Mercurial > hg > xemacs-beta
view man/xemacs/display.texi @ 5157:1fae11d56ad2
redo memory-usage mechanism, add way of dynamically initializing Lisp objects
-------------------- ChangeLog entries follow: --------------------
lisp/ChangeLog addition:
2010-03-18 Ben Wing <ben@xemacs.org>
* diagnose.el (show-memory-usage):
Rewrite to take into account API changes in memory-usage functions.
src/ChangeLog addition:
2010-03-18 Ben Wing <ben@xemacs.org>
* alloc.c:
* alloc.c (disksave_object_finalization_1):
* alloc.c (lisp_object_storage_size):
* alloc.c (listu):
* alloc.c (listn):
* alloc.c (Fobject_memory_usage_stats):
* alloc.c (compute_memusage_stats_length):
* alloc.c (Fobject_memory_usage):
* alloc.c (Ftotal_object_memory_usage):
* alloc.c (malloced_storage_size):
* alloc.c (common_init_alloc_early):
* alloc.c (reinit_alloc_objects_early):
* alloc.c (reinit_alloc_early):
* alloc.c (init_alloc_once_early):
* alloc.c (syms_of_alloc):
* alloc.c (reinit_vars_of_alloc):
* buffer.c:
* buffer.c (struct buffer_stats):
* buffer.c (compute_buffer_text_usage):
* buffer.c (compute_buffer_usage):
* buffer.c (buffer_memory_usage):
* buffer.c (buffer_objects_create):
* buffer.c (syms_of_buffer):
* buffer.c (vars_of_buffer):
* console-impl.h (struct console_methods):
* dynarr.c (Dynarr_memory_usage):
* emacs.c (main_1):
* events.c (clear_event_resource):
* extents.c:
* extents.c (compute_buffer_extent_usage):
* extents.c (extent_objects_create):
* extents.h:
* faces.c:
* faces.c (compute_face_cachel_usage):
* faces.c (face_objects_create):
* faces.h:
* general-slots.h:
* glyphs.c:
* glyphs.c (compute_glyph_cachel_usage):
* glyphs.c (glyph_objects_create):
* glyphs.h:
* lisp.h:
* lisp.h (struct usage_stats):
* lrecord.h:
* lrecord.h (enum lrecord_type):
* lrecord.h (struct lrecord_implementation):
* lrecord.h (MC_ALLOC_CALL_FINALIZER_FOR_DISKSAVE):
* lrecord.h (DEFINE_DUMPABLE_LISP_OBJECT):
* lrecord.h (DEFINE_DUMPABLE_SIZABLE_LISP_OBJECT):
* lrecord.h (DEFINE_DUMPABLE_FROB_BLOCK_LISP_OBJECT):
* lrecord.h (DEFINE_DUMPABLE_FROB_BLOCK_SIZABLE_LISP_OBJECT):
* lrecord.h (DEFINE_DUMPABLE_INTERNAL_LISP_OBJECT):
* lrecord.h (DEFINE_DUMPABLE_SIZABLE_INTERNAL_LISP_OBJECT):
* lrecord.h (DEFINE_NODUMP_LISP_OBJECT):
* lrecord.h (DEFINE_NODUMP_SIZABLE_LISP_OBJECT):
* lrecord.h (DEFINE_NODUMP_FROB_BLOCK_LISP_OBJECT):
* lrecord.h (DEFINE_NODUMP_FROB_BLOCK_SIZABLE_LISP_OBJECT):
* lrecord.h (DEFINE_NODUMP_INTERNAL_LISP_OBJECT):
* lrecord.h (DEFINE_NODUMP_SIZABLE_INTERNAL_LISP_OBJECT):
* lrecord.h (MAKE_LISP_OBJECT):
* lrecord.h (DEFINE_DUMPABLE_MODULE_LISP_OBJECT):
* lrecord.h (DEFINE_DUMPABLE_MODULE_SIZABLE_LISP_OBJECT):
* lrecord.h (DEFINE_NODUMP_MODULE_LISP_OBJECT):
* lrecord.h (DEFINE_NODUMP_MODULE_SIZABLE_LISP_OBJECT):
* lrecord.h (MAKE_MODULE_LISP_OBJECT):
* lrecord.h (INIT_LISP_OBJECT):
* lrecord.h (INIT_MODULE_LISP_OBJECT):
* lrecord.h (UNDEF_LISP_OBJECT):
* lrecord.h (UNDEF_MODULE_LISP_OBJECT):
* lrecord.h (DECLARE_LISP_OBJECT):
* lrecord.h (DECLARE_MODULE_API_LISP_OBJECT):
* lrecord.h (DECLARE_MODULE_LISP_OBJECT):
* lstream.c:
* lstream.c (syms_of_lstream):
* lstream.c (vars_of_lstream):
* marker.c:
* marker.c (compute_buffer_marker_usage):
* mc-alloc.c (mc_alloced_storage_size):
* mc-alloc.h:
* mule-charset.c:
* mule-charset.c (struct charset_stats):
* mule-charset.c (compute_charset_usage):
* mule-charset.c (charset_memory_usage):
* mule-charset.c (mule_charset_objects_create):
* mule-charset.c (syms_of_mule_charset):
* mule-charset.c (vars_of_mule_charset):
* redisplay.c:
* redisplay.c (compute_rune_dynarr_usage):
* redisplay.c (compute_display_block_dynarr_usage):
* redisplay.c (compute_glyph_block_dynarr_usage):
* redisplay.c (compute_display_line_dynarr_usage):
* redisplay.c (compute_line_start_cache_dynarr_usage):
* redisplay.h:
* scrollbar-gtk.c (gtk_compute_scrollbar_instance_usage):
* scrollbar-msw.c (mswindows_compute_scrollbar_instance_usage):
* scrollbar-x.c (x_compute_scrollbar_instance_usage):
* scrollbar.c (compute_scrollbar_instance_usage):
* scrollbar.h:
* symbols.c:
* symbols.c (reinit_symbol_objects_early):
* symbols.c (init_symbols_once_early):
* symbols.c (reinit_symbols_early):
* symbols.c (defsymbol_massage_name_1):
* symsinit.h:
* ui-gtk.c:
* ui-gtk.c (emacs_gtk_object_getprop):
* ui-gtk.c (emacs_gtk_object_putprop):
* ui-gtk.c (ui_gtk_objects_create):
* unicode.c (compute_from_unicode_table_size_1):
* unicode.c (compute_to_unicode_table_size_1):
* unicode.c (compute_from_unicode_table_size):
* unicode.c (compute_to_unicode_table_size):
* window.c:
* window.c (struct window_stats):
* window.c (compute_window_mirror_usage):
* window.c (compute_window_usage):
* window.c (window_memory_usage):
* window.c (window_objects_create):
* window.c (syms_of_window):
* window.c (vars_of_window):
* window.h:
Redo memory-usage mechanism, make it general; add way of dynamically
initializing Lisp object types -- OBJECT_HAS_METHOD(), similar to
CONSOLE_HAS_METHOD().
(1) Create OBJECT_HAS_METHOD(), OBJECT_HAS_PROPERTY() etc. for
specifying that a Lisp object type has a particular method or
property. Call such methods with OBJECT_METH, MAYBE_OBJECT_METH,
OBJECT_METH_OR_GIVEN; retrieve properties with OBJECT_PROPERTY.
Methods that formerly required a DEFINE_*GENERAL_LISP_OBJECT() to
specify them (getprop, putprop, remprop, plist, disksave) now
instead use the dynamic-method mechanism. The main benefit of
this is that new methods or properties can be added without
requiring that the declaration statements of all existing methods
be modified. We have to make the `struct lrecord_implementation'
non-const, but I don't think this should have any effect on speed --
the only possible method that's really speed-critical is the
mark method, and we already extract those out into a separate
(non-const) array for increased cache locality.
Object methods need to be reinitialized after pdump, so we put
them in separate functions such as face_objects_create(),
extent_objects_create() and call them appropriately from emacs.c
The only current object property (`memusage_stats_list') that
objects can specify is a Lisp object and gets staticpro()ed so it
only needs to be set during dump time, but because it references
symbols that might not exist in a syms_of_() function, we
initialize it in vars_of_(). There is also an object property
(`num_extra_memusage_stats') that is automatically initialized based
on `memusage_stats_list'; we do that in reinit_vars_of_alloc(),
which is called after all vars_of_() functions are called.
