Mercurial > hg > xemacs-beta
view lwlib/xlwgcs.c @ 5157:1fae11d56ad2
redo memory-usage mechanism, add way of dynamically initializing Lisp objects
-------------------- ChangeLog entries follow: --------------------
lisp/ChangeLog addition:
2010-03-18 Ben Wing <ben@xemacs.org>
* diagnose.el (show-memory-usage):
Rewrite to take into account API changes in memory-usage functions.
src/ChangeLog addition:
2010-03-18 Ben Wing <ben@xemacs.org>
* alloc.c:
* alloc.c (disksave_object_finalization_1):
* alloc.c (lisp_object_storage_size):
* alloc.c (listu):
* alloc.c (listn):
* alloc.c (Fobject_memory_usage_stats):
* alloc.c (compute_memusage_stats_length):
* alloc.c (Fobject_memory_usage):
* alloc.c (Ftotal_object_memory_usage):
* alloc.c (malloced_storage_size):
* alloc.c (common_init_alloc_early):
* alloc.c (reinit_alloc_objects_early):
* alloc.c (reinit_alloc_early):
* alloc.c (init_alloc_once_early):
* alloc.c (syms_of_alloc):
* alloc.c (reinit_vars_of_alloc):
* buffer.c:
* buffer.c (struct buffer_stats):
* buffer.c (compute_buffer_text_usage):
* buffer.c (compute_buffer_usage):
* buffer.c (buffer_memory_usage):
* buffer.c (buffer_objects_create):
* buffer.c (syms_of_buffer):
* buffer.c (vars_of_buffer):
* console-impl.h (struct console_methods):
* dynarr.c (Dynarr_memory_usage):
* emacs.c (main_1):
* events.c (clear_event_resource):
* extents.c:
* extents.c (compute_buffer_extent_usage):
* extents.c (extent_objects_create):
* extents.h:
* faces.c:
* faces.c (compute_face_cachel_usage):
* faces.c (face_objects_create):
* faces.h:
* general-slots.h:
* glyphs.c:
* glyphs.c (compute_glyph_cachel_usage):
* glyphs.c (glyph_objects_create):
* glyphs.h:
* lisp.h:
* lisp.h (struct usage_stats):
* lrecord.h:
* lrecord.h (enum lrecord_type):
* lrecord.h (struct lrecord_implementation):
* lrecord.h (MC_ALLOC_CALL_FINALIZER_FOR_DISKSAVE):
* lrecord.h (DEFINE_DUMPABLE_LISP_OBJECT):
* lrecord.h (DEFINE_DUMPABLE_SIZABLE_LISP_OBJECT):
* lrecord.h (DEFINE_DUMPABLE_FROB_BLOCK_LISP_OBJECT):
* lrecord.h (DEFINE_DUMPABLE_FROB_BLOCK_SIZABLE_LISP_OBJECT):
* lrecord.h (DEFINE_DUMPABLE_INTERNAL_LISP_OBJECT):
* lrecord.h (DEFINE_DUMPABLE_SIZABLE_INTERNAL_LISP_OBJECT):
* lrecord.h (DEFINE_NODUMP_LISP_OBJECT):
* lrecord.h (DEFINE_NODUMP_SIZABLE_LISP_OBJECT):
* lrecord.h (DEFINE_NODUMP_FROB_BLOCK_LISP_OBJECT):
* lrecord.h (DEFINE_NODUMP_FROB_BLOCK_SIZABLE_LISP_OBJECT):
* lrecord.h (DEFINE_NODUMP_INTERNAL_LISP_OBJECT):
* lrecord.h (DEFINE_NODUMP_SIZABLE_INTERNAL_LISP_OBJECT):
* lrecord.h (MAKE_LISP_OBJECT):
* lrecord.h (DEFINE_DUMPABLE_MODULE_LISP_OBJECT):
* lrecord.h (DEFINE_DUMPABLE_MODULE_SIZABLE_LISP_OBJECT):
* lrecord.h (DEFINE_NODUMP_MODULE_LISP_OBJECT):
* lrecord.h (DEFINE_NODUMP_MODULE_SIZABLE_LISP_OBJECT):
* lrecord.h (MAKE_MODULE_LISP_OBJECT):
* lrecord.h (INIT_LISP_OBJECT):
* lrecord.h (INIT_MODULE_LISP_OBJECT):
* lrecord.h (UNDEF_LISP_OBJECT):
* lrecord.h (UNDEF_MODULE_LISP_OBJECT):
* lrecord.h (DECLARE_LISP_OBJECT):
* lrecord.h (DECLARE_MODULE_API_LISP_OBJECT):
* lrecord.h (DECLARE_MODULE_LISP_OBJECT):
* lstream.c:
* lstream.c (syms_of_lstream):
* lstream.c (vars_of_lstream):
* marker.c:
* marker.c (compute_buffer_marker_usage):
* mc-alloc.c (mc_alloced_storage_size):
* mc-alloc.h:
* mule-charset.c:
* mule-charset.c (struct charset_stats):
* mule-charset.c (compute_charset_usage):
