Mercurial > hg > xemacs-beta
view src/emodules.c @ 853:2b6fa2618f76
[xemacs-hg @ 2002-05-28 08:44:22 by ben]
merge my stderr-proc ws
make-docfile.c: Fix places where we forget to check for EOF.
code-init.el: Don't use CRLF conversion by default on process output. CMD.EXE and
friends work both ways but Cygwin programs don't like the CRs.
code-process.el, multicast.el, process.el: Removed.
Improvements to call-process-internal:
-- allows a buffer to be specified for input and stderr output
-- use it on all systems
-- implement C-g as documented
-- clean up and comment
call-process-region uses new call-process facilities; no temp file.
remove duplicate funs in process.el.
comment exactly how coding systems work and fix various problems.
open-multicast-group now does similar coding-system frobbing to
open-network-stream.
dumped-lisp.el, faces.el, msw-faces.el: Fix some hidden errors due to code not being defined at the right time.
xemacs.mak: Add -DSTRICT.
================================================================
ALLOW SEPARATION OF STDOUT AND STDERR IN PROCESSES
================================================================
Standard output and standard error can be processed separately in
a process. Each can have its own buffer, its own mark in that buffer,
and its filter function. You can specify a separate buffer for stderr
in `start-process' to get things started, or use the new primitives:
set-process-stderr-buffer
process-stderr-buffer
process-stderr-mark
set-process-stderr-filter
process-stderr-filter
Also, process-send-region takes a 4th optional arg, a buffer.
Currently always uses a pipe() under Unix to read the error output.
(#### Would a PTY be better?)
sysdep.h, sysproc.h, unexfreebsd.c, unexsunos4.c, nt.c, emacs.c, callproc.c, symsinit.h, sysdep.c, Makefile.in.in, process-unix.c: Delete callproc.c. Move child_setup() to process-unix.c.
wait_for_termination() now only needed on a few really old systems.
console-msw.h, event-Xt.c, event-msw.c, event-stream.c, event-tty.c, event-unixoid.c, events.h, process-nt.c, process-unix.c, process.c, process.h, procimpl.h: Rewrite the process methods to handle a separate channel for
error input. Create Lstreams for reading in the error channel.
Many process methods need change. In general the changes are
fairly clear as they involve duplicating what's used for reading
the normal stdout and changing for stderr -- although tedious,
as such changes are required throughout the entire process code.
Rewrote the code that reads process output to do two loops, one
for stdout and one for stderr.
gpmevent.c, tooltalk.c: set_process_filter takes an argument for stderr.
================================================================
NEW ERROR-TRAPPING MECHANISM
================================================================
Totally rewrite error trapping code to be unified and support more
features. Basic function is call_trapping_problems(), which lets
you specify, by means of flags, what sorts of problems you want
trapped. these can include
-- quit
-- errors
-- throws past the function
-- creation of "display objects" (e.g. buffers)
-- deletion of already-existing "display objects" (e.g. buffers)
-- modification of already-existing buffers
-- entering the debugger
-- gc
-- errors->warnings (ala suspended errors)
etc. All other error funs rewritten in terms of this one.
Various older mechanisms removed or rewritten.
window.c, insdel.c, console.c, buffer.c, device.c, frame.c: When creating a display object, added call to
note_object_created(), for use with trapping_problems mechanism.
When deleting, call check_allowed_operation() and note_object
deleted().
The trapping-problems code records the objects created since the
call-trapping-problems began. Those objects can be deleted, but
none others (i.e. previously existing ones).
bytecode.c, cmdloop.c: internal_catch takes another arg.
eval.c: Add long comments describing the "five lists" used to maintain
state (backtrace, gcpro, specbind, etc.) in the Lisp engine.
backtrace.h, eval.c: Implement trapping-problems mechanism, eliminate old mechanisms or
redo in terms of new one.
frame.c, gutter.c: Flush out the concept of "critical display section", defined by
the in_display() var. Use an internal_bind() to get it reset,
rather than just doing it at end, because there may be a non-local
exit.
event-msw.c, event-stream.c, console-msw.h, device.c, dialog-msw.c, frame.c, frame.h, intl.c, toolbar.c, menubar-msw.c, redisplay.c, alloc.c, menubar-x.c: Make use of new trapping-errors stuff and rewrite code based on
old mechanisms.
glyphs-widget.c, redisplay.h: Protect calling Lisp in redisplay.
insdel.c: Protect hooks against deleting existing buffers.
frame-msw.c: Use EQ, not EQUAL in hash tables whose keys are just numbers.
