view src/profile.c @ 853:2b6fa2618f76

[xemacs-hg @ 2002-05-28 08:44:22 by ben] merge my stderr-proc ws make-docfile.c: Fix places where we forget to check for EOF. code-init.el: Don't use CRLF conversion by default on process output. CMD.EXE and friends work both ways but Cygwin programs don't like the CRs. code-process.el, multicast.el, process.el: Removed. Improvements to call-process-internal: -- allows a buffer to be specified for input and stderr output -- use it on all systems -- implement C-g as documented -- clean up and comment call-process-region uses new call-process facilities; no temp file. remove duplicate funs in process.el. comment exactly how coding systems work and fix various problems. open-multicast-group now does similar coding-system frobbing to open-network-stream. dumped-lisp.el, faces.el, msw-faces.el: Fix some hidden errors due to code not being defined at the right time. xemacs.mak: Add -DSTRICT. ================================================================ ALLOW SEPARATION OF STDOUT AND STDERR IN PROCESSES ================================================================ Standard output and standard error can be processed separately in a process. Each can have its own buffer, its own mark in that buffer, and its filter function. You can specify a separate buffer for stderr in `start-process' to get things started, or use the new primitives: set-process-stderr-buffer process-stderr-buffer process-stderr-mark set-process-stderr-filter process-stderr-filter Also, process-send-region takes a 4th optional arg, a buffer. Currently always uses a pipe() under Unix to read the error output. (#### Would a PTY be better?) sysdep.h, sysproc.h, unexfreebsd.c, unexsunos4.c, nt.c, emacs.c, callproc.c, symsinit.h, sysdep.c, Makefile.in.in, process-unix.c: Delete callproc.c. Move child_setup() to process-unix.c. wait_for_termination() now only needed on a few really old systems. console-msw.h, event-Xt.c, event-msw.c, event-stream.c, event-tty.c, event-unixoid.c, events.h, process-nt.c, process-unix.c, process.c, process.h, procimpl.h: Rewrite the process methods to handle a separate channel for error input. Create Lstreams for reading in the error channel. Many process methods need change. In general the changes are fairly clear as they involve duplicating what's used for reading the normal stdout and changing for stderr -- although tedious, as such changes are required throughout the entire process code. Rewrote the code that reads process output to do two loops, one for stdout and one for stderr. gpmevent.c, tooltalk.c: set_process_filter takes an argument for stderr. ================================================================ NEW ERROR-TRAPPING MECHANISM ================================================================ Totally rewrite error trapping code to be unified and support more features. Basic function is call_trapping_problems(), which lets you specify, by means of flags, what sorts of problems you want trapped. these can include -- quit -- errors -- throws past the function -- creation of "display objects" (e.g. buffers) -- deletion of already-existing "display objects" (e.g. buffers) -- modification of already-existing buffers -- entering the debugger -- gc -- errors->warnings (ala suspended errors) etc. All other error funs rewritten in terms of this one. Various older mechanisms removed or rewritten. window.c, insdel.c, console.c, buffer.c, device.c, frame.c: When creating a display object, added call to note_object_created(), for use with trapping_problems mechanism. When deleting, call check_allowed_operation() and note_object deleted(). The trapping-problems code records the objects created since the call-trapping-problems began. Those objects can be deleted, but none others (i.e. previously existing ones). bytecode.c, cmdloop.c: internal_catch takes another arg. eval.c: Add long comments describing the "five lists" used to maintain state (backtrace, gcpro, specbind, etc.) in the Lisp engine. backtrace.h, eval.c: Implement trapping-problems mechanism, eliminate old mechanisms or redo in terms of new one. frame.c, gutter.c: Flush out the concept of "critical display section", defined by the in_display() var. Use an internal_bind() to get it reset, rather than just doing it at end, because there may be a non-local