view src/ntheap.c @ 853:2b6fa2618f76

[xemacs-hg @ 2002-05-28 08:44:22 by ben] merge my stderr-proc ws make-docfile.c: Fix places where we forget to check for EOF. code-init.el: Don't use CRLF conversion by default on process output. CMD.EXE and friends work both ways but Cygwin programs don't like the CRs. code-process.el, multicast.el, process.el: Removed. Improvements to call-process-internal: -- allows a buffer to be specified for input and stderr output -- use it on all systems -- implement C-g as documented -- clean up and comment call-process-region uses new call-process facilities; no temp file. remove duplicate funs in process.el. comment exactly how coding systems work and fix various problems. open-multicast-group now does similar coding-system frobbing to open-network-stream. dumped-lisp.el, faces.el, msw-faces.el: Fix some hidden errors due to code not being defined at the right time. xemacs.mak: Add -DSTRICT. ================================================================ ALLOW SEPARATION OF STDOUT AND STDERR IN PROCESSES ================================================================ Standard output and standard error can be processed separately in a process. Each can have its own buffer, its own mark in that buffer, and its filter function. You can specify a separate buffer for stderr in `start-process' to get things started, or use the new primitives: set-process-stderr-buffer process-stderr-buffer process-stderr-mark set-process-stderr-filter process-stderr-filter Also, process-send-region takes a 4th optional arg, a buffer. Currently always uses a pipe() under Unix to read the error output. (#### Would a PTY be better?) sysdep.h, sysproc.h, unexfreebsd.c, unexsunos4.c, nt.c, emacs.c, callproc.c, symsinit.h, sysdep.c, Makefile.in.in, process-unix.c: Delete callproc.c. Move child_setup() to process-unix.c. wait_for_termination() now only needed on a few really old systems. console-msw.h, event-Xt.c, event-msw.c, event-stream.c, event-tty.c, event-unixoid.c, events.h, process-nt.c, process-unix.c, process.c, process.h, procimpl.h: Rewrite the process methods to handle a separate channel for error input. Create Lstreams for reading in the error channel. Many process methods need change. In general the changes are fairly clear as they involve duplicating what's used for reading the normal stdout and changing for stderr -- although tedious, as such changes are required throughout the entire process code. Rewrote the code that reads process output to do two loops, one for stdout and one for stderr. gpmevent.c, tooltalk.c: set_process_filter takes an argument for stderr. ================================================================ NEW ERROR-TRAPPING MECHANISM ================================================================ Totally rewrite error trapping code to be unified and support more features. Basic function is call_trapping_problems(), which lets you specify, by means of flags, what sorts of problems you want trapped. these can include -- quit -- errors -- throws past the function -- creation of "display objects" (e.g. buffers) -- deletion of already-existing "display objects" (e.g. buffers) -- modification of already-existing buffers -- entering the debugger -- gc -- errors->warnings (ala suspended errors) etc. All other error funs rewritten in terms of this one. Various older mechanisms removed or rewritten. window.c, insdel.c, console.c, buffer.c, device.c, frame.c: When creating a display object, added call to note_object_created(), for use with trapping_problems mechanism. When deleting, call check_allowed_operation() and note_object deleted(). The trapping-problems code records the objects created since the call-trapping-problems began. Those objects can be deleted, but none others (i.e. previously existing ones). bytecode.c, cmdloop.c: internal_catch takes another arg. eval.c: Add long comments describing the "five lists" used to maintain state (backtrace, gcpro, specbind, etc.) in the Lisp engine. backtrace.h, eval.c: Implement trapping-problems mechanism, eliminate old mechanisms or redo in terms of new one. frame.c, gutter.c: Flush out the concept of "critical display section", defined by the in_display() var. Use an internal_bind() to get it reset, rather than just doing it at end, because there may be a non-local