Otherwise we run into stickiness in redisplay because
internal_equal() can QUIT.
================================================================
SIGNAL, C-G CHANGES
================================================================
Here we change the way that C-g interacts with event reading. The
idea is that a C-g occurring while we're reading a user event
should be read as C-g, but elsewhere should be a QUIT. The former
code did all sorts of bizarreness -- requiring that no QUIT occurs
anywhere in event-reading code (impossible to enforce given the
stuff called or Lisp code invoked), and having some weird system
involving enqueue/dequeue of a C-g and interaction with Vquit_flag
-- and it didn't work.
Now, we simply enclose all code where we want C-g read as an event
with {begin/end}_dont_check_for_quit(). This completely turns off
the mechanism that checks (and may remove or alter) C-g in the
read-ahead queues, so we just get the C-g normal.
Signal.c documents this very carefully.
cmdloop.c: Correct use of dont_check_for_quit to new scheme, remove old
out-of-date comments.
event-stream.c: Fix C-g handling to actually work.
device-x.c: Disable quit checking when err out.
signal.c: Cleanup. Add large descriptive comment.
process-unix.c, process-nt.c, sysdep.c: Use QUIT instead of REALLY_QUIT.
It's not necessary to use REALLY_QUIT and just confuses the issue.
lisp.h: Comment quit handlers.
================================================================
CONS CHANGES
================================================================
free_cons() now takes a Lisp_Object not the result of XCONS().
car and cdr have been renamed so that they don't get used directly;
go through XCAR(), XCDR() instead.
alloc.c, dired.c, editfns.c, emodules.c, fns.c, glyphs-msw.c, glyphs-x.c, glyphs.c, keymap.c, minibuf.c, search.c, eval.c, lread.c, lisp.h: Correct free_cons calling convention: now takes Lisp_Object,
not Lisp_Cons
chartab.c: Eliminate direct use of ->car, ->cdr, should be black box.
callint.c: Rewrote using EXTERNAL_LIST_LOOP to avoid use of Lisp_Cons.
================================================================
USE INTERNAL-BIND-*
================================================================
eval.c: Cleanups of these funs.
alloc.c, fileio.c, undo.c, specifier.c, text.c, profile.c, lread.c, redisplay.c, menubar-x.c, macros.c: Rewrote to use internal_bind_int() and internal_bind_lisp_object()
in place of whatever varied and cumbersome mechanisms were
formerly there.
================================================================
SPECBIND SANITY
================================================================
backtrace.h: - Improved comments
backtrace.h, bytecode.c, eval.c: Add new mechanism check_specbind_stack_sanity() for sanity
checking code each time the catchlist or specbind stack change.
Removed older prototype of same mechanism.
================================================================
MISC
================================================================
lisp.h, insdel.c, window.c, device.c, console.c, buffer.c: Fleshed out authorship.
device-msw.c: Correct bad Unicode-ization.
print.c: Be more careful when not initialized or in fatal error handling.
search.c: Eliminate running_asynch_code, an FSF holdover.
alloc.c: Added comments about gc-cons-threshold.
dialog-x.c: Use begin_gc_forbidden() around code to build up a widget value
tree, like in menubar-x.c.
gui.c: Use Qunbound not Qnil as the default for
gethash.
lisp-disunion.h, lisp-union.h: Added warnings on use of VOID_TO_LISP().
lisp.h: Use ERROR_CHECK_STRUCTURES to turn on
ERROR_CHECK_TRAPPING_PROBLEMS and ERROR_CHECK_TYPECHECK
lisp.h: Add assert_with_message.
lisp.h: Add macros for gcproing entire arrays. (You could do this before
but it required manual twiddling the gcpro structure.)
lisp.h: Add prototypes for new functions defined elsewhere.