exit. event-msw.c, event-stream.c, console-msw.h, device.c, dialog-msw.c, frame.c, frame.h, intl.c, toolbar.c, menubar-msw.c, redisplay.c, alloc.c, menubar-x.c: Make use of new trapping-errors stuff and rewrite code based on old mechanisms. glyphs-widget.c, redisplay.h: Protect calling Lisp in redisplay. insdel.c: Protect hooks against deleting existing buffers. frame-msw.c: Use EQ, not EQUAL in hash tables whose keys are just numbers. Otherwise we run into stickiness in redisplay because internal_equal() can QUIT. ================================================================ SIGNAL, C-G CHANGES ================================================================ Here we change the way that C-g interacts with event reading. The idea is that a C-g occurring while we're reading a user event should be read as C-g, but elsewhere should be a QUIT. The former code did all sorts of bizarreness -- requiring that no QUIT occurs anywhere in event-reading code (impossible to enforce given the stuff called or Lisp code invoked), and having some weird system involving enqueue/dequeue of a C-g and interaction with Vquit_flag -- and it didn't work. Now, we simply enclose all code where we want C-g read as an event with {begin/end}_dont_check_for_quit(). This completely turns off the mechanism that checks (and may remove or alter) C-g in the read-ahead queues, so we just get the C-g normal. Signal.c documents this very carefully. cmdloop.c: Correct use of dont_check_for_quit to new scheme, remove old out-of-date comments. event-stream.c: Fix C-g handling to actually work. device-x.c: Disable quit checking when err out. signal.c: Cleanup. Add large descriptive comment. process-unix.c, process-nt.c, sysdep.c: Use QUIT instead of REALLY_QUIT. It's not necessary to use REALLY_QUIT and just confuses the issue. lisp.h: Comment quit handlers. ================================================================ CONS CHANGES ================================================================ free_cons() now takes a Lisp_Object not the result of XCONS(). car and cdr have been renamed so that they don't get used directly; go through XCAR(), XCDR() instead. alloc.c, dired.c, editfns.c, emodules.c, fns.c, glyphs-msw.c, glyphs-x.c, glyphs.c, keymap.c, minibuf.c, search.c, eval.c, lread.c, lisp.h: Correct free_cons calling convention: now takes Lisp_Object, not Lisp_Cons chartab.c: Eliminate direct use of ->car, ->cdr, should be black box. callint.c: Rewrote using EXTERNAL_LIST_LOOP to avoid use of Lisp_Cons. ================================================================ USE INTERNAL-BIND-* ================================================================ eval.c: Cleanups of these funs. alloc.c, fileio.c, undo.c, specifier.c, text.c, profile.c, lread.c, redisplay.c, menubar-x.c, macros.c: Rewrote to use internal_bind_int() and internal_bind_lisp_object() in place of whatever varied and cumbersome mechanisms were formerly there. ================================================================ SPECBIND SANITY ================================================================ backtrace.h: - Improved comments backtrace.h, bytecode.c, eval.c: Add new mechanism check_specbind_stack_sanity() for sanity checking code each time the catchlist or specbind stack change. Removed older prototype of same mechanism. ================================================================ MISC ================================================================ lisp.h, insdel.c, window.c, device.c, console.c, buffer.c: Fleshed out authorship. device-msw.c: Correct bad Unicode-ization. print.c: Be more careful when not initialized or in fatal error handling. search.c: Eliminate running_asynch_code, an FSF holdover. alloc.c: Added comments about gc-cons-threshold. dialog-x.c: Use begin_gc_forbidden() around code to build up a widget value tree, like in menubar-x.c. gui.c: Use Qunbound not Qnil as the default for gethash. lisp-disunion.h, lisp-union.h: Added warnings on use of VOID_TO_LISP(). lisp.h: Use ERROR_CHECK_STRUCTURES to turn on ERROR_CHECK_TRAPPING_PROBLEMS and ERROR_CHECK_TYPECHECK lisp.h: Add assert_with_message. lisp.h: Add macros for gcproing entire arrays. (You could do this before but it required manual twiddling the gcpro structure.) lisp.h: Add prototypes for new functions defined elsewhere.
author ben
date Tue, 28 May 2002 08:45:36 +0000
parents 6728e641994e
children 37bdd24225ef
line wrap: on
line source

