (target, fmt, wrap_buffer (buf)); while (st < lim && count > 0) { if (BYTE_BUF_FETCH_CHAR_RAW (buf, st) == raw) count--; INC_BYTEBPOS (buf, st); } } else #endif { Raw_Emchar raw = emchar_to_raw (target, fmt, wrap_buffer (buf)); while (st < lim && count > 0) { Bytebpos ceil; Intbyte *bufptr; ceil = BYTE_BUF_CEILING_OF (buf, st); ceil = min (lim, ceil); bufptr = (Intbyte *) memchr (BYTE_BUF_BYTE_ADDRESS (buf, st), raw, ceil - st); if (bufptr) { count--; st = BYTE_BUF_PTR_BYTE_POS (buf, bufptr) + 1; } else st = ceil; } } if (shortage) *shortage = count; if (allow_quit) QUIT; return st; } else { #ifdef MULE Internal_Format fmt = buf->text->format; /* Check for char that's unrepresentable in the buffer -- it certainly can't be there. */ if (!emchar_fits_in_format (target, fmt, wrap_buffer (buf))) { *shortage = -count; return lim; } else if (! (fmt == FORMAT_8_BIT_FIXED || (fmt == FORMAT_DEFAULT && emchar_ascii_p (target)))) { Raw_Emchar raw = emchar_to_raw (target, fmt, wrap_buffer (buf)); while (st > lim && count < 0) { DEC_BYTEBPOS (buf, st); if (BYTE_BUF_FETCH_CHAR_RAW (buf, st) == raw) count++; } } else #endif { Raw_Emchar raw = emchar_to_raw (target, fmt, wrap_buffer (buf)); while (st > lim && count < 0) { Bytebpos floor; Intbyte *bufptr; Intbyte *floorptr; floor = BYTE_BUF_FLOOR_OF (buf, st); floor = max (lim, floor); /* No memrchr() ... */ bufptr = BYTE_BUF_BYTE_ADDRESS_BEFORE (buf, st); floorptr = BYTE_BUF_BYTE_ADDRESS (buf, floor); while (bufptr >= floorptr) { st--; /* At this point, both ST and BUFPTR refer to the same character. When the loop terminates, ST will always point to the last character we tried. */ if (*bufptr == (Intbyte) raw) { count++; break; } bufptr--; } } } if (shortage) *shortage = -count; if (allow_quit) QUIT; if (count) return st; else { /* We found the character we were looking for; we have to return the position *after* it due to the strange way that the return value is defined. */ INC_BYTEBPOS (buf, st); return st; } } } Charbpos scan_buffer (struct buffer *buf, Emchar target, Charbpos start, Charbpos end, EMACS_INT count, EMACS_INT *shortage, int allow_quit) { Bytebpos byte_retval; Bytebpos byte_start, byte_end; byte_start = charbpos_to_bytebpos (buf, start); if (end) byte_end = charbpos_to_bytebpos (buf, end); else byte_end = 0; byte_retval = byte_scan_buffer (buf, target, byte_start, byte_end, count, shortage, allow_quit); return bytebpos_to_charbpos (buf, byte_retval); } Bytebpos byte_find_next_newline_no_quit (struct buffer *buf, Bytebpos from, int count) { return byte_scan_buffer (buf, '\n', from, 0, count, 0, 0); } Charbpos find_next_newline_no_quit (struct buffer *buf, Charbpos from, int count) { return scan_buffer (buf, '\n', from, 0, count, 0, 0); } Charbpos find_next_newline (struct buffer *buf, Charbpos from, int count) { return scan_buffer (buf, '\n', from, 0, count, 0, 1); } Bytecount byte_find_next_emchar_in_string (Lisp_Object str, Emchar target, Bytecount st, EMACS_INT count) { Bytebpos lim = XSTRING_LENGTH (str) -1; Intbyte *s = XSTRING_DATA (str); assert (count >= 0); #ifdef MULE /* Due to the Mule representation of characters in a buffer, we can simply search for characters in the range 0 - 127 directly. For other characters, we do it the "hard" way. Note that this way works for all characters but the other way is faster. */ if (target >= 0200) { while (st < lim && count > 0) { if (string_emchar (str, st) == target) count--; INC_BYTECOUNT (s, st); } } else #endif { while (st < lim && count > 0) { Intbyte *bufptr = (Intbyte *) memchr (charptr_n_addr (s, st), (int) target, lim - st); if (bufptr) { count--; st = (Bytebpos) (bufptr - s) + 1; } else st = lim; } } return st; } /* Like find_next_newline, but returns position before the newline, not after, and only search up to TO. This isn't just find_next_newline (...)-1, because you might hit TO. */ Charbpos find_before_next_newline (struct buffer *buf, Charbpos from, Charbpos to, int count) { EMACS_INT shortage; Charbpos pos = scan_buffer (buf, '\n', from, to, count, &shortage, 1); if (shortage == 0) pos--; return pos; } static Lisp_Object skip_chars (struct buffer *buf, int forwardp, int syntaxp, Lisp_Object string, Lisp_Object lim) { REGISTER Intbyte *p, *pend; REGISTER Emchar c; /* We store the first 256 chars in an array here and the rest in a range table. */ unsigned char fastmap[0400]; int negate = 0; REGISTER int i; Charbpos limit; struct syntax_cache *scache; if (NILP (lim)) limit = forwardp ? BUF_ZV (buf) : BUF_BEGV (buf); else { CHECK_INT_COERCE_MARKER (lim); limit = XINT (lim); /* In any case, don't allow scan outside bounds of buffer. */ if (limit > BUF_ZV (buf)) limit = BUF_ZV (buf); if (limit < BUF_BEGV (buf)) limit = BUF_BEGV (buf); } CHECK_STRING (string); p = XSTRING_DATA (string); pend = p + XSTRING_LENGTH (string); memset (fastmap, 0, sizeof (fastmap)); Fclear_range_table (Vskip_chars_range_table); if (p != pend && *p == '^') { negate = 1; p++; } /* Find the characters specified and set their elements of fastmap. If syntaxp, each character counts as itself. Otherwise, handle backslashes and ranges specially */ while (p != pend) { c = charptr_emchar (p); INC_CHARPTR (p); if (syntaxp) { if (c < 0400 && syntax_spec_code[c] < (unsigned char) Smax) fastmap[c] = 1; else invalid_argument ("Invalid syntax designator", make_char (c)); } else { if (c == '\\') { if (p == pend) break; c = charptr_emchar (p); INC_CHARPTR (p); } if (p != pend && *p == '-') { Emchar cend; p++; if (p == pend) break; cend = charptr_emchar (p); while (c <= cend && c < 0400) { fastmap[c] = 1; c++; } if (c <= cend) Fput_range_table (make_int (c), make_int (cend), Qt, Vskip_chars_range_table); INC_CHARPTR (p); } else { if (c < 0400) fastmap[c] = 1; else Fput_range_table (make_int (c), make_int (c), Qt, Vskip_chars_range_table); } } } if (syntaxp && fastmap['-'] != 0) fastmap[' '] = 1; /* If ^ was the first character, complement the fastmap. We don't complement the range table, however; we just use negate in the comparisons below. */ if (negate) for (i = 0; i < (int) (sizeof (fastmap)); i++) fastmap[i] ^= 1; { Charbpos start_point = BUF_PT (buf); if (syntaxp) { scache = setup_buffer_syntax_cache (buf, BUF_PT (buf), forwardp ? 1 : -1); /* All syntax designators are normal chars so nothing strange to worry about */ if (forwardp) { while (BUF_PT (buf) < limit && fastmap[(unsigned char) syntax_code_spec [(int) SYNTAX_FROM_CACHE (scache, BUF_FETCH_CHAR (buf, BUF_PT (buf)))]]) { BUF_SET_PT (buf, BUF_PT (buf) + 1); UPDATE_SYNTAX_CACHE_FORWARD (scache, BUF_PT (buf)); } } else { while (BUF_PT (buf) > limit && fastmap[(unsigned char) syntax_code_spec [(int) SYNTAX_FROM_CACHE (scache, BUF_FETCH_CHAR (buf, BUF_PT (buf) - 1))]]) { BUF_SET_PT (buf, BUF_PT (buf) - 1); UPDATE_SYNTAX_CACHE_BACKWARD (scache, BUF_PT (buf) - 1); } } } else { if (forwardp) { while (BUF_PT (buf) < limit) { Emchar ch = BUF_FETCH_CHAR (buf, BUF_PT (buf)); if ((ch < 0400) ? fastmap[ch] : (NILP (Fget_range_table (make_int (ch), Vskip_chars_range_table, Qnil)) == negate)) BUF_SET_PT (buf, BUF_PT (buf) + 1); else break; } } else { while (BUF_PT (buf) > limit) { Emchar ch = BUF_FETCH_CHAR (buf, BUF_PT (buf) - 1); if ((ch < 0400) ? fastmap[ch] : (NILP (Fget_range_table (make_int (ch), Vskip_chars_range_table, Qnil)) == negate)) BUF_SET_PT (buf, BUF_PT (buf) - 1); else break; } } } QUIT; return make_int (BUF_PT (buf) - start_point); } } DEFUN ("skip-chars-forward", Fskip_chars_forward, 1, 3, 0, /* Move point forward, stopping before a char not in STRING, or at pos LIMIT. STRING is like the inside of a `[...]' in a regular expression except that `]' is never special and `\\' quotes `^', `-' or `\\'. Thus, with arg "a-zA-Z", this skips letters stopping before first nonletter. With arg "^a-zA-Z", skips nonletters stopping before first letter. Returns the distance traveled, either zero or positive. Optional argument BUFFER defaults to the current buffer. */ (string, limit, buffer)) { return skip_chars (decode_buffer (buffer, 0), 1, 0, string, limit); } DEFUN ("skip-chars-backward", Fskip_chars_backward, 