author | ben |
---|---|
date | Tue, 28 May 2002 08:45:36 +0000 |
parents | e7ee5f8bde58 |
children | 804517e16990 |
line wrap: on
line source
/* emodules.c - Support routines for dynamic module loading (C) Copyright 1998, 1999 J. Kean Johnston. All rights reserved. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "emodules.h" #include "sysdll.h" #ifdef HAVE_SHLIB /* CE-Emacs version number */ Lisp_Object Vmodule_version; /* Do we do our work quietly? */ int load_modules_quietly; /* Load path */ Lisp_Object Vmodule_load_path; Lisp_Object Qdll_error; typedef struct _emodules_list { int used; /* Is this slot used? */ char *soname; /* Name of the shared object loaded (full path) */ char *modname; /* The name of the module */ char *modver; /* The version that the module is at */ char *modtitle; /* How the module announces itself */ dll_handle dlhandle; /* Dynamic lib handle */ } emodules_list; static Lisp_Object Vmodule_extensions; static int emodules_depth; static dll_handle dlhandle; static emodules_list *modules; static int modnum; static int find_make_module (const char *mod, const char *name, const char *ver, int make_or_find); static Lisp_Object module_load_unwind (Lisp_Object); static void attempt_module_delete (int mod); DEFUN ("load-module", Fload_module, 1, 3, "FLoad dynamic module: ", /* Load in a C Emacs Extension module named FILE. The optional NAME and VERSION are used to identify specific modules. This function is similar in intent to `load' except that it loads in pre-compiled C or C++ code, using dynamic shared objects. If NAME is specified, then the module is only loaded if its internal name matches the NAME specified. If VERSION is specified, then the module is only loaded if it matches that VERSION. This function will check to make sure that the same module is not loaded twice. Modules are searched for in the same way as Lisp files, except that the valid file extensions are `.so', `.dll' or `.ell'. All symbols in the shared module must be completely resolved in order for this function to be successful. Any modules which the specified FILE depends on will be automatically loaded. You can determine which modules have been loaded as dynamic shared objects by examining the return value of the function `list-modules'. It is possible, although unwise, to unload modules using `unload-module'. The preferred mechanism for unloading or reloading modules is to quit XEmacs, and then reload those new or changed modules that are required. Messages informing you of the progress of the load are displayed unless the variable `load-modules-quietly' is non-NIL. */ (file, name, version)) { char *mod, *mname, *mver; int speccount = specpdl_depth(); CHECK_STRING(file); mod = (char *)XSTRING_DATA (file); if (NILP (name)) mname = ""; else mname = (char *)XSTRING_DATA (name); if (NILP (version)) mver = ""; else mver = (char *)XSTRING_DATA (version); dlhandle = 0; record_unwind_protect (module_load_unwind, make_int(modnum)); emodules_load (mod, mname, mver); unbind_to (speccount); return Qt; } #ifdef DANGEROUS_NASTY_SCARY_MONSTER DEFUN ("unload-module", Fmodule_unload, 1, 3, 0, /* Unload a module previously loaded with load-module. As with load-module, this function requires at least the module FILE, and optionally the module NAME and VERSION to unload. It may not be possible for the module to be unloaded from memory, as there may be Lisp objects referring to variables inside the module code. However, once you have requested a module to be unloaded, it will be unloaded from memory as soon as the last reference to symbols within the module is destroyed. */ (file, name, version)) { int x; char *mod, *mname, *mver; CHECK_STRING(file); mod = (char *)XSTRING_DATA (file); if (NILP (name)) mname = ""; else mname = (char *)XSTRING_DATA (name); if (NILP (version)) mver = ""; else mver = (char *)XSTRING_DATA (version); x = find_make_module (mod, mname, mver, 1); if (x != -1) attempt_module_delete (x); return Qt; } #endif /* DANGEROUS_NASTY_SCARY_MONSTER */ DEFUN ("list-modules", Flist_modules, 0, 0, "", /* Produce a list of loaded dynamic modules. This function will return a list of all the loaded dynamic modules. Each element in the list is a list in the form (SONAME NAME VER DESC), where SONAME is the name of the shared object that was loaded, NAME