exit. event-msw.c, event-stream.c, console-msw.h, device.c, dialog-msw.c, frame.c, frame.h, intl.c, toolbar.c, menubar-msw.c, redisplay.c, alloc.c, menubar-x.c: Make use of new trapping-errors stuff and rewrite code based on old mechanisms. glyphs-widget.c, redisplay.h: Protect calling Lisp in redisplay. insdel.c: Protect hooks against deleting existing buffers. frame-msw.c: Use EQ, not EQUAL in hash tables whose keys are just numbers. Otherwise we run into stickiness in redisplay because internal_equal() can QUIT. ================================================================ SIGNAL, C-G CHANGES ================================================================ Here we change the way that C-g interacts with event reading. The idea is that a C-g occurring while we're reading a user event should be read as C-g, but elsewhere should be a QUIT. The former code did all sorts of bizarreness -- requiring that no QUIT occurs anywhere in event-reading code (impossible to enforce given the stuff called or Lisp code invoked), and having some weird system involving enqueue/dequeue of a C-g and interaction with Vquit_flag -- and it didn't work. Now, we simply enclose all code where we want C-g read as an event with {begin/end}_dont_check_for_quit(). This completely turns off the mechanism that checks (and may remove or alter) C-g in the read-ahead queues, so we just get the C-g normal. Signal.c documents this very carefully. cmdloop.c: Correct use of dont_check_for_quit to new scheme, remove old out-of-date comments. event-stream.c: Fix C-g handling to actually work. device-x.c: Disable quit checking when err out. signal.c: Cleanup. Add large descriptive comment. process-unix.c, process-nt.c, sysdep.c: Use QUIT instead of REALLY_QUIT. It's not necessary to use REALLY_QUIT and just confuses the issue. lisp.h: Comment quit handlers. ================================================================ CONS CHANGES ================================================================ free_cons() now takes a Lisp_Object not the result of XCONS(). car and cdr have been renamed so that they don't get used directly; go through XCAR(), XCDR() instead. alloc.c, dired.c, editfns.c, emodules.c, fns.c, glyphs-msw.c, glyphs-x.c, glyphs.c, keymap.c, minibuf.c, search.c, eval.c, lread.c, lisp.h: Correct free_cons calling convention: now takes Lisp_Object, not Lisp_Cons chartab.c: Eliminate direct use of ->car, ->cdr, should be black box. callint.c: Rewrote using EXTERNAL_LIST_LOOP to avoid use of Lisp_Cons. ================================================================ USE INTERNAL-BIND-* ================================================================ eval.c: Cleanups of these funs. alloc.c, fileio.c, undo.c, specifier.c, text.c, profile.c, lread.c, redisplay.c, menubar-x.c, macros.c: Rewrote to use internal_bind_int() and internal_bind_lisp_object() in place of whatever varied and cumbersome mechanisms were formerly there. ================================================================ SPECBIND SANITY ================================================================ backtrace.h: - Improved comments backtrace.h, bytecode.c, eval.c: Add new mechanism check_specbind_stack_sanity() for sanity checking code each time the catchlist or specbind stack change. Removed older prototype of same mechanism. ================================================================ MISC ================================================================ lisp.h, insdel.c, window.c, device.c, console.c, buffer.c: Fleshed out authorship. device-msw.c: Correct bad Unicode-ization. print.c: Be more careful when not initialized or in fatal error handling. search.c: Eliminate running_asynch_code, an FSF holdover. alloc.c: Added comments about gc-cons-threshold. dialog-x.c: Use begin_gc_forbidden() around code to build up a widget value tree, like in menubar-x.c. gui.c: Use Qunbound not Qnil as the default for gethash. lisp-disunion.h, lisp-union.h: Added warnings on use of VOID_TO_LISP(). lisp.h: Use ERROR_CHECK_STRUCTURES to turn on ERROR_CHECK_TRAPPING_PROBLEMS and ERROR_CHECK_TYPECHECK lisp.h: Add assert_with_message. lisp.h: Add macros for gcproing entire arrays. (You could do this before but it required manual twiddling the gcpro structure.) lisp.h: Add prototypes for new functions defined elsewhere.
author ben
date Tue, 28 May 2002 08:45:36 +0000
parents a634e3b7acc8
children 4542b72c005e
line wrap: on
line source