1, 3, 0, /* Move point backward, stopping after a char not in STRING, or at pos LIMIT. See `skip-chars-forward' for details. Returns the distance traveled, either zero or negative. Optional argument BUFFER defaults to the current buffer. */ (string, limit, buffer)) { return skip_chars (decode_buffer (buffer, 0), 0, 0, string, limit); } DEFUN ("skip-syntax-forward", Fskip_syntax_forward, 1, 3, 0, /* Move point forward across chars in specified syntax classes. SYNTAX is a string of syntax code characters. Stop before a char whose syntax is not in SYNTAX, or at position LIMIT. If SYNTAX starts with ^, skip characters whose syntax is NOT in SYNTAX. This function returns the distance traveled, either zero or positive. Optional argument BUFFER defaults to the current buffer. */ (syntax, limit, buffer)) { return skip_chars (decode_buffer (buffer, 0), 1, 1, syntax, limit); } DEFUN ("skip-syntax-backward", Fskip_syntax_backward, 1, 3, 0, /* Move point backward across chars in specified syntax classes. SYNTAX is a string of syntax code characters. Stop on reaching a char whose syntax is not in SYNTAX, or at position LIMIT. If SYNTAX starts with ^, skip characters whose syntax is NOT in SYNTAX. This function returns the distance traveled, either zero or negative. Optional argument BUFFER defaults to the current buffer. */ (syntax, limit, buffer)) { return skip_chars (decode_buffer (buffer, 0), 0, 1, syntax, limit); } /* Subroutines of Lisp buffer search functions. */ static Lisp_Object search_command (Lisp_Object string, Lisp_Object limit, Lisp_Object noerror, Lisp_Object count, Lisp_Object buffer, int direction, int RE, int posix) { REGISTER Charbpos np; Charbpos lim; EMACS_INT n = direction; struct buffer *buf; if (!NILP (count)) { CHECK_INT (count); n *= XINT (count); } buf = decode_buffer (buffer, 0); CHECK_STRING (string); if (NILP (limit)) lim = n > 0 ? BUF_ZV (buf) : BUF_BEGV (buf); else { CHECK_INT_COERCE_MARKER (limit); lim = XINT (limit); if (n > 0 ? lim < BUF_PT (buf) : lim > BUF_PT (buf)) invalid_argument ("Invalid search limit (wrong side of point)", Qunbound); if (lim > BUF_ZV (buf)) lim = BUF_ZV (buf); if (lim < BUF_BEGV (buf)) lim = BUF_BEGV (buf); } np = search_buffer (buf, string, BUF_PT (buf), lim, n, RE, (!NILP (buf->case_fold_search) ? XCASE_TABLE_CANON (buf->case_table) : Qnil), (!NILP (buf->case_fold_search) ? XCASE_TABLE_EQV (buf->case_table) : Qnil), posix); if (np <= 0) { if (NILP (noerror)) return signal_failure (string); if (!EQ (noerror, Qt)) { if (lim < BUF_BEGV (buf) || lim > BUF_ZV (buf)) abort (); BUF_SET_PT (buf, lim); return Qnil; #if 0 /* This would be clean, but maybe programs depend on a value of nil here. */ np = lim; #endif } else return Qnil; } if (np < BUF_BEGV (buf) || np > BUF_ZV (buf)) abort (); BUF_SET_PT (buf, np); return make_int (np); } static int trivial_regexp_p (Lisp_Object regexp) { Bytecount len = XSTRING_LENGTH (regexp); Intbyte *s = XSTRING_DATA (regexp); while (--len >= 0) { switch (*s++) { case '.': case '*': case '+': case '?': case '[': case '^': case '$': return 0; case '\\': if (--len < 0) return 0; switch (*s++) { case '|': case '(': case ')': case '`': case '\'': case 'b': case 'B': case '<': case '>': case 'w': case 'W': case 's': case 'S': case '=': #ifdef MULE /* 97/2/25 jhod Added for category matches */ case 'c': case 'C': #endif /* MULE */ case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': return 0; } } } return 1; } /* Search for the n'th occurrence of STRING in BUF, starting at position CHARBPOS and stopping at position BUFLIM, treating PAT as a literal string if RE is false or as a regular expression if RE is true. If N is positive, searching is forward and BUFLIM must be greater than CHARBPOS. If N is negative, searching is backward and BUFLIM must be less than CHARBPOS. Returns -x if only N-x occurrences found (x > 0), or else the position at the beginning of the Nth occurrence (if searching backward) or the end (if searching forward). POSIX is nonzero if we want full backtracking (POSIX style) for this pattern. 0 means backtrack only enough to get a valid match. */ static Charbpos search_buffer (struct buffer *buf, Lisp_Object string, Charbpos charbpos, Charbpos buflim, EMACS_INT n, int RE, Lisp_Object trt, Lisp_Object inverse_trt, int posix) { Bytecount len = XSTRING_LENGTH (string); Intbyte *base_pat = XSTRING_DATA (string); REGISTER EMACS_INT i, j; Bytebpos p1, p2; Bytecount s1, s2; Bytebpos pos, lim; /* Some FSF junk with running_asynch_code, to preserve the match data. Not necessary because we don't call process filters asynchronously (i.e. from within QUIT). */ /* Null string is found at starting position. */ if (len == 0) { set_search_regs (buf, charbpos, 0); return charbpos; } /* Searching 0 times means don't move. */ if (n == 0) return charbpos; pos = charbpos_to_bytebpos (buf, charbpos); lim = charbpos_to_bytebpos (buf, buflim); if (RE && !trivial_regexp_p (string)) { struct re_pattern_buffer *bufp; bufp = compile_pattern (string, &search_regs, trt, wrap_buffer (buf), buf, posix, ERROR_ME); /* Get pointers and sizes of the two strings that make up the visible portion of the buffer. */ p1 = BYTE_BUF_BEGV (buf); p2 = BYTE_BUF_CEILING_OF (buf, p1); s1 = p2 - p1; s2 = BYTE_BUF_ZV (buf) - p2; while (n != 0) { Bytecount val; struct syntax_cache scache_struct; struct syntax_cache *scache = &scache_struct; QUIT; /* By making the regex object, regex buffer, and syntax cache arguments to re_{search,match}{,_2}, we've removed the need to do nasty things to deal with regex reentrancy. (See stack trace in signal.c for proof that this can happen.) #### there is still a potential problem with the regex cache -- the compiled regex could be overwritten. we'd need 20-fold reentrancy, though. Fix this. */ val = re_search_2 (bufp, (char *) BYTE_BUF_BYTE_ADDRESS (buf, p1), s1, (char *) BYTE_BUF_BYTE_ADDRESS (buf, p2), s2, pos - BYTE_BUF_BEGV (buf), lim - pos, &search_regs, n > 0 ? lim - BYTE_BUF_BEGV (buf) : pos - BYTE_BUF_BEGV (buf), wrap_buffer (buf), buf, scache); if (val == -2) { matcher_overflow (); } if (val >= 0) { int num_regs = search_regs.num_regs; j = BYTE_BUF_BEGV (buf); for (i = 0; i < num_regs; i++) if (search_regs.start[i] >= 0) { search_regs.start[i] += j; search_regs.end[i] += j; } last_thing_searched = wrap_buffer (buf); /* Set pos to the new position. */ pos = n > 0 ? search_regs.end[0] : search_regs.start[0]; fixup_search_regs_for_buffer (buf); /* And charbpos too. */ charbpos = n > 0 ? search_regs.end[0] : search_regs.start[0]; } else return (n > 0 ? 0 - n : n); if (n > 0) n--; else n++; } return charbpos; } else /* non-RE case */ { int charset_base = -1; int boyer_moore_ok = 1; Intbyte *pat = 0; Intbyte *patbuf = alloca_array (Intbyte, len * MAX_EMCHAR_LEN); pat = patbuf; #ifdef MULE /* &&#### needs some 8-bit work here */ while (len > 0) { Intbyte tmp_str[MAX_EMCHAR_LEN]; Emchar c, translated, inverse; Bytecount orig_bytelen, new_bytelen, inv_bytelen; /* If we got here and the RE flag is set, it's because we're dealing with a regexp known to be trivial, so the backslash just quotes the next character. */ if (RE && *base_pat == '\\') { len--; base_pat++; } c = charptr_emchar (base_pat); translated = TRANSLATE (trt, c); inverse = TRANSLATE (inverse_trt, c); orig_bytelen = charptr_emchar_len (base_pat); inv_bytelen = set_charptr_emchar (tmp_str, inverse); new_bytelen = set_charptr_emchar (tmp_str, translated); if (new_bytelen != orig_bytelen || inv_bytelen != orig_bytelen) boyer_moore_ok = 0; if (translated != c || inverse != c) { /* Keep track of which character set row contains the characters that need translation. */ int charset_base_code = c & ~EMCHAR_FIELD3_MASK; if (charset_base == -1) charset_base = charset_base_code; else if (charset_base != charset_base_code) /* If two different rows appear, needing translation, then we cannot use boyer_moore search. */ boyer_moore_ok = 0; } memcpy (pat, tmp_str, new_bytelen); pat += new_bytelen; base_pat += orig_bytelen; len -= orig_bytelen; } #else /* not MULE */ while (--len >= 0) { /* If we