is the internal module name, VER is the version of the module, and DESC is how the module describes itself. This function returns a list, so you will need to assign the return value to a variable and then examine the variable with `describe-variable'. For example: (setq mylist (list-modules)) (describe-variable 'mylist) NOTE: It is possible for the same module to be loaded more than once, at different versions. However, you should never see the same module, with the same name and version, loaded more than once. If you do, this is a bug, and you are encouraged to report it. */ ()) { Lisp_Object mlist = Qnil; int i; for (i = 0; i < modnum; i++) { if (modules[i].used == 1) mlist = Fcons (list4 (build_string (modules[i].soname), build_string (modules[i].modname), build_string (modules[i].modver), build_string (modules[i].modtitle)), mlist); } return mlist; } static int find_make_module (const char *mod, const char *name, const char *ver, int mof) { int i, fs = -1; for (i = 0; i < modnum; i++) { if (fs == -1 && modules[i].used == 0) fs = i; if (strcmp (modules[i].soname, mod) == 0) { if (name && name[0] && strcmp (modules[i].modname, name)) continue; if (ver && ver[0] && strcmp (modules[i].modver, ver)) continue; return i; /* Found a match */ } } if (mof) return fs; if (fs != -1) return fs; /* First free slot */ /* * We only get here if we haven't found a free slot and the module was * not previously loaded. */ if (modules == (emodules_list *)0) modules = (emodules_list *) xmalloc (sizeof (emodules_list)); modnum++; modules = (emodules_list *) xrealloc (modules, modnum * sizeof (emodules_list)); fs = modnum - 1; memset (&modules[fs], 0, sizeof(emodules_list)); return fs; } static void attempt_module_delete (int mod) { if (dll_close (modules[mod].dlhandle) == 0) { xfree (modules[mod].soname); xfree (modules[mod].modname); xfree (modules[mod].modver); xfree (modules[mod].modtitle); modules[mod].dlhandle = 0; modules[mod].used = 0; } else if (modules[mod].used > 1) modules[mod].used = 1; /* We couldn't delete it - it stays */ } static Lisp_Object module_load_unwind (Lisp_Object upto) { int x,l=0; /* * First close off the current handle if it is open. */ if (dlhandle != 0) dll_close (dlhandle); dlhandle = 0; if (CONSP (upto)) { if (INTP (XCAR (upto))) l = XINT (XCAR (upto)); free_cons (upto); } else l = XINT (upto); /* * Here we need to go through and dlclose() (IN REVERSE ORDER!) any * modules that were loaded as part of this load chain. We only mark * the slots as closed if the dlclose() succeeds. */ for (x = modnum-1; x >= l; x--) { if (modules[x].used > 1) attempt_module_delete (x); } emodules_depth = 0; return Qnil; } /* * Do the actual grunt-work of loading in a module. We first try and * dlopen() the module. If that fails, we have an error and we bail * out immediately. If the dlopen() succeeds, we need to check for the * existence of certain special symbols. * * All modules will have complete access to the variables and functions * defined within XEmacs itself. It is up to the module to declare any * variables or functions it uses, however. Modules will also have access * to other functions and variables in other loaded modules, unless they * are defined as STATIC. * * We need to be very careful with how we load modules. If we encounter an * error along the way, we need to back out completely to the point at * which the user started. Since we can be called recursively, we need to * take care with marking modules as loaded. When we first start loading * modules, we set the counter to zero. As we enter the function each time, * we increment the counter, and before we leave we decrement it. When * we get back down to 0, we know we are at the end of the chain and we * can mark all the modules in the list as loaded. * * When we signal an error, we need to be sure to unwind all modules loaded * thus far (but only for this module chain). It is assumed that if any * modules in a chain fail, then they all do. This is logical, considering * that the only time we recurse is when we have dependent modules. So in * the error handler we take great care to close off the module chain before * we call "error" and let the Fmodule_load unwind_protect() function handle * the cleaning up. */ void emodules_load(const char *module, const char *modname, const char *modver) { Lisp_Object filename; Lisp_Object foundname; int fd, x, mpx; char *soname, *tmod; const char **f; const long *ellcc_rev; char *mver, *mname, *mtitle, *symname; void (*modload)(void) = 0; void (*modsyms)(void) = 0; void (*modvars)(void) = 0; void (*moddocs)(void) = 0; emodules_list *mp; struct gcpro gcpro1,gcpro2; filename = Qnil; foundname = Qnil; emodules_depth++; dlhandle = 0; if ((module == (const char *)0) || (module[0] == '\0')) invalid_argument ("Empty module name", Qunbound); /* This is to get around the fact that build_string() is not declared as taking a const char * as an argument. I HATE compiler warnings. */ tmod = (char *)ALLOCA (strlen (module) + 1); strcpy (tmod, module); GCPRO2(filename, foundname); filename = build_string (tmod); fd = locate_file (Vmodule_load_path, filename, Vmodule_extensions, &foundname, -1); UNGCPRO; if (fd < 0) signal_error (Qdll_error, "Cannot open dynamic module", filename); soname = (char *)ALLOCA (XSTRING_LENGTH (foundname) + 1); strcpy (soname, (char *)XSTRING_DATA (foundname)); dlhandle = dll_open (soname); if (dlhandle == (dll_handle)0) { Intbyte *dllerrint; EXTERNAL_TO_C_STRING (dll_error (dlhandle), dllerrint, Qnative); signal_error (Qdll_error, "Opening dynamic module", build_intstring (dllerrint)); } ellcc_rev = (const long *)dll_variable (dlhandle, "emodule_compiler"); if ((ellcc_rev == (const long *)0) || (*ellcc_rev <= 0)) signal_error (Qdll_error, "Invalid dynamic module: Missing symbol `emodule_compiler'", Qunbound); if (*ellcc_rev > EMODULES_REVISION) signal_ferror (Qdll_error, "Invalid dynamic module: Unsupported version `%ld(%ld)'", *ellcc_rev, EMODULES_REVISION); f = (const char **)dll_variable (dlhandle, "emodule_name"); if ((f == (const char **)0) || (*f == (const char *)0)) signal_error (Qdll_error, "Invalid dynamic module: Missing symbol `emodule_name'", Qunbound); mname = (char *)ALLOCA (strlen (*f) + 1); strcpy (mname, *f); if (mname[0] == '\0') signal_error (Qdll_error, "Invalid dynamic module: Empty value for `emodule_name'", Qunbound); f = (const char **)dll_variable (dlhandle, "emodule_version"); if ((f == (const char **)0) || (*f == (const char *)0)) signal_error (Qdll_error, "Missing symbol `emodule_version': Invalid dynamic module", Qunbound); mver = (char *)ALLOCA (strlen (*f) + 1); strcpy (mver, *f); f = (const char **)dll_variable (dlhandle, "emodule_title"); if ((f == (const char **)0) || (*f == (const char *)0)) signal_error (Qdll_error, "Invalid dynamic module: Missing symbol `emodule_title'", Qunbound); mtitle = (char *)ALLOCA (strlen (*f) + 1); strcpy (mtitle, *f); symname = (char *)ALLOCA (strlen (mname) + 15); strcpy (symname, "modules_of_"); strcat (symname, mname); modload = (void (*)(void))dll_function (dlhandle, symname); /* * modload is optional. If the module doesn't require other modules it can * be left out. */ strcpy (symname, "syms_of_"); strcat (symname, mname); modsyms = (void (*)(void))dll_function (dlhandle, symname); if (modsyms == (void (*)(void))0) { missing_symbol: signal_error (Qdll_error, "Invalid dynamic module: Missing symbol", build_string (symname)); } strcpy (symname, "vars_of_"); strcat (symname, mname); modvars = (void (*)(void))dll_function (dlhandle, symname); if (modvars == (void (*)(void))0) goto missing_symbol; strcpy (symname, "docs_of_"); strcat (symname, mname); moddocs = (void (*)(void))dll_function (dlhandle, symname); if (moddocs == (void (*)(void))0) goto missing_symbol; if (modname && modname[0] && strcmp (modname, mname)) signal_error (Qdll_error, "Module name mismatch", Qunbound); if (modver && modver[0] && strcmp (modver, mver)) signal_error (Qdll_error, "Module version mismatch", Qunbound); /* * Attempt to make a new slot for this module. If this really is the * first time we are loading this module, the used member will be 0. * If that is non-zero, we know that we have a previously loaded module * of the same name and version, and we don't need to go any further. */ mpx = find_make_module (soname, mname, mver, 0); mp = &modules[mpx]; if (mp->used > 0) { emodules_depth--; dll_close (dlhandle); dlhandle = 0; /* Zero this out before module_load_unwind runs */ return; } if (!load_modules_quietly) message ("Loading %s v%s (%s)", mname, mver, mtitle); /* * We have passed the basic