/* Why the hell is XEmacs so fucking slow?
   Copyright (C) 1996 Ben Wing.
   Copyright (C) 1998 Free Software Foundation, Inc.

This file is part of XEmacs.

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include <config.h>
#include "lisp.h"

#include "backtrace.h"
#include "bytecode.h"
#include "elhash.h"
#include "hash.h"

#include "syssignal.h"
#include "systime.h"

#ifndef HAVE_SETITIMER
#error Sorry charlie.  We need a scalpel and all we have is a lawnmower.
#endif

/* We implement our own profiling scheme so that we can determine
   things like which Lisp functions are occupying the most time.  Any
   standard OS-provided profiling works on C functions, which is
   somewhat useless.

   The basic idea is simple.  We set a profiling timer using setitimer
   (ITIMER_PROF), which generates a SIGPROF every so often.  (This
   runs not in real time but rather when the process is executing or
   the system is running on behalf of the process.) When the signal
   goes off, we see what we're in, and add 1 to the count associated
   with that function.

   It would be nice to use the Lisp allocation mechanism etc. to keep
   track of the profiling information, but we can't because that's not
   safe, and trying to make it safe would be much more work than it's
   worth.


   Jan 1998: In addition to this, I have added code to remember call
   counts of Lisp funcalls.  The profile_increase_call_count()
   function is called from Ffuncall(), and serves to add data to
   Vcall_count_profile_table.  This mechanism is much simpler and
   independent of the SIGPROF-driven one.  It uses the Lisp allocation
   mechanism normally, since it is not called from a handler.  It may
   even be useful to provide a way to turn on only one profiling
   mechanism, but I haven't done so yet.  --hniksic */

static struct hash_table *big_profile_table;
Lisp_Object Vcall_count_profile_table;

Fixnum default_profiling_interval;

int profiling_active;

/* The normal flag in_display is used as a critical-section flag
   and is not set the whole time we're in redisplay. */
int profiling_redisplay_flag;

static Lisp_Object QSin_redisplay;
static Lisp_Object QSin_garbage_collection;
static Lisp_Object QSprocessing_events_at_top_level;
static Lisp_Object QSunknown;

/* We use inside_profiling to prevent the handler from writing to
   the table while another routine is operating on it.  We also set
   inside_profiling in case the timeout between signal calls is short
   enough to catch us while we're already in there. */
static volatile int inside_profiling;

/* Increase the value of OBJ in Vcall_count_profile_table hash table.
   If the hash table is nil, create it first.  */
void
profile_increase_call_count (Lisp_Object obj)
{
  Lisp_Object count;

  if (NILP (Vcall_count_profile_table))
    Vcall_count_profile_table =
      make_lisp_hash_table (100, HASH_TABLE_NON_WEAK, HASH_TABLE_EQ);

  count = Fgethash (obj, Vcall_count_profile_table, Qzero);
  if (!INTP (count))
    count = Qzero;
  Fputhash (obj, make_int (1 + XINT (count)), Vcall_count_profile_table);
}

static SIGTYPE
sigprof_handler (int signo)
{
  /* Don't do anything if we are shutting down, or are doing a maphash
     or clrhash on the table. */
  if (!inside_profiling && !preparing_for_armageddon)
    {
      Lisp_Object fun;

      /* If something below causes an error to be signaled, we'll
	 not correctly reset this flag.  But we'll be in worse shape
	 than that anyways, since we'll longjmp back to the last
	 condition case. */
      inside_profiling = 1;

      if (profiling_redisplay_flag)
	fun = QSin_redisplay;
      else if (gc_in_progress)
	fun = QSin_garbage_collection;
      else if (backtrace_list)
	{
	  fun = *backtrace_list->function;

	  if (!SYMBOLP (fun)
	      && !COMPILED_FUNCTIONP (fun)
	      && !SUBRP (fun)
	      && !CONSP (fun))
	     fun = QSunknown;
	}
      else
	fun = QSprocessing_events_at_top_level;

      {
	/* #### see comment about memory allocation in start-profiling.
	   Allocating memory in a signal handler is BAD BAD BAD.
	   If you are using the non-mmap rel-alloc code, you might
	   lose because of this.  Even worse, if the memory allocation
	   fails, the `error' generated whacks everything hard. */
	long count;
	const void *vval;

	if (gethash (LISP_TO_VOID (fun), big_profile_table, &vval))
	  count = (long) vval;
	else
	  count = 0;
	count++;
	vval = (const void *) count;
	puthash (LISP_TO_VOID (fun), (void *) vval, big_profile_table);
      }

      inside_profiling = 0;
    }
}

DEFUN ("start-profiling", Fstart_profiling, 0, 1, 0, /*
Start profiling, with profile queries every MICROSECS.
If MICROSECS is nil or omitted, the value of `default-profiling-interval'
is used.

You can retrieve the recorded profiling info using `get-profiling-info'.

Starting and stopping profiling does not clear the currently recorded
info.  Thus you can start and stop as many times as you want and everything
will be properly accumulated.
*/
       (microsecs))
{
  /* This function can GC */
  int msecs;
  struct itimerval foo;

  /* #### The hash code can safely be called from a signal handler
     except when it has to grow the hash table.  In this case, it calls
     realloc(), which is not (in general) re-entrant.  We'll just be
     sleazy and make the table large enough that it (hopefully) won't
     need to be realloc()ed. */
  if (!big_profile_table)
    big_profile_table = make_hash_table (10000);

  if (NILP (microsecs))
    msecs = default_profiling_interval;
  else
    {
      CHECK_NATNUM (microsecs);
      msecs = XINT (microsecs);
    }
  if (msecs <= 0)
    msecs = 1000;

  set_timeout_signal (SIGPROF, sigprof_handler);
  foo.it_value.tv_sec = 0;
  foo.it_value.tv_usec = msecs;
  EMACS_NORMALIZE_TIME (foo.it_value);
  foo.it_interval = foo.it_value;
  profiling_active = 1;
  inside_profiling = 0;
  qxe_setitimer (ITIMER_PROF, &foo, 0);
  return Qnil;
}