/* Heap management routines for XEmacs on Windows NT.
   Copyright (C) 1994 Free Software Foundation, Inc.

This file is part of XEmacs.

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to the Free
Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

   Geoff Voelker (voelker@cs.washington.edu) 7-29-94 */

/* Adapted for XEmacs by David Hobley <david@spook-le0.cia.com.au> */
/* Synced with FSF Emacs 19.34.6 by Marc Paquette <marcpa@cam.org>
   (Note: Sync messages from Marc Paquette may indicate
   incomplete synching, so beware.)
 */

/* This file has been Mule-ized, Ben Wing, 4-13-02. */

#include <config.h>
#include "lisp.h"

#include "sysdep.h"
#include "syswindows.h"

/* This gives us the page size and the size of the allocation unit on NT.  */
SYSTEM_INFO sysinfo_cache;
unsigned long syspage_mask = 0;

/* These are defined to get Emacs to compile, but are not used.  */
int edata;
int etext;

/* Cache information describing the NT system for later use.  */
void
cache_system_info (void)
{
  /* Cache page size, allocation unit, processor type, etc.  */
  GetSystemInfo (&sysinfo_cache);
  syspage_mask = sysinfo_cache.dwPageSize - 1;
}

/* Round ADDRESS up to be aligned with ALIGN.  */
UChar_Binary *
round_to_next (UChar_Binary *address, unsigned long align)
{
  unsigned long tmp;

  tmp = (unsigned long) address;
  tmp = (tmp + align - 1) / align;

  return (UChar_Binary *) (tmp * align);
}

/* Info for keeping track of our heap.  */
UChar_Binary *data_region_base = UNINIT_PTR;
UChar_Binary *data_region_end = UNINIT_PTR;
UChar_Binary *real_data_region_end = UNINIT_PTR;
unsigned long  data_region_size = UNINIT_LONG;
unsigned long  reserved_heap_size = UNINIT_LONG;

/* The start of the data segment.  */
UChar_Binary *
get_data_start (void)
{
  return data_region_base;
}

/* The end of the data segment.  */
UChar_Binary *
get_data_end (void)
{
  return data_region_end;
}

static UChar_Binary *
allocate_heap (void)
{
  /* The base address for our GNU malloc heap is chosen in conjunction
     with the link settings for temacs.exe which control the stack size,
     the initial default process heap size and the executable image base
     address.  The link settings and the malloc heap base below must all
     correspond; the relationship between these values depends on how NT
     and Win95 arrange the virtual address space for a process (and on
     the size of the code and data segments in temacs.exe).

     The most important thing is to make base address for the executable
     image high enough to leave enough room between it and the 4MB floor
     of the process address space on Win95 for the primary thread stack,
     the process default heap, and other assorted odds and ends
     (eg. environment strings, private system dll memory etc) that are
     allocated before temacs has a chance to grab its malloc arena.  The
     malloc heap base can then be set several MB higher than the
     executable image base, leaving enough room for the code and data
     segments.

     Because some parts of Emacs can use rather a lot of stack space
     (for instance, the regular expression routines can potentially
     allocate several MB of stack space) we allow 8MB for the stack.

     Allowing 1MB for the default process heap, and 1MB for odds and
     ends, we can base the executable at 16MB and still have a generous
     safety margin.  At the moment, the executable has about 810KB of
     code (for x86) and about 550KB of data - on RISC platforms the code
     size could be roughly double, so if we allow 4MB for the executable
     we will have plenty of room for expansion.

     Thus we would like to set the malloc heap base to 20MB.  However,
     Win95 refuses to allocate the heap starting at this address, so we
     set the base to 27MB to make it happy.  Since Emacs now leaves
     28 bits available for pointers, this lets us use the remainder of
     the region below the 256MB line for our malloc arena - 229MB is
     still a pretty decent arena to play in!  */

  unsigned long base = 0x01B00000;   /*  27MB */
  /* Temporary hack for the non-starting problem - use 28 (256Mb) rather than VALBITS (1Gb) */
  unsigned long end  = 1 << 28;      /* 256MB */
  void *ptr = NULL;

#define NTHEAP_PROBE_BASE 1
#if NTHEAP_PROBE_BASE /* This is never normally defined */
  /* Try various addresses looking for one the kernel will let us have.  */
  while (!ptr && (base < end))
    {
      reserved_heap_size = end - base;
      ptr = VirtualAlloc ((void *) base,
			  get_reserved_heap_size (),
			  MEM_RESERVE,
			  PAGE_NOACCESS);
      base += 0x00100000;  /* 1MB increment */
    }
#else
  reserved_heap_size = end - base;
  ptr = VirtualAlloc ((void *) base,
		      get_reserved_heap_size (),
		      MEM_RESERVE,
		      PAGE_NOACCESS);
#endif

  return (UChar_Binary *) ptr;
}


/* Emulate Unix sbrk.  */
void *
sbrk (unsigned long increment)
{
  void *result;
  long size = (long) increment;
  
  /* Allocate our heap if we haven't done so already.  */
  if (data_region_base == UNINIT_PTR) 
    {
      data_region_base = allocate_heap ();
      if (!data_region_base)
	return NULL;

      data_region_end = data_region_base;
      real_data_region_end = data_region_end;
      data_region_size = get_reserved_heap_size ();
    }
  
  result = data_region_end;
  
  /* If size is negative, shrink the heap by decommitting pages.  */
  if (size < 0) 
    {
      int new_size;
      UChar_Binary *new_data_region_end;

      size = -size;

      /* Sanity checks.  */
      if ((data_region_end - size) < data_region_base)
	return NULL;