got here and the RE flag is set, it's because we're dealing with a regexp known to be trivial, so the backslash just quotes the next character. */ if (RE && *base_pat == '\\') { len--; base_pat++; } *pat++ = TRANSLATE (trt, *base_pat++); } #endif /* MULE */ len = pat - patbuf; pat = base_pat = patbuf; if (boyer_moore_ok) return boyer_moore (buf, base_pat, len, pos, lim, n, trt, inverse_trt, charset_base); else return simple_search (buf, base_pat, len, pos, lim, n, trt); } } /* Do a simple string search N times for the string PAT, whose length is LEN/LEN_BYTE, from buffer position POS until LIM. TRT is the translation table. Return the character position where the match is found. Otherwise, if M matches remained to be found, return -M. This kind of search works regardless of what is in PAT and regardless of what is in TRT. It is used in cases where boyer_moore cannot work. */ static Charbpos simple_search (struct buffer *buf, Intbyte *base_pat, Bytecount len, Bytebpos pos, Bytebpos lim, EMACS_INT n, Lisp_Object trt) { int forward = n > 0; Bytecount buf_len = 0; /* Shut up compiler. */ if (lim > pos) while (n > 0) { while (1) { Bytecount this_len = len; Bytebpos this_pos = pos; Intbyte *p = base_pat; if (pos >= lim) goto stop; while (this_len > 0) { Emchar pat_ch, buf_ch; Bytecount pat_len; pat_ch = charptr_emchar (p); buf_ch = BYTE_BUF_FETCH_CHAR (buf, this_pos); buf_ch = TRANSLATE (trt, buf_ch); if (buf_ch != pat_ch) break; pat_len = charptr_emchar_len (p); p += pat_len; this_len -= pat_len; INC_BYTEBPOS (buf, this_pos); } if (this_len == 0) { buf_len = this_pos - pos; pos = this_pos; break; } INC_BYTEBPOS (buf, pos); } n--; } else while (n < 0) { while (1) { Bytecount this_len = len; Bytebpos this_pos = pos; Intbyte *p; if (pos <= lim) goto stop; p = base_pat + len; while (this_len > 0) { Emchar pat_ch, buf_ch; DEC_CHARPTR (p); DEC_BYTEBPOS (buf, this_pos); pat_ch = charptr_emchar (p); buf_ch = BYTE_BUF_FETCH_CHAR (buf, this_pos); buf_ch = TRANSLATE (trt, buf_ch); if (buf_ch != pat_ch) break; this_len -= charptr_emchar_len (p); } if (this_len == 0) { buf_len = pos - this_pos; pos = this_pos; break; } DEC_BYTEBPOS (buf, pos); } n++; } stop: if (n == 0) { Charbpos beg, end, retval; if (forward) { beg = bytebpos_to_charbpos (buf, pos - buf_len); retval = end = bytebpos_to_charbpos (buf, pos); } else { retval = beg = bytebpos_to_charbpos (buf, pos); end = bytebpos_to_charbpos (buf, pos + buf_len); } set_search_regs (buf, beg, end - beg); return retval; } else if (n > 0) return -n; else return n; } /* Do Boyer-Moore search N times for the string PAT, whose length is LEN/LEN_BYTE, from buffer position POS/POS_BYTE until LIM/LIM_BYTE. DIRECTION says which direction we search in. TRT and INVERSE_TRT are translation tables. This kind of search works if all the characters in PAT that have nontrivial translation are the same aside from the last byte. This makes it possible to translate just the last byte of a character, and do so after just a simple test of the context. If that criterion is not satisfied, do not call this function. */ static Charbpos boyer_moore (struct buffer *buf, Intbyte *base_pat, Bytecount len, Bytebpos pos, Bytebpos lim, EMACS_INT n, Lisp_Object trt, Lisp_Object inverse_trt, int charset_base) { /* &&#### needs some 8-bit work here */ /* #### Someone really really really needs to comment the workings of this junk somewhat better. BTW "BM" stands for Boyer-Moore, which is one of the standard string-searching algorithms. It's the best string-searching algorithm out there, provided that: a) You're not fazed by algorithm complexity. (Rabin-Karp, which uses hashing, is much much easier to code but not as fast.) b) You can freely move backwards in the string that you're searching through. As the comment below tries to explain (but garbles in typical programmer-ese), the idea is that you don't have to do a string match at every successive position in the text. For example, let's say the pattern is "a very long string". We compare the last character in the string (`g') with the corresponding character in the text. If it mismatches, and it is, say, `z', then we can skip forward by the entire length of the pattern because `z' does not occur anywhere in the pattern. If the mismatching character does occur in the pattern, we can usually still skip forward by more than one: e.g. if it is `l', then we can skip forward by the length of the substring "ong string" -- i.e. the largest end section of the pattern that does not contain the mismatched character. So what we do is compute, for each possible character, the distance we can skip forward (the "stride") and use it in the string matching. This is what the BM_tab holds. */ REGISTER EMACS_INT *BM_tab; EMACS_INT *BM_tab_base; REGISTER Bytecount dirlen; EMACS_INT infinity; Bytebpos limit; Bytecount stride_for_teases = 0; REGISTER EMACS_INT i, j; Intbyte *pat, *pat_end; REGISTER Intbyte *cursor, *p_limit, *ptr2; Intbyte simple_translate[0400]; REGISTER int direction = ((n > 0) ? 1 : -1); #ifdef MULE Intbyte translate_prev_byte = 0; Intbyte translate_anteprev_byte = 0; #endif #ifdef C_ALLOCA EMACS_INT BM_tab_space[0400]; BM_tab = &BM_tab_space[0]; #else BM_tab = alloca_array (EMACS_INT, 256); #endif /* The general approach is that we are going to maintain that we know the first (closest to the present position, in whatever direction we're searching) character that could possibly be the last (furthest from present position) character of a valid match. We advance the state of our knowledge by looking at that character and seeing whether it indeed matches the last character of the pattern. If it does, we take a closer look. If it does not, we move our pointer (to putative last characters) as far as is logically possible. This amount of movement, which I call a stride, will be the length of the pattern if the actual character appears nowhere in the pattern, otherwise it will be the distance from the last occurrence of that character to the end of the pattern. As a coding trick, an enormous stride is coded into the table for characters that match the last character. This allows use of only a single test, a test for having gone past the end of the permissible match region, to test for both possible matches (when the stride goes past the end immediately) and failure to match (where you get nudged past the end one stride at a time). Here we make a "mickey mouse" BM table. The stride of the search is determined only by the last character of the putative match. If that character does not match, we will stride the proper distance to propose a match that superimposes it on the last instance of a character that matches it (per trt), or misses it entirely if there is none. */ dirlen = len * direction; infinity = dirlen - (lim + pos + len + len) * direction; /* Record position after the end of the pattern. */ pat_end = base_pat + len; if (direction < 0) base_pat = pat_end - 1; BM_tab_base = BM_tab; BM_tab += 0400; j = dirlen; /* to get it in a register */ /* A character that does not appear in the pattern induces a stride equal to the pattern length. */ while (BM_tab_base != BM_tab) { *--BM_tab = j; *--BM_tab = j; *--BM_tab = j; *--BM_tab = j; } /* We use this for translation, instead of TRT itself. We fill this in to handle the characters that actually occur in the pattern. Others don't matter anyway! */ xzero (simple_translate); for (i = 0; i < 0400; i++) simple_translate[i] = (Intbyte) i; i = 0; while (i != infinity) { Intbyte *ptr = base_pat + i; i += direction; if (i == dirlen) i = infinity; if (!NILP (trt)) { #ifdef MULE Emchar ch, untranslated; int this_translated = 1; /* Is *PTR the last byte of a character? */ if (pat_end - ptr == 1 || intbyte_first_byte_p (ptr[1])) { Intbyte *charstart = ptr; while (!intbyte_first_byte_p (*charstart)) charstart--; untranslated = charptr_emchar (charstart); if (charset_base == (untranslated & ~EMCHAR_FIELD3_MASK)) { ch = TRANSLATE (trt, untranslated); if (!intbyte_first_byte_p (*ptr)) { translate_prev_byte = ptr[-1]; if (!intbyte_first_byte_p (translate_prev_byte)) translate_anteprev_byte = ptr[-2]; } } else { this_translated = 0; ch = *ptr; } } else { ch = *ptr; this_translated = 0; } if (ch > 0400) j = ((unsigned char) ch | 0200); else j = (unsigned char) ch; if (i == infinity) stride_for_teases = BM_tab[j]; BM_tab[j] = dirlen - i; /* A translation table is accompanied by its inverse -- see comment in casetab.c. */ if (this_translated) { Emchar starting_ch = ch; EMACS_INT starting_j = j; while (1) { ch = TRANSLATE (inverse_trt, ch); if (ch > 0400) j = ((unsigned char) ch | 0200); else j = (unsigned char) ch; /* For all the characters that map into CH, set up simple_translate to map the last byte into STARTING_J. */ simple_translate[j] = (Intbyte) starting_j; if (ch == starting_ch) break; BM_tab[j] = dirlen - i; } } #else EMACS_INT k; j = *ptr; k = (j = TRANSLATE (trt, j)); if (i == infinity) stride_for_teases = BM_tab[j]; BM_tab[j] = dirlen - i; /* A translation table is accompanied by its inverse -- see comment in casetab.c. */ while ((j = TRANSLATE (inverse_trt, j)) != k) { simple_translate[j] = (Intbyte) k; BM_tab[j] = dirlen - i; } #endif } else { j = *ptr; if (i == infinity) stride_for_teases = BM_tab[j]; BM_tab[j] = dirlen - i; } /* stride_for_teases tells how much to stride if we get a match on the far character but are subsequently disappointed, by recording what the stride would have been for that character if the last character had been different. */ } infinity = dirlen - infinity; pos += dirlen - ((direction > 0) ? direction : 0); /* loop invariant - pos points at where last char (first char if reverse) of pattern would align in a possible match. */ while (n != 0) { Bytebpos tail_end; Intbyte *tail_end_ptr; /* It's been reported that some (broken) compiler thinks that Boolean expressions in an arithmetic context are unsigned. Using an explicit ?1:0 prevents this. */ if ((lim - pos - ((direction > 0) ? 1 : 0)) * direction < 0) return n * (0 - direction); /* First we do the part we can by pointers (maybe nothing) */ QUIT; pat = base_pat; limit = pos - dirlen + direction; /* XEmacs change: definitions of CEILING_OF and FLOOR_OF have changed. See buffer.h. */ limit = ((direction > 0) ? BYTE_BUF_CEILING_OF (buf, limit) - 1 : BYTE_BUF_FLOOR_OF (buf, limit + 1)); /* LIMIT is now the last (not beyond-last!) value POS can take on without hitting edge of buffer or the gap. */ limit = ((direction > 0) ? min (lim - 1, min (limit, pos + 20000)) : max (lim, max (limit, pos - 20000))); tail_end = BYTE_BUF_CEILING_OF (buf, pos); tail_end_ptr = BYTE_BUF_BYTE_ADDRESS (buf, tail_end); if ((limit - pos) * direction > 20) { /* We have to be careful because the code can generate addresses that don't point to the beginning of characters. */ p_limit = BYTE_BUF_BYTE_ADDRESS_NO_VERIFY (buf, limit); ptr2 = (cursor = BYTE_BUF_BYTE_ADDRESS_NO_VERIFY (buf, pos)); /* In this loop, pos + cursor - ptr2 is the surrogate for pos */ while (1) /* use one cursor setting as long as i can */ { if (direction > 0) /* worth duplicating */ { /* Use signed comparison if appropriate to make cursor+infinity sure to be > p_limit. Assuming that the buffer lies in a range of addresses that are all "positive" (as ints) or all "negative", either kind of comparison will work as long as we don't step by infinity. So pick the kind that works when we do step by infinity. */ if ((EMACS_INT) (p_limit + infinity) > (EMACS_INT) p_limit) while ((EMACS_INT) cursor <= (EMACS_INT) p_limit) cursor += BM_tab[*cursor]; else while ((EMACS_UINT) cursor <= (EMACS_UINT) p_limit) cursor += BM_tab[*cursor]; } else { if ((EMACS_INT) (p_limit + infinity) < (EMACS_INT) p_limit) while ((EMACS_INT) cursor >= (EMACS_INT) p_limit) cursor += BM_tab[*cursor]; else while ((EMACS_UINT) cursor >= (EMACS_UINT) p_limit) cursor += BM_tab[*cursor]; } /* If you are here, cursor is beyond the end of the searched region. This can happen if you match on the far character of the pattern, because the "stride" of that character is infinity, a number able to throw you well beyond the end of the search. It can also happen if you fail to match within the permitted region and would otherwise try a character beyond that region */ if ((cursor - p_limit) * direction <= len) break; /* a small overrun is genuine */ cursor -= infinity; /* large overrun = hit */ i = dirlen - direction; if (!NILP (trt)) { while ((i -= direction) + direction != 0) { #ifdef MULE Emchar ch; cursor -= direction; /* Translate only the last byte of a character. */ if ((cursor == tail_end_ptr || intbyte_first_byte_p (cursor[1])) && (intbyte_first_byte_p (cursor[0]) || (translate_prev_byte == cursor[-1] && (intbyte_first_byte_p (translate_prev_byte) || translate_anteprev_byte == cursor[-2])))) ch = simple_translate[*cursor]; else ch = *cursor; if (pat[i] != ch) break; #else if (pat[i] != TRANSLATE (trt, *(cursor -= direction))) break; #endif } } else { while ((i -= direction) + direction != 0) if (pat[i] != *(cursor -= direction)) break; } cursor += dirlen - i - direction; /* fix cursor */ if (i + direction == 0) { cursor -= direction; { Bytebpos bytstart = (pos + cursor - ptr2 + ((direction > 0) ? 1 - len : 0)); Charbpos bufstart = bytebpos_to_charbpos (buf, bytstart); Charbpos bufend = bytebpos_to_charbpos (buf, bytstart + len); set_search_regs (buf, bufstart, bufend - bufstart); } if ((n -= direction) != 0) cursor += dirlen; /* to resume search */ else return ((direction > 0) ? search_regs.end[0] : search_regs.start[0]); } else cursor += stride_for_teases; /* <sigh> we lose - */ } pos += cursor - ptr2; } else /* Now we'll pick up a clump that has to be done the hard way because it covers a discontinuity */ { /* XEmacs change: definitions of CEILING_OF and FLOOR_OF have changed. See buffer.h. */ limit = ((direction > 0) ? BYTE_BUF_CEILING_OF (buf, pos - dirlen + 1) - 1 : BYTE_BUF_FLOOR_OF (buf, pos - dirlen)); limit = ((direction > 0) ? min (limit + len, lim - 1) : max (limit - len, lim)); /* LIMIT is now the last value POS can have and still be valid for a possible match. */ while (1) { /* This loop can be coded for space rather than speed because it will usually run only once. (the reach is at most len + 21, and typically does not exceed len) */ while ((limit - pos) * direction >= 0) /* *not* BYTE_BUF_FETCH_CHAR. We are working here with bytes, not characters. */ pos += BM_tab[*BYTE_BUF_BYTE_ADDRESS_NO_VERIFY (buf, pos)]; /* now run the same tests to distinguish going off the end, a match or a phony match. */ if ((pos - limit) * direction <= len) break; /* ran off the end */ /* Found what might be a match. Set POS back to last (first if reverse) char pos. */ pos -= infinity; i = dirlen - direction; while ((i -= direction) + direction != 0) { #ifdef MULE Emchar ch; Intbyte *ptr; #endif pos -= direction; #ifdef MULE ptr = BYTE_BUF_BYTE_ADDRESS_NO_VERIFY (buf, pos); if ((ptr == tail_end_ptr || intbyte_first_byte_p (ptr[1])) && (intbyte_first_byte_p (ptr[0]) || (translate_prev_byte == ptr[-1] && (intbyte_first_byte_p (translate_prev_byte) || translate_anteprev_byte == ptr[-2])))) ch = simple_translate[*ptr]; else ch = *ptr; if (pat[i] != ch) break; #else if (pat[i] != TRANSLATE (trt, *BYTE_BUF_BYTE_ADDRESS_NO_VERIFY (buf, pos))) break; #endif } /* Above loop has moved POS part or all the way back to the first char pos (last char pos if reverse). Set it once again at the last (first if reverse) char. */ pos += dirlen - i- direction; if (i + direction == 0) { pos -= direction; { Bytebpos bytstart = (pos + ((direction > 0) ? 