initialization, and can now add this * module to the list of modules. */ mp->used = emodules_depth + 1; mp->soname = xstrdup (soname); mp->modname = xstrdup (mname); mp->modver = xstrdup (mver); mp->modtitle = xstrdup (mtitle); mp->dlhandle = dlhandle; dlhandle = 0; /* * Now we need to call the module init function and perform the various * startup tasks. */ if (modload != 0) (*modload)(); /* * Now we can get the module to initialize its symbols, and then its * variables, and lastly the documentation strings. */ (*modsyms)(); (*modvars)(); (*moddocs)(); if (!load_modules_quietly) message ("Loaded module %s v%s (%s)", mname, mver, mtitle); emodules_depth--; if (emodules_depth == 0) { /* * We have reached the end of the load chain. We now go through the * list of loaded modules and mark all the valid modules as just * that. */ for (x = 0; x < modnum; x++) if (modules[x].used > 1) modules[x].used = 1; } } void emodules_doc_subr(const char *symname, const char *doc) { Bytecount len = strlen (symname); Lisp_Object sym = oblookup (Vobarray, (const Intbyte *)symname, len); Lisp_Subr *subr; if (SYMBOLP(sym)) { subr = XSUBR( XSYMBOL(sym)->function); subr->doc = xstrdup (doc); } /* * FIXME: I wish there was some way to avoid the xstrdup(). Is it * possible to just set a pointer to the string, or somehow create a * symbol whose value we can point to the constant string? Can someone * look into this? */ } void emodules_doc_sym (const char *symname, const char *doc) { Bytecount len = strlen (symname); Lisp_Object sym = oblookup (Vobarray, (const Intbyte *)symname, len); Lisp_Object docstr; struct gcpro gcpro1; if (SYMBOLP(sym)) { docstr = build_string (doc); GCPRO1(docstr); Fput (sym, Qvariable_documentation, docstr); UNGCPRO; } } void syms_of_module (void) { DEFERROR_STANDARD (Qdll_error, Qerror); DEFSUBR(Fload_module); DEFSUBR(Flist_modules); #ifdef DANGEROUS_NASTY_SCARY_MONSTER DEFSUBR(Funload_module); #endif } void reinit_vars_of_module (void) { emodules_depth = 0; modules = (emodules_list *)0; modnum = 0; } void vars_of_module (void) { reinit_vars_of_module (); DEFVAR_LISP ("module-version", &Vmodule_version /* Emacs dynamic loading mechanism version, as a string. This string is in the form XX.YY.ppp, where XX is the major version number, YY is the minor version number, and ppp is the patch level. This variable can be used to distinguish between different versions of the dynamic loading technology used in Emacs, if required. It is not a given that this value will be the same as the Emacs version number. */ ); Vmodule_version = build_string (EMODULES_VERSION); DEFVAR_BOOL ("load-modules-quietly", &load_modules_quietly /* *Set to t if module loading is to be silent. Normally, when loading dynamic modules, Emacs will inform you of its progress, and will display the module name and version if the module is loaded correctly. Setting this variable to `t' will suppress these messages. This would normally only be done if `load-module' was being called by a Lisp function. */); DEFVAR_LISP ("module-load-path", &Vmodule_load_path /* *List of directories to search for dynamic modules to load. Each element is a string (directory name) or nil (try default directory). Note that elements of this list *may not* begin with "~", so you must call `expand-file-name' on them before adding them to this list. Initialized based on EMACSMODULEPATH environment variable, if any, otherwise to default specified the file `paths.h' when XEmacs was built. If there were no paths specified in `paths.h', then XEmacs chooses a default value for this variable by looking around in the file-system near the directory in which the XEmacs executable resides. Due to the nature of dynamic modules, the path names should almost always refer to architecture-dependent directories. It is unwise to attempt to store dynamic modules in a heterogenous environment. Some environments are similar enough to each other that XEmacs will be unable to determine the correctness of a dynamic module, which can have unpredictable results when a dynamic module is loaded. */); /* #### Export this to Lisp */ Vmodule_extensions = build_string (":.ell:.so:.dll"); staticpro (&Vmodule_extensions); load_modules_quietly = 0; Vmodule_load_path = Qnil; Fprovide (intern ("modules")); } #endif /* HAVE_SHLIB */