* mule-charset.c (charset_memory_usage):
* mule-charset.c (mule_charset_objects_create):
* mule-charset.c (syms_of_mule_charset):
* mule-charset.c (vars_of_mule_charset):
* redisplay.c:
* redisplay.c (compute_rune_dynarr_usage):
* redisplay.c (compute_display_block_dynarr_usage):
* redisplay.c (compute_glyph_block_dynarr_usage):
* redisplay.c (compute_display_line_dynarr_usage):
* redisplay.c (compute_line_start_cache_dynarr_usage):
* redisplay.h:
* scrollbar-gtk.c (gtk_compute_scrollbar_instance_usage):
* scrollbar-msw.c (mswindows_compute_scrollbar_instance_usage):
* scrollbar-x.c (x_compute_scrollbar_instance_usage):
* scrollbar.c (compute_scrollbar_instance_usage):
* scrollbar.h:
* symbols.c:
* symbols.c (reinit_symbol_objects_early):
* symbols.c (init_symbols_once_early):
* symbols.c (reinit_symbols_early):
* symbols.c (defsymbol_massage_name_1):
* symsinit.h:
* ui-gtk.c:
* ui-gtk.c (emacs_gtk_object_getprop):
* ui-gtk.c (emacs_gtk_object_putprop):
* ui-gtk.c (ui_gtk_objects_create):
* unicode.c (compute_from_unicode_table_size_1):
* unicode.c (compute_to_unicode_table_size_1):
* unicode.c (compute_from_unicode_table_size):
* unicode.c (compute_to_unicode_table_size):
* window.c:
* window.c (struct window_stats):
* window.c (compute_window_mirror_usage):
* window.c (compute_window_usage):
* window.c (window_memory_usage):
* window.c (window_objects_create):
* window.c (syms_of_window):
* window.c (vars_of_window):
* window.h:
Redo memory-usage mechanism, make it general; add way of dynamically
initializing Lisp object types -- OBJECT_HAS_METHOD(), similar to
CONSOLE_HAS_METHOD().
(1) Create OBJECT_HAS_METHOD(), OBJECT_HAS_PROPERTY() etc. for
specifying that a Lisp object type has a particular method or
property. Call such methods with OBJECT_METH, MAYBE_OBJECT_METH,
OBJECT_METH_OR_GIVEN; retrieve properties with OBJECT_PROPERTY.
Methods that formerly required a DEFINE_*GENERAL_LISP_OBJECT() to
specify them (getprop, putprop, remprop, plist, disksave) now
instead use the dynamic-method mechanism. The main benefit of
this is that new methods or properties can be added without
requiring that the declaration statements of all existing methods
be modified. We have to make the `struct lrecord_implementation'
non-const, but I don't think this should have any effect on speed --
the only possible method that's really speed-critical is the
mark method, and we already extract those out into a separate
(non-const) array for increased cache locality.
Object methods need to be reinitialized after pdump, so we put
them in separate functions such as face_objects_create(),
extent_objects_create() and call them appropriately from emacs.c
The only current object property (`memusage_stats_list') that
objects can specify is a Lisp object and gets staticpro()ed so it
only needs to be set during dump time, but because it references
symbols that might not exist in a syms_of_() function, we
initialize it in vars_of_(). There is also an object property
(`num_extra_memusage_stats') that is automatically initialized based
on `memusage_stats_list'; we do that in reinit_vars_of_alloc(),
which is called after all vars_of_() functions are called.
`disksaver' method was renamed `disksave' to correspond with the
name normally given to the function (e.g. disksave_lstream()).