`disksaver' method was renamed `disksave' to correspond with the
name normally given to the function (e.g. disksave_lstream()).
(2) Generalize the memory-usage mechanism in `buffer-memory-usage',
`window-memory-usage', `charset-memory-usage' into an object-type-
specific mechanism called by a single function
`object-memory-usage'. (Former function `object-memory-usage'
renamed to `total-object-memory-usage'). Generalize the mechanism
of different "slices" so that we can have different "classes" of
memory described and different "slices" onto each class; `t'
separates classes, `nil' separates slices. Currently we have
three classes defined: the memory of an object itself,
non-Lisp-object memory associated with the object (e.g. arrays or
dynarrs stored as fields in the object), and Lisp-object memory
associated with the object (other internal Lisp objects stored in
the object). This isn't completely finished yet and we might need
to further separate the "other internal Lisp objects" class into
two classes.
The memory-usage mechanism uses a `struct usage_stats' (renamed
from `struct overhead_stats') to describe a malloc-view onto a set
of allocated memory (listing how much was requested and various
types of overhead) and a more general `struct generic_usage_stats'
(with a `struct usage_stats' in it) to hold all statistics about
object memory. `struct generic_usage_stats' contains an array of
32 Bytecounts, which are statistics of unspecified semantics. The
intention is that individual types declare a corresponding struct
(e.g. `struct window_stats') with the same structure but with
specific fields in place of the array, corresponding to specific
statistics. The number of such statistics is an object property
computed from the list of tags (Lisp symbols describing the
statistics) stored in `memusage_stats_list'. The idea here is to
allow particular object types to customize the number and
semantics of the statistics where completely avoiding consing.
This doesn't matter so much yet, but the intention is to have the
memory usage of all objects computed at the end of GC, at the same
time as other statistics are currently computed. The values for
all statistics for a single type would be added up to compute
aggregate values for all objects of a specific type. To make this
efficient, we can't allow any memory allocation at all.
(3) Create some additional functions for creating lists that
specify the elements directly as args rather than indirectly through
an array: listn() (number of args given), listu() (list terminated
by Qunbound).
(4) Delete a bit of remaining unused C window_config stuff, also
unused lrecord_type_popup_data.
author | Ben Wing <ben@xemacs.org> |
---|---|
date | Thu, 18 Mar 2010 10:50:06 -0500 |
parents | 3ecd8885ac67 |
children | c6b1500299a7 |
line wrap: on
line source
@node Display, Search, Registers, Top @chapter Controlling the Display Since only part of a large buffer fits in the window, XEmacs tries to show the part that is likely to be interesting. The display control commands allow you to specify which part of the text you want to see. @table @kbd @item C-l Clear frame and redisplay, scrolling the selected window to center point vertically within it (@code{recenter}). @item C-v @itemx pgdn @itemx next Scroll forward (a windowful or a specified number of lines) (@code{scroll-up}). On most X keyboards, you can get this functionality using the key labelled @samp{Page Down}, which generates either @kbd{next} or @kbd{pgdn}. @item M-v @itemx pgup @itemx prior Scroll backward (@code{scroll-down}). On most X keyboards, you can get this functionality using the key labelled @samp{Page Up}, which generates either @kbd{prior} or @kbd{pgup}. @item @var{arg} C-l Scroll so point is on line @var{arg} (@code{recenter}). @item C-x < @itemx C-pgdn @itemx C-next Scroll text in current window to the left (@code{scroll-left}). @item C-x > @itemx C-pgup @itemx C-prior Scroll to the right (@code{scroll-right}). @item C-x $ Make deeply indented lines invisible (@code{set-selective-display}). @end table @menu * Scrolling:: Moving text up and down in a window. * Horizontal Scrolling:: Moving text left and right in a window. * Selective Display:: Hiding lines with lots of indentation. * Display Vars:: Information on variables for customizing display. @end menu @node Scrolling, Horizontal Scrolling, Display, Display @section Scrolling If a buffer contains text that is too large to fit entirely within the window that is displaying the buffer, XEmacs shows a contiguous section of the text. The section shown always contains point. @cindex scrolling @dfn{Scrolling} means moving text up or down in the window so that different parts of the text are