      /* We can only decommit full pages, so allow for 
	 partial deallocation [cga].  */
      new_data_region_end = (data_region_end - size);
      new_data_region_end = (UChar_Binary *)
	((long) (new_data_region_end + syspage_mask) & ~syspage_mask);
      new_size = real_data_region_end - new_data_region_end;
      real_data_region_end = new_data_region_end;
      if (new_size > 0) 
	{
	  /* Decommit size bytes from the end of the heap.  */
	  if (!VirtualFree (real_data_region_end, new_size, MEM_DECOMMIT))
	    return NULL;
 	}

      data_region_end -= size;
    } 
  /* If size is positive, grow the heap by committing reserved pages.  */
  else if (size > 0) 
    {
      /* Sanity checks.  */
      if ((data_region_end + size) >
	  (data_region_base + get_reserved_heap_size ()))
	return NULL;

      /* Commit more of our heap. */
      if (VirtualAlloc (data_region_end, size, MEM_COMMIT,
			PAGE_READWRITE) == NULL)
	return NULL;
      data_region_end += size;

      /* We really only commit full pages, so record where
	 the real end of committed memory is [cga].  */
      real_data_region_end = (UChar_Binary *)
	  ((long) (data_region_end + syspage_mask) & ~syspage_mask);
    }
  
  return result;
}

#if !defined (CANNOT_DUMP) && !defined (HEAP_IN_DATA) && !defined (PDUMP)

/* Recreate the heap from the data that was dumped to the executable.
   EXECUTABLE_PATH tells us where to find the executable.  */
void
recreate_heap (Extbyte *executable_path)
{
  /* First reserve the upper part of our heap.  (We reserve first
	 because there have been problems in the past where doing the
	 mapping first has loaded DLLs into the VA space of our heap.)  */

  /* Query the region at the end of the committed heap */
  void *tmp;
  MEMORY_BASIC_INFORMATION info;
  DWORD size;
  UChar_Binary *base = get_heap_end ();
  UChar_Binary *end  =
    base + get_reserved_heap_size () - get_committed_heap_size ();
  VirtualQuery (base, &info, sizeof (info));
  if (info.State != MEM_FREE)
    {
      /* Oops, something has already reserved or commited it, nothing
	 we can do but exit */
      Extbyte buf[256];
      sprintf (buf,
	       "XEmacs cannot start because the memory region required "
	       "by the heap is not available.\n"
	       "(BaseAddress = 0x%lx, AllocationBase = 0x%lx, "
	       "Size = 0x%lx, State = %s, Type = %s)",
	       info.BaseAddress, info.AllocationBase, info.RegionSize,
	       info.State == MEM_COMMIT ? "COMMITED" : "RESERVED",
	       info.Type == MEM_IMAGE ? "IMAGE" :
	       info.Type == MEM_MAPPED ? "MAPPED" : "PRIVATE");
      MessageBoxA (NULL, buf, "XEmacs", MB_OK | MB_ICONSTOP);
      exit(1);
    }

  /* Now try and reserve as much as possible */
  size = min (info.RegionSize, (DWORD) (end - base));
  tmp = VirtualAlloc (base, size, MEM_RESERVE, PAGE_NOACCESS);
  if (!tmp)
    {
      /* Can't reserve it, nothing we can do but exit */
      Extbyte buf[256];
      sprintf (buf,
	       "XEmacs cannot start because it couldn't reserve space "
	       "required for the heap.\n"
	       "(VirtualAlloc at 0x%lx of 0x%lx failed (%d))",
	       base, size, GetLastError());
      MessageBoxA (NULL, buf, "XEmacs", MB_OK | MB_ICONSTOP);
      exit (1);
    }

  /* We read in the data for the .bss section from the executable
     first and map in the heap from the executable second to prevent
     any funny interactions between file I/O and file mapping.  */
  read_in_bss (executable_path);
  map_in_heap (executable_path);

  /* Update system version information to match current system.  */
  cache_system_info ();
}
#endif /* CANNOT_DUMP */

/* Round the heap up to the given alignment.  */
void
round_heap (unsigned long align)
{
  unsigned long needs_to_be;
  unsigned long need_to_alloc;
  
  needs_to_be = (unsigned long) round_to_next (get_heap_end (), align);
  need_to_alloc = needs_to_be - (unsigned long) get_heap_end ();
  
  if (need_to_alloc) 
    sbrk (need_to_alloc);
}

#if ((_MSC_VER >= 1000) && (_MSC_VER < 1300))

/* MSVC 4.2 invokes these functions from mainCRTStartup to initialize
   a heap via HeapCreate.  They are normally defined by the runtime,
   but we override them here so that the unnecessary HeapCreate call
   is not performed.  */

/* MSVC 7.0 does not allow you to redefine _heap_init or _heap_term. */

int __cdecl
_heap_init (void)
{
  /* Stepping through the assembly indicates that mainCRTStartup is
     expecting a nonzero success return value.  */
  return 1;
}

void __cdecl
_heap_term (void)
{
  return;
}

#endif