(2) Generalize the memory-usage mechanism in `buffer-memory-usage',
`window-memory-usage', `charset-memory-usage' into an object-type-
specific mechanism called by a single function
`object-memory-usage'. (Former function `object-memory-usage'
renamed to `total-object-memory-usage'). Generalize the mechanism
of different "slices" so that we can have different "classes" of
memory described and different "slices" onto each class; `t'
separates classes, `nil' separates slices. Currently we have
three classes defined: the memory of an object itself,
non-Lisp-object memory associated with the object (e.g. arrays or
dynarrs stored as fields in the object), and Lisp-object memory
associated with the object (other internal Lisp objects stored in
the object). This isn't completely finished yet and we might need
to further separate the "other internal Lisp objects" class into
two classes.
The memory-usage mechanism uses a `struct usage_stats' (renamed
from `struct overhead_stats') to describe a malloc-view onto a set
of allocated memory (listing how much was requested and various
types of overhead) and a more general `struct generic_usage_stats'
(with a `struct usage_stats' in it) to hold all statistics about
object memory. `struct generic_usage_stats' contains an array of
32 Bytecounts, which are statistics of unspecified semantics. The
intention is that individual types declare a corresponding struct
(e.g. `struct window_stats') with the same structure but with
specific fields in place of the array, corresponding to specific
statistics. The number of such statistics is an object property
computed from the list of tags (Lisp symbols describing the
statistics) stored in `memusage_stats_list'. The idea here is to
allow particular object types to customize the number and
semantics of the statistics where completely avoiding consing.
This doesn't matter so much yet, but the intention is to have the
memory usage of all objects computed at the end of GC, at the same
time as other statistics are currently computed. The values for
all statistics for a single type would be added up to compute
aggregate values for all objects of a specific type. To make this
efficient, we can't allow any memory allocation at all.
(3) Create some additional functions for creating lists that
specify the elements directly as args rather than indirectly through
an array: listn() (number of args given), listu() (list terminated
by Qunbound).
(4) Delete a bit of remaining unused C window_config stuff, also
unused lrecord_type_popup_data.
author | Ben Wing <ben@xemacs.org> |
---|---|
date | Thu, 18 Mar 2010 10:50:06 -0500 |
parents | 5460287a3327 |
children | 308d34e9f07d |
line wrap: on
line source
/* Tabs Widget for XEmacs. Copyright (C) 1999 Edward A. Falk This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: Gcs.c 1.7 */ /* #### This code is duplicated many times within lwlib and XEmacs. It should be modularised. */ /* * Gcs.c - Utility functions to allocate GCs. * * Author: Edward A. Falk * falk@falconer.vip.best.com * * Date: Sept 29, 1998 */ /* Functions: * * GC AllocFgGC(w, fg, font) * Return a GC with foreground set as specified. * If font is None, then the returned GC is allocated with font specified * as a "don't care" value. * * GC * AllocBackgroundGC(w, font) * Return a GC with the foreground set to the widget's background color. * * GC * AllocGreyGC(w, fg, font, contrast, be_nice_to_cmap) * Widget w ; * Pixel fg ; * Font font ; * int contrast ; * int be_nice_to_cmap ; * * Return a GC suitable for rendering a widget in its "inactive" color. * Normally returns a GC with a color somewhere between the widget's * background color and the specified foreground. If font is None, then * the returned GC is allocated with font specified as "don't care". * If be_nice_to_cmap is True, the returned GC is created using a 50% * dither instead of a new color. * * * GC * AllocShadeGC(w, fg, bg, font, contrast, be_nice_to_cmap) * Widget w ; * Pixel fg, bg ; * Font font ; * int contrast ; * int be_nice_to_cmap ; * * Return a GC suitable for rendering in a shade somewhere between * bg and fg, as determined by contrast (0 = bg, 100 = fg) * If font is None, then the returned GC is allocated with * font specified as "don't care". If be_nice_to_cmap * is True, the returned GC is created using a 50% dither * instead of a new color. * * * GC * AllocTopShadowGC(w, contrast, be_nice_to_cmap) * Return a GC suitable for rendering the "top shadow" decorations of * a widget. Returns a GC with foreground computed from widget's * background color and contrast. If be_nice_to_cmap is True, the * returned GC will use a foreground color of white. If widget depth * is 1, this function will use a foreground color of black. * * GC * AllocBotShadowGC(w, contrast, be_nice_to_cmap) * Return a GC suitable for rendering the "bottom shadow" decorations * of a widget. Returns a GC with foreground computed from widget's * background color and contrast. If be_nice_to_cmap is True, the * returned GC will use a foreground color of black. * * GC * AllocArmGC(w, contrast, be_nice_to_cmap) * Return a GC suitable for rendering the "armed" decorations of a * widget. This GC would typically be used to fill in the widget's * background. Returns a GC with foreground computed from widget's * background color and contrast. If be_nice_to_cmap is True, the * returned GC will use a foreground color of black and a 50% dither. * * * void * Draw3dBox(w, x,y,wid,hgt,s, topgc, botgc) * Utility function. Draws a raised shadow box with outside dimensions * as specified by x,y,wid,hgt and shadow width specified by s. * A lowered shadow box may be generated by swapping topgc and botgc. * */ #include <config.h> #include <stdio.h> #include <X11/Xlib.h> #include <X11/IntrinsicP.h> #include <X11/StringDefs.h> #include <X11/Xmu/Drawing.h> #include <X11/Xmu/Misc.h> #include "xlwgcs.h" /* Color & GC allocation. * * Frame widgets use the following graphics contexts: * * Foreground tab label text drawn this way * Insensitive Fg foreground color greyed out. * Background frame background color * Top shadow upper-left highlight around widget * Bottom shadow lower-right highlight around widget * Arm shadow button pressed and ready to be released * * * GC's are defined as follows, depending on attributes and * window depth: * * Monochrome: * Foreground = foreground color attribute or BlackPixel() * Grey = Foreground color + 50% dither * Background = background color attribute or WhitePixel() * top shadow = foreground * bottom shadow = foreground * arm shadow = (what?) * * Color, beNiceToColormap=true: * Foreground = foreground color attribute or BlackPixel() * Grey = Foreground color + 50% dither * Background = background color attribute or WhitePixel() * top shadow = white * bottom shadow = black * arm shadow = (what?) * * Color, beNiceToColormap=false: * Foreground = foreground color attribute or BlackPixel() * Grey = (foreground color + background color)/2 * Background = background color attribute or WhitePixel() * top shadow = background * 1.2 * bottom shadow = background * .6 * arm shadow = background * .8 * * Special cases: * If background is white, ?? * if background is black, ?? * * * If the widget's background is solid white or solid black, * this code just picks some numbers. (The choice is designed * to be compatible with ThreeD interface.) */ #if NeedFunctionPrototypes static Pixmap getDitherPixmap(Widget, int contrast) ; #else static Pixmap getDitherPixmap() ; #endif /* return a GC with the specified foreground and optional font */ GC AllocFgGC(Widget w, Pixel fg, Font font) { XGCValues values ; unsigned long vmask, dcmask ; values.foreground = fg ; values.font = font ; if( font != None ) { vmask = GCForeground|GCFont ; dcmask = GCSubwindowMode|GCDashOffset| GCDashList|GCArcMode|GCBackground|GCGraphicsExposures ; } else { vmask = GCForeground ; dcmask = GCFont|GCSubwindowMode|GCDashOffset| GCDashList|GCArcMode|GCBackground|GCGraphicsExposures ; } return XtAllocateGC(w, w->core.depth, vmask, &values, 0L, dcmask) ; } /* return gc with widget background color as the foreground */ GC AllocBackgroundGC(Widget w, Font font) { return AllocFgGC(w, w->core.background_pixel, font) ; } /* Allocate an "inactive" GC. Color is grey (possibly via * dither pattern). */ GC AllocGreyGC(Widget w, Pixel fg, Font font, int contrast, Bool be_nice_to_cmap) { return AllocShadeGC(w, fg, w->core.background_pixel, font, contrast, be_nice_to_cmap) ; } /* Allocate a GC somewhere between two colors. */ GC AllocShadeGC(Widget w, Pixel fg, Pixel bg, Font font, int contrast, Bool be_nice_to_cmap) { XGCValues values ; unsigned long vmask, dcmask ; values.foreground = fg ; values.background = bg ; values.font = font ; if( font != None ) { vmask = GCForeground|GCFont ; dcmask = GCSubwindowMode|GCDashOffset| GCDashList|GCArcMode|GCGraphicsExposures ; } else { vmask = GCForeground; dcmask = GCFont|GCSubwindowMode|GCDashOffset| GCDashList|GCArcMode|GCGraphicsExposures ; } if( be_nice_to_cmap || w->core.depth == 1) { if( contrast <= 5 ) values.foreground = bg ; else if( contrast >= 95 ) values.foreground = fg ; else { vmask |= GCBackground|GCStipple|GCFillStyle ; values.fill_style = FillOpaqueStippled ; values.stipple = getDitherPixmap(w, contrast) ; } return XtAllocateGC(w, w->core.depth, vmask, &values, 0L, dcmask) ; } else { dcmask |= GCBackground ; values.foreground = AllocGreyPixel(w, fg, bg, contrast) ; return XtAllocateGC(w, w->core.depth, vmask, &values, 0L, dcmask) ; } } /* return top-shadow gc. */ GC AllocTopShadowGC(Widget w, int contrast, Bool be_nice_to_cmap) { Screen *scr = XtScreen (w); XGCValues values ; if( w->core.depth == 1 ) values.foreground = BlackPixelOfScreen(scr) ; else if( be_nice_to_cmap ) values.foreground = WhitePixelOfScreen(scr) ; else values.foreground = AllocShadowPixel(w, 100+contrast) ; return XtAllocateGC(w, w->core.depth, GCForeground, &values, 0L, GCBackground|GCFont|GCSubwindowMode|GCGraphicsExposures| GCDashOffset|GCDashList|GCArcMode) ; } /* return bottom-shadow gc. */ GC AllocBotShadowGC(Widget w, int contrast, Bool be_nice_to_cmap) { Screen *scr = XtScreen (w); XGCValues values ; if( w->core.depth == 1 || be_nice_to_cmap ) values.foreground = BlackPixelOfScreen(scr) ; else values.foreground = AllocShadowPixel(w, 100-contrast) ; return XtAllocateGC(w, w->core.depth, GCForeground, &values, 0L, GCBackground|GCFont|GCSubwindowMode|GCGraphicsExposures| GCDashOffset|GCDashList|GCArcMode) ; } /* return arm-shadow gc. */ GC AllocArmGC(Widget w, int contrast, Bool be_nice_to_cmap) { Screen *scr = XtScreen (w); XGCValues values ; /* Not clear exactly what we should do here. Take a look at * Xaw3d to see what they do. */ if( w->core.depth == 1 || be_nice_to_cmap ) { values.background = w->core.background_pixel ; if( values.background == BlackPixelOfScreen(scr) ) values.foreground = WhitePixelOfScreen(scr) ; else values.foreground = BlackPixelOfScreen(scr) ; values.fill_style = FillStippled ; values.stipple = XmuCreateStippledPixmap(XtScreen(w), 1L, 0L, 1) ; return XtAllocateGC(w, w->core.depth, GCForeground|GCBackground|GCStipple|GCFillStyle, &values, 0L, GCFont|GCSubwindowMode|GCGraphicsExposures| GCDashOffset|GCDashList|GCArcMode) ; } else { values.foreground = AllocShadowPixel(w, 100-contrast) ; return XtAllocateGC(w, w->core.depth, GCForeground, &values, 0L, GCBackground|GCFont|GCSubwindowMode|GCGraphicsExposures| GCDashOffset|GCDashList|GCArcMode) ; } } Pixel AllocShadowPixel(Widget w, int scale) { XColor get_c, set_c ; Display *dpy = XtDisplay(w) ; Screen *scr = XtScreen(w) ; Colormap cmap ; Pixel maxColor ; cmap = w->core.colormap ; get_c.pixel = w->core.background_pixel ; if( get_c.pixel == WhitePixelOfScreen(scr) || get_c.pixel == BlackPixelOfScreen(scr) ) { /* what we *ought* to do is choose gray75 as the base color, * or perhaps gray83. Instead, we choose colors that are * the same as ThreeD would choose. */ if( scale > 100 ) scale = 200 - scale ; set_c.red = set_c.green = set_c.blue = 65535*scale/100 ; } else { XQueryColor(dpy, cmap, &get_c) ; /* adjust scale so that brightest component does not * exceed 65535; otherwise hue would change. */ if( scale > 100 ) { maxColor = Max(get_c.red, Max(get_c.green, get_c.blue)) ; if( scale*maxColor > 65535*100 ) scale = 65535*100/maxColor ; } set_c.red = scale * get_c.red / 100 ; set_c.green = scale * get_c.green / 100 ; set_c.blue = scale * get_c.blue / 100 ; } set_c.flags = DoRed | DoGreen | DoBlue ; if( XAllocColor(dpy, cmap, &set_c) ) return set_c.pixel ; else if( scale > 100 ) return WhitePixelOfScreen(scr) ; else return BlackPixelOfScreen(scr) ; } /* Allocate a pixel partway between foreground and background */ Pixel AllocGreyPixel(Widget w, Pixel fg, Pixel bg, int scale) { XColor get_cf, get_cb ; Display *dpy = XtDisplay(w) ; Colormap cmap ; cmap = w->core.colormap ; get_cf.pixel = fg ; get_cb.pixel = bg ; XQueryColor(dpy, cmap, &get_cf) ; XQueryColor(dpy, cmap, &get_cb) ; return AllocGreyPixelC(w, &get_cf, &get_cb, scale) ; } /* Allocate a pixel partway between foreground and background */ Pixel AllocGreyPixelC(Widget w, XColor *fg, XColor *bg, int scale) { XColor set_c ; Display *dpy = XtDisplay(w) ; int r,g,b ; Colormap cmap = w->core.colormap ; r = (fg->red * scale + bg->red * (100-scale)) / 100 ; g = (fg->green * scale + bg->green * (100-scale)) / 100 ; b = (fg->blue * scale + bg->blue * (100-scale)) / 100 ; if( scale > 100 || scale < 0 ) /* look out for overflow */ { int minc, maxc ; maxc = Max(r, Max(g,b)) ; minc = Min(r, Min(g,b)) ; if( maxc > 65535 ) { maxc /= 16 ; r = r*(65535/16) / maxc ; g = g*(65535/16) / maxc ; b = b*(65535/16) / maxc ; } if( minc < 0 ) { r = Max(r,0) ; g = Max(g,0) ; b = Max(b,0) ; } } set_c.red = r ; set_c.green = g ; set_c.blue = b ; set_c.flags = DoRed | DoGreen | DoBlue ; (void)XAllocColor(dpy, cmap, &set_c) ; return set_c.pixel ; } /* draw a 3-d box */ void Draw3dBox(Widget w, int x, int y, int wid, int hgt, int s, GC topgc, GC botgc) { Display *dpy = XtDisplay(w) ; Window win = XtWindow(w) ; if( s == 0 ) return ; if( s == 1 ) { XDrawLine(dpy,win,botgc, x,y+hgt-1, x+wid-1,y+hgt-1) ; XDrawLine(dpy,win,botgc, x+wid-1,y, x+wid-1,y+hgt-1) ; XDrawLine(dpy,win,topgc, x,y, x,y+hgt-1) ; XDrawLine(dpy,win,topgc, x,y, x+wid-1,y) ; } else { XPoint pts[6] ; /* bottom-right shadow */ pts[0].x = x ; pts[0].y = y + hgt ; pts[1].x = s ; pts[1].y = -s ; pts[2].x = wid-2*s ; pts[2].y = 0 ; pts[3].x = 0 ; pts[3].y = -(hgt-2*s) ; pts[4].x = s ; pts[4].y = -s ; pts[5].x = 0 ; pts[5].y = hgt ; XFillPolygon(dpy,win,botgc, pts,6, Nonconvex,CoordModePrevious) ; /* top-left shadow */ pts[0].x = x ; pts[0].y = y ; pts[1].x = wid ; pts[1].y = 0 ; pts[2].x = -s ; pts[2].y = s ; pts[3].x = -wid+2*s ; pts[3].y = 0 ; pts[4].x = 0 ; pts[4].y = hgt-2*s ; pts[5].x = -s ; pts[5].y = s ; XFillPolygon(dpy,win,topgc, pts,6, Nonconvex,CoordModePrevious) ; } } static unsigned char screen0[2] = {0,0} ; static unsigned char screen25[2] = {0,0xaa} ; static unsigned char screen75[2] = {0xaa,0xff} ; static unsigned char screen100[2] = {0xff,0xff} ; static Pixmap getDitherPixmap(Widget w, int contrast) { Display *dpy = XtDisplay(w) ; Window win = XtWindow(w) ; if( contrast <= 5 ) return XCreateBitmapFromData(dpy,win, (char *)screen0, 2,2) ; else if( contrast <= 37 ) return XCreateBitmapFromData(dpy,win, (char *)screen25, 2,2) ; else if( contrast <= 62 ) return XmuCreateStippledPixmap(XtScreen(w), 1L, 0L, 1) ; else if( contrast <= 95 ) return XCreateBitmapFromData(dpy,win, (char *)screen75, 2,2) ; else return XCreateBitmapFromData(dpy,win, (char *)screen100, 2,2) ; }