visible. Scrolling forward means that text moves up, and new text appears at the bottom. Scrolling backward moves text down and new text appears at the top. Scrolling happens automatically if you move point past the bottom or top of the window. You can also explicitly request scrolling with the commands in this section. @ifinfo @table @kbd @item C-l Clear frame and redisplay, scrolling the selected window to center point vertically within it (@code{recenter}). @item C-v @itemx pgdn @itemx next Scroll forward (a windowful or a specified number of lines) (@code{scroll-up}). @item M-v @itemx pgup @itemx prior Scroll backward (@code{scroll-down}). @item @var{arg} C-l Scroll so point is on line @var{arg} (@code{recenter}). @end table @end ifinfo @kindex C-l @findex recenter The most basic scrolling command is @kbd{C-l} (@code{recenter}) with no argument. It clears the entire frame and redisplays all windows. In addition, it scrolls the selected window so that point is halfway down from the top of the window. @kindex C-v @kindex M-v @kindex pgup @kindex pgdn @kindex next @kindex prior @findex scroll-up @findex scroll-down The scrolling commands @kbd{C-v} and @kbd{M-v} let you move all the text in the window up or down a few lines. @kbd{C-v} (@code{scroll-up}) with an argument shows you that many more lines at the bottom of the window, moving the text and point up together as @kbd{C-l} might. @kbd{C-v} with a negative argument shows you more lines at the top of the window. @kbd{Meta-v} (@code{scroll-down}) is like @kbd{C-v}, but moves in the opposite direction.@refill @vindex next-screen-context-lines To read the buffer a windowful at a time, use @kbd{C-v} with no argument. @kbd{C-v} takes the last two lines at the bottom of the window and puts them at the top, followed by nearly a whole windowful of lines not previously visible. Point moves to the new top of the window if it was in the text scrolled off the top. @kbd{M-v} with no argument moves backward with similar overlap. The number of lines of overlap across a @kbd{C-v} or @kbd{M-v} is controlled by the variable @code{next-screen-context-lines}; by default, it is two. Another way to scroll is using @kbd{C-l} with a numeric argument. @kbd{C-l} does not clear the frame when given an argument; it only scrolls the selected window. With a positive argument @var{n}, @kbd{C-l} repositions text to put point @var{n} lines down from the top. An argument of zero puts point on the very top line. Point does not move with respect to the text; rather, the text and point move rigidly on the frame. @kbd{C-l} with a negative argument puts point that many lines from the bottom of the window. For example, @kbd{C-u - 1 C-l} puts point on the bottom line, and @kbd{C-u - 5 C-l} puts it five lines from the bottom. Just @kbd{C-u} as argument, as in @kbd{C-u C-l}, scrolls point to the center of the frame. @vindex scroll-step Scrolling happens automatically if point has moved out of the visible portion of the text when it is time to display. Usually scrolling is done to put point vertically centered within the window. However, if the variable @code{scroll-step} has a non-zero value, an attempt is made to scroll the buffer by that many lines; if that is enough to bring point back into visibility, that is what happens. Scrolling happens automatically if point has moved out of the visible portion of the text when it is time to display. Usually scrolling is done to put point vertically centered within the window. However, if the variable @code{scroll-step} has a non-zero value, an attempt is made to scroll the buffer by that many lines; if that is enough to bring point back into visibility, that is what happens. @vindex scroll-conservatively If you set @code{scroll-step} to a small value because you want to use arrow keys to scroll the screen without recentering, the redisplay preemption will likely make XEmacs keep recentering the screen when scrolling fast, regardless of @code{scroll-step}. To prevent this, set @code{scroll-conservatively} to a small value, which will have the result of overriding the redisplay preemption. @node Horizontal Scrolling,, Scrolling, Display @section Horizontal Scrolling @ifinfo @table @kbd @item C-x < Scroll text in current window to the left (@code{scroll-left}). @item C-x > Scroll to the right (@code{scroll-right}). @end table @end ifinfo @kindex C-x < @kindex C-x > @findex scroll-left @findex scroll-right @cindex horizontal scrolling The text in a window can also be scrolled horizontally. This means that each line of text is shifted sideways in the window, and one or more characters at the beginning of each line are not displayed at all. When a window has been scrolled horizontally in this