1 - len : 0)); Charbpos bufstart = bytebpos_to_charbpos (buf, bytstart); Charbpos bufend = bytebpos_to_charbpos (buf, bytstart + len); set_search_regs (buf, bufstart, bufend - bufstart); } if ((n -= direction) != 0) pos += dirlen; /* to resume search */ else return ((direction > 0) ? search_regs.end[0] : search_regs.start[0]); } else pos += stride_for_teases; } } /* We have done one clump. Can we continue? */ if ((lim - pos) * direction < 0) return (0 - n) * direction; } return bytebpos_to_charbpos (buf, pos); } /* Record beginning BEG and end BEG + LEN for a match just found in the current buffer. */ static void set_search_regs (struct buffer *buf, Charbpos beg, Charcount len) { /* Make sure we have registers in which to store the match position. */ if (search_regs.num_regs == 0) { search_regs.start = xnew (regoff_t); search_regs.end = xnew (regoff_t); search_regs.num_regs = 1; } search_regs.start[0] = beg; search_regs.end[0] = beg + len; last_thing_searched = wrap_buffer (buf); } /* Given a string of words separated by word delimiters, compute a regexp that matches those exact words separated by arbitrary punctuation. */ static Lisp_Object wordify (Lisp_Object buffer, Lisp_Object string) { Charcount i, len; EMACS_INT punct_count = 0, word_count = 0; struct buffer *buf = decode_buffer (buffer, 0); Lisp_Object syntax_table = buf->mirror_syntax_table; CHECK_STRING (string); len = string_char_length (string); for (i = 0; i < len; i++) if (!WORD_SYNTAX_P (syntax_table, string_emchar (string, i))) { punct_count++; if (i > 0 && WORD_SYNTAX_P (syntax_table, string_emchar (string, i - 1))) word_count++; } if (WORD_SYNTAX_P (syntax_table, string_emchar (string, len - 1))) word_count++; if (!word_count) return build_string (""); { /* The following value is an upper bound on the amount of storage we need. In non-Mule, it is exact. */ Intbyte *storage = (Intbyte *) ALLOCA (XSTRING_LENGTH (string) - punct_count + 5 * (word_count - 1) + 4); Intbyte *o = storage; *o++ = '\\'; *o++ = 'b'; for (i = 0; i < len; i++) { Emchar ch = string_emchar (string, i); if (WORD_SYNTAX_P (syntax_table, ch)) o += set_charptr_emchar (o, ch); else if (i > 0 && WORD_SYNTAX_P (syntax_table, string_emchar (string, i - 1)) && --word_count) { *o++ = '\\'; *o++ = 'W'; *o++ = '\\'; *o++ = 'W'; *o++ = '*'; } } *o++ = '\\'; *o++ = 'b'; return make_string (storage, o - storage); } } DEFUN ("search-backward", Fsearch_backward, 1, 5, "sSearch backward: ", /* Search backward from point for STRING. Set point to the beginning of the occurrence found, and return point. Optional second argument LIMIT bounds the search; it is a buffer position. The match found must not extend before that position. The value nil is equivalent to (point-min). Optional third argument NOERROR, if t, means just return nil (no error) if the search fails. If neither nil nor t, set point to LIMIT and return nil. Optional fourth argument COUNT is a repeat count--search for successive occurrences. Optional fifth argument BUFFER specifies the buffer to search in and defaults to the current buffer. See also the functions `match-beginning', `match-end' and `replace-match'. */ (string, limit, noerror, count, buffer)) { return search_command (string, limit, noerror, count, buffer, -1, 0, 0); } DEFUN ("search-forward", Fsearch_forward, 1, 5, "sSearch: ", /* Search forward from point for STRING. Set point to the end of the occurrence found, and return point. Optional second argument LIMIT bounds the search; it is a buffer position. The match found must not extend after that position. The value nil is equivalent to (point-max). Optional third argument NOERROR, if t, means just return nil (no error) if the search fails. If neither nil nor t, set point to LIMIT and return nil. Optional fourth argument COUNT is a repeat count--search for successive occurrences. Optional fifth argument BUFFER specifies the buffer to search in and defaults to the current buffer. See also the functions `match-beginning', `match-end' and `replace-match'. */ (string, limit, noerror, count, buffer)) { return search_command (string, limit, noerror, count, buffer, 1, 0, 0); } DEFUN ("word-search-backward", Fword_search_backward, 1, 5, "sWord search backward: ", /* Search backward from point for STRING, ignoring differences in punctuation. Set point to the beginning of the occurrence found, and return point. Optional second argument LIMIT bounds the search; it is a buffer position. The match found must not extend before that position. The value nil is equivalent to (point-min). Optional third argument NOERROR, if t, means just return nil (no error) if the search fails. If neither nil nor t, set point to LIMIT and return nil. Optional fourth argument COUNT is a repeat count--search for successive occurrences. Optional fifth argument BUFFER specifies the buffer to search in and defaults to the current buffer. See also the functions `match-beginning', `match-end' and `replace-match'. */ (string, limit, noerror, count, buffer)) { return search_command (wordify (buffer, string), limit, noerror, count, buffer, -1, 1, 0); } DEFUN ("word-search-forward", Fword_search_forward, 1, 5, "sWord search: ", /* Search forward from point for STRING, ignoring differences in punctuation. Set point to the end of the occurrence found, and return point. Optional second argument LIMIT bounds the search; it is a buffer position. The match found must not extend after that position. The value nil is equivalent to (point-max). Optional third argument NOERROR, if t, means just return nil (no error) if the search fails. If neither nil nor t, set point to LIMIT and return nil. Optional fourth argument COUNT is a repeat count--search for successive occurrences. Optional fifth argument BUFFER specifies the buffer to search in and defaults to the current buffer. See also the functions `match-beginning', `match-end' and `replace-match'. */ (string, limit, noerror, count, buffer)) { return search_command (wordify (buffer, string), limit, noerror, count, buffer, 1, 1, 0); } DEFUN ("re-search-backward", Fre_search_backward, 1, 5, "sRE search backward: ", /* Search backward from point for match for regular expression REGEXP. Set point to the beginning of the match, and return point. The match found is the one starting last in the buffer and yet ending before the origin of the search. Optional second argument LIMIT bounds the search; it is a buffer position. The match found must not extend before that position. The value nil is equivalent to (point-min). Optional third argument NOERROR, if t, means just return nil (no error) if the search fails. If neither nil nor t, set point to LIMIT and return nil. Optional fourth argument COUNT is a repeat count--search for successive occurrences. Optional fifth argument BUFFER specifies the buffer to search in and defaults to the current buffer. See also the functions `match-beginning', `match-end' and `replace-match'. */ (regexp, limit, noerror, count, buffer)) { return search_command (regexp, limit, noerror, count, buffer, -1, 1, 0); } DEFUN ("re-search-forward", Fre_search_forward, 1, 5, "sRE search: ", /* Search forward from point for regular expression REGEXP. Set point to the end of the occurrence found, and return point. Optional second argument LIMIT bounds the search; it is a buffer position. The match found must not extend after that position. The value nil is equivalent to (point-max). Optional third argument NOERROR, if t, means just return nil (no error) if the search fails. If neither nil nor t, set point to LIMIT and return nil. Optional fourth argument COUNT is a repeat count--search for successive occurrences. Optional fifth argument BUFFER specifies the buffer to search in and defaults to the current buffer. See also the functions `match-beginning', `match-end' and `replace-match'. */ (regexp, limit, noerror, count, buffer)) { return search_command (regexp, limit, noerror, count, buffer, 1, 1, 0); } DEFUN ("posix-search-backward", Fposix_search_backward, 1, 5, "sPosix search backward: ", /* Search backward from point for match for regular expression REGEXP. Find the longest match in accord with Posix regular expression rules. Set point to the beginning of the match, and return point. The match found is the one starting last in the buffer and yet ending before the origin of the search. Optional second argument LIMIT bounds the search; it is a buffer position. The match found must not extend before that position. The value nil is equivalent to (point-min). Optional third argument NOERROR, if t, means just return nil (no error) if the search fails. If neither nil nor t, set point to LIMIT