DEFUN ("stop-profiling", Fstop_profiling, 0, 0, 0, /*
Stop profiling.
*/
       ())
{
  /* This function does not GC */
  struct itimerval foo;

  foo.it_value.tv_sec = 0;
  foo.it_value.tv_usec = 0;
  foo.it_interval = foo.it_value;
  qxe_setitimer (ITIMER_PROF, &foo, 0);
  profiling_active = 0;
  set_timeout_signal (SIGPROF, fatal_error_signal);
  return Qnil;
}

struct get_profiling_info_closure
{
  Lisp_Object accum;
};

static int
get_profiling_info_maphash (const void *void_key,
			    void *void_val,
			    void *void_closure)
{
  /* This function does not GC */
  Lisp_Object key;
  struct get_profiling_info_closure *closure
    = (struct get_profiling_info_closure *) void_closure;
  EMACS_INT val;

  key = VOID_TO_LISP (void_key);
  val = (EMACS_INT) void_val;

  closure->accum = Fcons (Fcons (key, make_int (val)), closure->accum);
  return 0;
}

DEFUN ("get-profiling-info", Fget_profiling_info, 0, 0, 0, /*
Return the profiling info as an alist.
*/
       ())
{
  /* This function does not GC */
  struct get_profiling_info_closure closure;

  closure.accum = Qnil;
  if (big_profile_table)
    {
      int count = internal_bind_int ((int *) &inside_profiling, 1);
      maphash (get_profiling_info_maphash, big_profile_table, &closure);
      unbind_to (count);
    }
  return closure.accum;
}

static int
mark_profiling_info_maphash (const void *void_key,
			     void *void_val,
			     void *void_closure)
{
  Lisp_Object key;

  key = VOID_TO_LISP (void_key);
  mark_object (key);
  return 0;
}

void
mark_profiling_info (void)
{
  /* This function does not GC */
  if (big_profile_table)
    {
      inside_profiling = 1;
      maphash (mark_profiling_info_maphash, big_profile_table, 0);
      inside_profiling = 0;
    }
}

DEFUN ("clear-profiling-info", Fclear_profiling_info, 0, 0, "", /*
Clear out the recorded profiling info.
*/
       ())
{
  /* This function does not GC */
  if (big_profile_table)
    {
      inside_profiling = 1;
      clrhash (big_profile_table);
      inside_profiling = 0;
    }
  if (!NILP (Vcall_count_profile_table))
    Fclrhash (Vcall_count_profile_table);
  return Qnil;
}

DEFUN ("profiling-active-p", Fprofiling_active_p, 0, 0, 0, /*
Return non-nil if profiling information is currently being recorded.
*/
       ())
{
  return profiling_active ? Qt : Qnil;
}

void
syms_of_profile (void)
{
  DEFSUBR (Fstart_profiling);
  DEFSUBR (Fstop_profiling);
  DEFSUBR (Fget_profiling_info);
  DEFSUBR (Fclear_profiling_info);
  DEFSUBR (Fprofiling_active_p);
}

void
vars_of_profile (void)
{
  DEFVAR_INT ("default-profiling-interval", &default_profiling_interval /*
Default CPU time in microseconds between profiling sampling.
Used when the argument to `start-profiling' is nil or omitted.
Note that the time in question is CPU time (when the program is executing
or the kernel is executing on behalf of the program) and not real time.
*/ );
  default_profiling_interval = 1000;

  DEFVAR_LISP ("call-count-profile-table", &Vcall_count_profile_table /*
The table where call-count information is stored by the profiling primitives.
This is a hash table whose keys are funcallable objects, and whose
values are their call counts (integers).
*/ );
  Vcall_count_profile_table = Qnil;

  inside_profiling = 0;

  QSin_redisplay = build_msg_string ("(in redisplay)");
  staticpro (&QSin_redisplay);
  QSin_garbage_collection = build_msg_string ("(in garbage collection)");
  staticpro (&QSin_garbage_collection);
  QSunknown = build_msg_string ("(unknown)");
  staticpro (&QSunknown);
  QSprocessing_events_at_top_level =
    build_msg_string ("(processing events at top level)");
  staticpro (&QSprocessing_events_at_top_level);
}