way, text lines are truncated rather than continued (@pxref{Continuation Lines}), with a @samp{$} appearing in the first column when there is text truncated to the left, and in the last column when there is text truncated to the right. The command @kbd{C-x <} (@code{scroll-left}) scrolls the selected window to the left by @var{n} columns with argument @var{n}. With no argument, it scrolls by almost the full width of the window (two columns less, to be precise). @kbd{C-x >} (@code{scroll-right}) scrolls similarly to the right. The window cannot be scrolled any farther to the right once it is displaying normally (with each line starting at the window's left margin); attempting to do so has no effect. @node Selective Display, Display Vars, Display, Display @section Selective Display @findex set-selective-display @kindex C-x $ XEmacs can hide lines indented more than a certain number of columns (you specify how many columns). This allows you to get an overview of a part of a program. To hide lines, type @kbd{C-x $} (@code{set-selective-display}) with a numeric argument @var{n}. (@xref{Arguments}, for information on giving the argument.) Lines with at least @var{n} columns of indentation disappear from the screen. The only indication of their presence are three dots (@samp{@dots{}}), which appear at the end of each visible line that is followed by one or more invisible ones.@refill The invisible lines are still present in the buffer, and most editing commands see them as usual, so it is very easy to put point in the middle of invisible text. When this happens, the cursor appears at the end of the previous line, after the three dots. If point is at the end of the visible line, before the newline that ends it, the cursor appears before the three dots. The commands @kbd{C-n} and @kbd{C-p} move across the invisible lines as if they were not there. To make everything visible again, type @kbd{C-x $} with no argument. @node Display Vars,, Selective Display, Display @section Variables Controlling Display This section contains information for customization only. Beginning users should skip it. @vindex no-redraw-on-reenter When you reenter XEmacs after suspending, XEmacs normally clears the screen and redraws the entire display. On some terminals with more than one page of memory, it is possible to arrange the termcap entry so that the @samp{ti} and @samp{te} strings (output to the terminal when XEmacs is entered and exited, respectively) switch between pages of memory so as to use one page for XEmacs and another page for other output. In that case, you might want to set the variable @code{no-redraw-on-reenter} to non-@code{nil} so that XEmacs will assume, when resumed, that the screen page it is using still contains what XEmacs last wrote there. @vindex echo-keystrokes The variable @code{echo-keystrokes} controls the echoing of multi-character keys; its value is the number of seconds of pause required to cause echoing to start, or zero, meaning don't echo at all. @xref{Echo Area}. @vindex ctl-arrow If the variable @code{ctl-arrow} is @code{nil}, control characters in the buffer are displayed with octal escape sequences, all except newline and tab. If its value is @code{t}, then control characters will be printed with an up-arrow, for example @kbd{^A}. If its value is not @code{t} and not @code{nil}, then characters whose code is greater than 160 (that is, the space character (32) with its high bit set) will be assumed to be printable, and will be displayed without alteration. This is the default when running under X Windows, since XEmacs assumes an ISO/8859-1 character set (also known as ``Latin1''). The @code{ctl-arrow} variable may also be set to an integer, in which case all characters whose codes are greater than or equal to that value will be assumed to be printable. Altering the value of @code{ctl-arrow} makes it local to the current buffer; until that time, the default value is in effect. @xref{Locals}. @vindex tab-width Normally, a tab character in the buffer is displayed as whitespace which extends to the next display tab stop position, and display tab stops come at intervals equal to eight spaces. The number of spaces per tab is controlled by the variable @code{tab-width}, which is made local by changing it, just like @code{ctl-arrow}. Note that how the tab character in the buffer is displayed has nothing to do with the definition of @key{TAB} as a command. @vindex selective-display-ellipses If you set the variable @code{selective-display-ellipses} to @code{nil}, the three dots at the end of a line that precedes invisible lines do not appear. There is no visible indication of the invisible lines. This variable becomes local automatically when set.