and return nil. Optional fourth argument COUNT is a repeat count--search for successive occurrences. Optional fifth argument BUFFER specifies the buffer to search in and defaults to the current buffer. See also the functions `match-beginning', `match-end' and `replace-match'. */ (regexp, limit, noerror, count, buffer)) { return search_command (regexp, limit, noerror, count, buffer, -1, 1, 1); } DEFUN ("posix-search-forward", Fposix_search_forward, 1, 5, "sPosix search: ", /* Search forward from point for regular expression REGEXP. Find the longest match in accord with Posix regular expression rules. Set point to the end of the occurrence found, and return point. Optional second argument LIMIT bounds the search; it is a buffer position. The match found must not extend after that position. The value nil is equivalent to (point-max). Optional third argument NOERROR, if t, means just return nil (no error) if the search fails. If neither nil nor t, set point to LIMIT and return nil. Optional fourth argument COUNT is a repeat count--search for successive occurrences. Optional fifth argument BUFFER specifies the buffer to search in and defaults to the current buffer. See also the functions `match-beginning', `match-end' and `replace-match'. */ (regexp, limit, noerror, count, buffer)) { return search_command (regexp, limit, noerror, count, buffer, 1, 1, 1); } static Lisp_Object free_created_dynarrs (Lisp_Object cons) { Dynarr_free (get_opaque_ptr (XCAR (cons))); Dynarr_free (get_opaque_ptr (XCDR (cons))); free_opaque_ptr (XCAR (cons)); free_opaque_ptr (XCDR (cons)); free_cons (cons); return Qnil; } DEFUN ("replace-match", Freplace_match, 1, 5, 0, /* Replace text matched by last search with REPLACEMENT. If second arg FIXEDCASE is non-nil, do not alter case of replacement text. Otherwise maybe capitalize the whole text, or maybe just word initials, based on the replaced text. If the replaced text has only capital letters and has at least one multiletter word, convert REPLACEMENT to all caps. If the replaced text has at least one word starting with a capital letter, then capitalize each word in REPLACEMENT. If third arg LITERAL is non-nil, insert REPLACEMENT literally. Otherwise treat `\\' as special: `\\&' in REPLACEMENT means substitute original matched text. `\\N' means substitute what matched the Nth `\\(...\\)'. If Nth parens didn't match, substitute nothing. `\\\\' means insert one `\\'. `\\u' means upcase the next character. `\\l' means downcase the next character. `\\U' means begin upcasing all following characters. `\\L' means begin downcasing all following characters. `\\E' means terminate the effect of any `\\U' or `\\L'. Case changes made with `\\u', `\\l', `\\U', and `\\L' override all other case changes that may be made in the replaced text. FIXEDCASE and LITERAL are optional arguments. Leaves point at end of replacement text. The optional fourth argument STRING can be a string to modify. In that case, this function creates and returns a new string which is made by replacing the part of STRING that was matched. When fourth argument is a string, fifth argument STRBUFFER specifies the buffer to be used for syntax-table and case-table lookup and defaults to the current buffer. When fourth argument is not a string, the buffer that the match occurred in has automatically been remembered and you do not need to specify it. When fourth argument is nil, STRBUFFER specifies a subexpression of the match. It says to replace just that subexpression instead of the whole match. This is useful only after a regular expression search or match since only regular expressions have distinguished subexpressions. */ (replacement, fixedcase, literal, string, strbuffer)) { /* This function can GC */ enum { nochange, all_caps, cap_initial } case_action; Charbpos pos, last; int some_multiletter_word; int some_lowercase; int some_uppercase; int some_nonuppercase_initial; Emchar c, prevc; Charcount inslen; struct buffer *buf; Lisp_Object syntax_table; int mc_count; Lisp_Object buffer; int_dynarr *ul_action_dynarr = 0; int_dynarr *ul_pos_dynarr = 0; int sub = 0; int speccount; CHECK_STRING (replacement); if (! NILP (string)) { CHECK_STRING (string); if (!EQ (last_thing_searched, Qt)) invalid_argument ("last thing matched was not a string", Qunbound); /* If the match data were abstracted into a special "match data" type instead of the typical half-assed "let the implementation be visible" form it's in, we could extend it to include the last string matched and the buffer used for that matching. But of course we can't change it as it is. */ buf = decode_buffer (strbuffer, 0); buffer = wrap_buffer (buf); } else { if (!NILP (strbuffer)) { CHECK_INT (strbuffer); sub = XINT (strbuffer); if (sub < 0 || sub >= (int) search_regs.num_regs) args_out_of_range (strbuffer, make_int (search_regs.num_regs)); } if (!BUFFERP (last_thing_searched)) invalid_argument ("last thing matched was not a buffer", Qunbound); buffer = last_thing_searched; buf = XBUFFER (buffer); } syntax_table = buf->mirror_syntax_table; case_action = nochange; /* We tried an initialization */ /* but some C compilers blew it */ if (search_regs.num_regs == 0) signal_error (Qinvalid_operation, "replace-match called before any match found", Qunbound); if (NILP (string)) { if (search_regs.start[sub] < BUF_BEGV (buf) || search_regs.start[sub] > search_regs.end[sub] || search_regs.end[sub] > BUF_ZV (buf)) args_out_of_range (make_int (search_regs.start[sub]), make_int (search_regs.end[sub])); } else { if (search_regs.start[0] < 0 || search_regs.start[0] > search_regs.end[0] || search_regs.end[0] > string_char_length (string)) args_out_of_range (make_int (search_regs.start[0]), make_int (search_regs.end[0])); } if (NILP (fixedcase)) { /* Decide how to casify by examining the matched text. */ last = search_regs.end[sub]; prevc = '\n'; case_action = all_caps; /* some_multiletter_word is set nonzero if any original word is more than one letter long. */ some_multiletter_word = 0; some_lowercase = 0; some_nonuppercase_initial = 0; some_uppercase = 0; for (pos = search_regs.start[sub]; pos < last; pos++) { if (NILP (string)) c = BUF_FETCH_CHAR (buf, pos); else c = string_emchar (string, pos); if (LOWERCASEP (buf, c)) { /* Cannot be all caps if any original char is lower case */ some_lowercase = 1; if (!WORD_SYNTAX_P (syntax_table, prevc)) some_nonuppercase_initial = 1; else some_multiletter_word = 1; } else if (!NOCASEP (buf, c)) { some_uppercase = 1; if (!WORD_SYNTAX_P (syntax_table, prevc)) ; else some_multiletter_word = 1; } else { /* If the initial is a caseless word constituent, treat that like a lowercase initial. */ if (!WORD_SYNTAX_P (syntax_table, prevc)) some_nonuppercase_initial = 1; } prevc = c; } /* Convert to all caps if the old text is all caps and has at least one multiletter word. */ if (! some_lowercase && some_multiletter_word) case_action = all_caps; /* Capitalize each word, if the old text has all capitalized words. */ else if (!some_nonuppercase_initial && some_multiletter_word) case_action = cap_initial; else if (!some_nonuppercase_initial && some_uppercase) /* Should x -> yz, operating on X, give Yz or YZ? We'll assume the latter. */ case_action = all_caps; else case_action = nochange; } /* Do replacement in a string. */ if (!NILP (string)) { Lisp_Object before, after; speccount = specpdl_depth (); before = Fsubstring (string, Qzero, make_int (search_regs.start[0])); after = Fsubstring (string, make_int (search_regs.end[0]), Qnil); /* Do case substitution into REPLACEMENT if desired. */ if (NILP (literal)) { Charcount stlen = string_char_length (replacement); Charcount strpos; /* XEmacs change: rewrote this loop somewhat to make it cleaner. Also added \U, \E, etc. */ Charcount literal_start = 0; /* We build up the substituted string in ACCUM. */ Lisp_Object accum; accum = Qnil; /* OK, the basic idea here is that we scan through the replacement string until we find a backslash, which represents a substring of the original string to be substituted. We then append onto ACCUM the literal text before the backslash (LASTPOS marks the beginning of this) followed by the substring of the original string that needs to be inserted. */ for (strpos = 0; strpos < stlen; strpos++) { /* If LITERAL_END is set, we've encountered a backslash (the end of literal text to be inserted). */ Charcount literal_end = -1; /* If SUBSTART is set, we need to also insert the text from SUBSTART to SUBEND in the original string. */ Charcount substart = -1; Charcount subend = -1; c = string_emchar (replacement, strpos); if (c == '\\' && strpos < stlen - 1) { c = string_emchar (replacement, ++strpos); if (c == '&') { literal_end = strpos - 1; substart = search_regs.start[0]; subend = search_regs.end[0]; } else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0') { if (search_regs.start[c - '0'] >= 0) { literal_end = strpos - 1; substart = search_regs.start[c - '0']; subend = search_regs.end[c - '0']; } } else if (c == 'U' || c == 'u' || c == 'L' || c == 'l' || c == 'E') { /* Keep track of all case changes requested, but don't make them now. Do them later so we override everything else. */ if (!ul_pos_dynarr) { ul_pos_dynarr = Dynarr_new (int); ul_action_dynarr = Dynarr_new (int); record_unwind_protect (free_created_dynarrs, noseeum_cons (make_opaque_ptr (ul_pos_dynarr), make_opaque_ptr (ul_action_dynarr))); } literal_end = strpos - 1; Dynarr_add (ul_pos_dynarr, (!NILP (accum) ? string_char_length (accum) : 0) + (literal_end - literal_start)); Dynarr_add (ul_action_dynarr, c); } else if (c == '\\') /* So we get just one backslash. */ literal_end = strpos; } if (literal_end >= 0) { Lisp_Object literal_text = Qnil; Lisp_Object substring = Qnil; if (literal_end != literal_start) literal_text = Fsubstring (replacement, make_int (literal_start), make_int (literal_end)); if (substart >= 0 && subend != substart) substring = Fsubstring (string, make_int (substart), make_int (subend)); if (!NILP (literal_text) || !NILP (substring)) accum = concat3 (accum, literal_text, substring); literal_start = strpos + 1; } } if (strpos != literal_start) /* some literal text at end to be inserted */ replacement = concat2 (accum, Fsubstring (replacement, make_int (literal_start), make_int (strpos))); else replacement = accum; } /* replacement can be nil. */ if (NILP (replacement)) replacement = build_string (""); if (case_action == all_caps) replacement = Fupcase (replacement, buffer); else if (case_action == cap_initial) replacement = Fupcase_initials (replacement, buffer); /* Now finally, we need to process the \U's, \E's, etc. */ if (ul_pos_dynarr) { int i = 0; int cur_action = 'E'; Charcount stlen = string_char_length (replacement); Charcount strpos; for (strpos = 0; strpos < stlen; strpos++) { Emchar curchar = string_emchar (replacement, strpos); Emchar newchar = -1; if (i < Dynarr_length (ul_pos_dynarr) && strpos == Dynarr_at (ul_pos_dynarr, i)) { int new_action = Dynarr_at (ul_action_dynarr, i); i++; if (new_action == 'u') newchar = UPCASE (buf, curchar); else if (new_action == 'l') newchar = DOWNCASE (buf, curchar); else cur_action = new_action; } if (newchar == -1) { if (cur_action == 'U') newchar = UPCASE (buf, curchar); else if (cur_action == 'L') newchar = DOWNCASE (buf, curchar); else newchar = curchar; } if (newchar != curchar) set_string_char (replacement, strpos, newchar); } } /* frees the Dynarrs if necessary. */ unbind_to (speccount); return concat3 (before, replacement, after); } mc_count = begin_multiple_change (buf, search_regs.start[sub], search_regs.end[sub]); /* begin_multiple_change() records an unwind-protect, so we need to record this value now. */ speccount = specpdl_depth (); /* We insert the replacement text before the old text, and then delete the original text. This means that markers at the beginning or end of the original will float to the corresponding position in the replacement. */ BUF_SET_PT (buf, search_regs.start[sub]); if (!NILP (literal)) Finsert (1, &replacement); else { Charcount stlen = string_char_length (replacement); Charcount strpos; struct gcpro gcpro1; GCPRO1 (replacement); for (strpos = 0; strpos < stlen; strpos++) { /* on the first iteration assert(offset==0), exactly complementing BUF_SET_PT() above. During the loop, it keeps track of the amount inserted. */ Charcount offset = BUF_PT (buf) - search_regs.start[sub]; c = string_emchar (replacement, strpos); if (c == '\\' && strpos < stlen - 1) { /* XXX FIXME: replacing just a substring non-literally using backslash refs to the match looks dangerous. But <15366.18513.698042.156573@ns.caldera.de> from Torsten Duwe <duwe@caldera.de> claims Finsert_buffer_substring already handles this correctly. */ c = string_emchar (replacement, ++strpos); if (c == '&') Finsert_buffer_substring (buffer, make_int (search_regs.start[0] + offset), make_int (search_regs.end[0] + offset)); else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0') { if (search_regs.start[c - '0'] >= 1) Finsert_buffer_substring (buffer, make_int (search_regs.start[c - '0'] + offset), make_int (search_regs.end[c - '0'] + offset)); } else if (c == 'U' || c == 'u' || c == 'L' || c == 'l' || c == 'E') { /* Keep track of all case changes requested, but don't make them now. Do them later so we override everything else. */ if (!ul_pos_dynarr) { ul_pos_dynarr = Dynarr_new (int); ul_action_dynarr = Dynarr_new (int); record_unwind_protect (free_created_dynarrs, Fcons (make_opaque_ptr (ul_pos_dynarr), make_opaque_ptr (ul_action_dynarr))); } Dynarr_add (ul_pos_dynarr, BUF_PT (buf)); Dynarr_add (ul_action_dynarr, c); } else buffer_insert_emacs_char (buf, c); } else buffer_insert_emacs_char (buf, c); } UNGCPRO; } inslen = BUF_PT (buf) - (search_regs.start[sub]); buffer_delete_range (buf, search_regs.start[sub] + inslen, search_regs.end[sub] + inslen, 0); if (case_action == all_caps) Fupcase_region (make_int (BUF_PT (buf) - inslen), make_int (BUF_PT (buf)), buffer); else if (case_action == cap_initial) Fupcase_initials_region (make_int (BUF_PT (buf) - inslen), make_int (BUF_PT (buf)), buffer); /* Now go through and make all the case changes that were requested in the replacement string. */ if (ul_pos_dynarr) { Charbpos eend = BUF_PT (buf); int i = 0; int cur_action = 'E'; for (pos = BUF_PT (buf) - inslen; pos < eend; pos++) { Emchar curchar = BUF_FETCH_CHAR (buf, pos); Emchar newchar = -1; if (i < Dynarr_length (ul_pos_dynarr) && pos == Dynarr_at (ul_pos_dynarr, i)) { int new_action = Dynarr_at (ul_action_dynarr, i); i++; if (new_action == 'u') newchar = UPCASE (buf, curchar); else if (new_action == 'l') newchar = DOWNCASE (buf, curchar); else cur_action = new_action; } if (newchar == -1) { if (cur_action == 'U') newchar = UPCASE (buf, curchar); else if (cur_action == 'L') newchar = DOWNCASE (buf, curchar); else newchar = curchar; } if (newchar != curchar) buffer_replace_char (buf, pos, newchar, 0, 0); } } /* frees the Dynarrs if necessary. */ unbind_to (speccount); end_multiple_change (buf, mc_count); return Qnil; } static Lisp_Object match_limit (Lisp_Object num, int beginningp) { int n; CHECK_INT (num); n = XINT (num); if (n < 0 || n >= search_regs.num_regs) args_out_of_range (num, make_int (search_regs.num_regs)); if (search_regs.num_regs == 0 || search_regs.start[n] < 0) return Qnil; return make_int (beginningp ? search_regs.start[n] : search_regs.end[n]); } DEFUN ("match-beginning", Fmatch_beginning, 1, 1, 0, /* Return position of start of text matched by last regexp search. NUM, specifies which parenthesized expression in the last regexp. Value is nil if NUMth pair didn't match, or there were less than NUM pairs. Zero means the entire text matched by the whole regexp or whole string. */ (num)) { return match_limit (num, 1); } DEFUN ("match-end", Fmatch_end, 1, 1, 0, /* Return position of end of text matched by last regexp search. NUM specifies which parenthesized expression in the last regexp. Value is nil if NUMth pair didn't match, or there were less than NUM pairs. Zero means the entire text matched by the whole regexp or whole string. */ (num)) { return match_limit (num, 0); } DEFUN ("match-data", Fmatch_data, 0, 2, 0, /* Return a list containing all info on what the last regexp search matched. Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'. All the elements are markers or nil (nil if the Nth pair didn't match) if the last match was on a buffer; integers or nil if a string was matched. Use `store-match-data' to reinstate the data in this list. If INTEGERS (the optional first argument) is non-nil, always use integers \(rather than markers) to represent buffer positions. If REUSE is a list, reuse it as part of the value. If REUSE is long enough to hold all the values, and if INTEGERS is non-nil, no consing is done. */ (integers, reuse)) { Lisp_Object tail, prev; Lisp_Object *data; int i; Charcount len; if (NILP (last_thing_searched)) /*error ("match-data called before any match found", Qunbound);*/ return Qnil; data = alloca_array (Lisp_Object, 2 * search_regs.num_regs); len = -1; for (i = 0; i < search_regs.num_regs; i++) { Charbpos start = search_regs.start[i]; if (start >= 0) { if (EQ (last_thing_searched, Qt) || !NILP (integers)) { data[2 * i] = make_int (start); data[2 * i + 1] = make_int (search_regs.end[i]); } else if (BUFFERP (last_thing_searched)) { data[2 * i] = Fmake_marker (); Fset_marker (data[2 * i], make_int (start), last_thing_searched); data[2 * i + 1] = Fmake_marker (); Fset_marker (data[2 * i + 1], make_int (search_regs.end[i]), last_thing_searched); } else /* last_thing_searched must always be Qt, a buffer, or Qnil. */ abort (); len = i; } else data[2 * i] = data [2 * i + 1] = Qnil; } if (!CONSP (reuse)) return Flist (2 * len + 2, data); /* If REUSE is a list, store as many value elements as will fit into the elements of REUSE. */ for (prev = Qnil, i = 0, tail = reuse; CONSP (tail); i++, tail = XCDR (tail)) { if (i < 2 * len + 2) XCAR (tail) = data[i]; else XCAR (tail) = Qnil; prev = tail; } /* If we couldn't fit all value elements into REUSE, cons up the rest of them and add them to the end of REUSE. */ if (i < 2 * len + 2) XCDR (prev) = Flist (2 * len + 2 - i, data + i); return reuse; } DEFUN ("store-match-data", Fstore_match_data, 1, 1, 0, /* Set internal data on last search match from elements of LIST. LIST should have been created by calling `match-data' previously. */ (list)) { REGISTER int i; REGISTER Lisp_Object marker; int num_regs; int length; /* Some FSF junk with running_asynch_code, to preserve the match data. Not necessary because we don't call process filters asynchronously (i.e. from within QUIT). */ CONCHECK_LIST (list); /* Unless we find a marker with a buffer in LIST, assume that this match data came from a string. */ last_thing_searched = Qt; /* Allocate registers if they don't already exist. */ length = XINT (Flength (list)) / 2; num_regs = search_regs.num_regs; if (length > num_regs) { if (search_regs.num_regs == 0) { search_regs.start = xnew_array (regoff_t, length); search_regs.end = xnew_array (regoff_t, length); } else { XREALLOC_ARRAY (search_regs.start, regoff_t, length); XREALLOC_ARRAY (search_regs.end, regoff_t, length); } search_regs.num_regs = length; } for (i = 0; i < num_regs; i++) { marker = Fcar (list); if (NILP (marker)) { search_regs.start[i] = -1; list = Fcdr (list); } else { if (MARKERP (marker)) { if (XMARKER (marker)->buffer == 0) marker = Qzero; else last_thing_searched = wrap_buffer (XMARKER (marker)->buffer); } CHECK_INT_COERCE_MARKER (marker); search_regs.start[i] = XINT (marker); list = Fcdr (list); marker = Fcar (list); if (MARKERP (marker) && XMARKER (marker)->buffer == 0) marker = Qzero; CHECK_INT_COERCE_MARKER (marker); search_regs.end[i] = XINT (marker); } list = Fcdr (list); } return Qnil; } /* If non-zero the match data have been saved in saved_search_regs during the execution of a sentinel or filter. */ static int search_regs_saved; static struct re_registers saved_search_regs; /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data if asynchronous code (filter or sentinel) is running. */ static void save_search_regs (void) { if (!search_regs_saved) { saved_search_regs.num_regs = search_regs.num_regs; saved_search_regs.start = search_regs.start; saved_search_regs.end = search_regs.end; search_regs.num_regs = 0; search_regs.start = 0; search_regs.end = 0; search_regs_saved = 1; } } /* Called upon exit from filters and sentinels. */ void restore_match_data (void) { if (search_regs_saved) { if (search_regs.num_regs > 0) { xfree (search_regs.start); xfree (search_regs.end); } search_regs.num_regs = saved_search_regs.num_regs; search_regs.start = saved_search_regs.start; search_regs.end = saved_search_regs.end; search_regs_saved = 0; } } /* Quote a string to inactivate reg-expr chars */ DEFUN ("regexp-quote", Fregexp_quote, 1, 1, 0, /* Return a regexp string which matches exactly STRING and nothing else. */ (string)) { REGISTER Intbyte *in, *out, *end; REGISTER Intbyte *temp; CHECK_STRING (string); temp = (Intbyte *) ALLOCA (XSTRING_LENGTH (string) * 2); /* Now copy the data into the new string, inserting escapes. */ in = XSTRING_DATA (string); end = in + XSTRING_LENGTH (string); out = temp; while (in < end) { Emchar c = charptr_emchar (in); if (c == '[' || c == ']' || c == '*' || c == '.' || c == '\\' || c == '?' || c == '+' || c == '^' || c == '$') *out++ = '\\'; out += set_charptr_emchar (out, c); INC_CHARPTR (in); } return make_string (temp, out - temp); } DEFUN ("set-word-regexp", Fset_word_regexp, 1, 1, 0, /* Set the regexp to be used to match a word in regular-expression searching. #### Not yet implemented. Currently does nothing. #### Do not use this yet. Its calling interface is likely to change. */ (regexp)) { return Qnil; } /************************************************************************/ /* initialization */ /************************************************************************/ void syms_of_search (void) { DEFERROR_STANDARD (Qsearch_failed, Qinvalid_operation); DEFERROR_STANDARD (Qinvalid_regexp, Qsyntax_error); Fput (Qinvalid_regexp, Qerror_lacks_explanatory_string, Qt); DEFSUBR (Flooking_at); DEFSUBR (Fposix_looking_at); DEFSUBR (Fstring_match); DEFSUBR (Fposix_string_match); DEFSUBR (Fskip_chars_forward); DEFSUBR (Fskip_chars_backward); DEFSUBR (Fskip_syntax_forward); DEFSUBR (Fskip_syntax_backward); DEFSUBR (Fsearch_forward); DEFSUBR (Fsearch_backward); DEFSUBR (Fword_search_forward); DEFSUBR (Fword_search_backward); DEFSUBR (Fre_search_forward); DEFSUBR (Fre_search_backward); DEFSUBR (Fposix_search_forward); DEFSUBR (Fposix_search_backward); DEFSUBR (Freplace_match); DEFSUBR (Fmatch_beginning); DEFSUBR (Fmatch_end); DEFSUBR (Fmatch_data); DEFSUBR (Fstore_match_data); DEFSUBR (Fregexp_quote); DEFSUBR (Fset_word_regexp); } void reinit_vars_of_search (void) { int i; last_thing_searched = Qnil; staticpro_nodump (&last_thing_searched); for (i = 0; i < REGEXP_CACHE_SIZE; ++i) { searchbufs[i].buf.allocated = 100; searchbufs[i].buf.buffer = (unsigned char *) xmalloc (100); searchbufs[i].buf.fastmap = searchbufs[i].fastmap; searchbufs[i].regexp = Qnil; staticpro_nodump (&searchbufs[i].regexp); searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]); } searchbuf_head = &searchbufs[0]; } void vars_of_search (void) { reinit_vars_of_search (); DEFVAR_LISP ("forward-word-regexp", &Vforward_word_regexp /* *Regular expression to be used in `forward-word'. #### Not yet implemented. */ ); Vforward_word_regexp = Qnil; DEFVAR_LISP ("backward-word-regexp", &Vbackward_word_regexp /* *Regular expression to be used in `backward-word'. #### Not yet implemented. */ ); Vbackward_word_regexp = Qnil; DEFVAR_INT ("warn-about-possibly-incompatible-back-references", &warn_about_possibly_incompatible_back_references /* If true, issue warnings when new-semantics back references occur. This is to catch places where old code might inadvertently have changed semantics. This will occur in old code only where more than nine groups occur and a back reference to one of them is directly followed by a digit. */ ); warn_about_possibly_incompatible_back_references = 1; Vskip_chars_range_table = Fmake_range_table (); staticpro (&Vskip_chars_range_table); }