Mercurial > hg > xemacs-beta
view src/callproc.c @ 840:1e4e42de23d5
[xemacs-hg @ 2002-05-14 13:03:54 by ben]
To: xemacs-patches@xemacs.org
callproc.c: Use Fget_buffer_create() with a string buffer, as documented.
extents.c: indentation.
lstream.c: fix a bug in selective-display
handling; not the crash we're seeing.
marker.c: delete superfluous error-checking -- it's already there in
bytebpos_to_membpos() and vice-versa.
author | ben |
---|---|
date | Tue, 14 May 2002 13:04:00 +0000 |
parents | 0490271de7d8 |
children | e7ee5f8bde58 |
line wrap: on
line source
/* Old synchronous subprocess invocation for XEmacs. Copyright (C) 1985, 86, 87, 88, 93, 94, 95 Free Software Foundation, Inc. Copyright (C) 2000, 2001, 2002 Ben Wing. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: Mule 2.0, FSF 19.30. */ /* Partly sync'ed with 19.36.4 */ /* #### Everything in this file should go. As soon as I merge my stderr-proc WS, it will. */ #include <config.h> #include "lisp.h" #include "buffer.h" #include "commands.h" #include "file-coding.h" #include "insdel.h" #include "lstream.h" #include "process.h" #include "sysdep.h" #include "window.h" #include "sysdir.h" #include "sysfile.h" #include "sysproc.h" #include "syssignal.h" #include "systime.h" #include "systty.h" /* True iff we are about to fork off a synchronous process or if we are waiting for it. */ volatile int synch_process_alive; /* Nonzero => this is a string explaining death of synchronous subprocess. */ const char *synch_process_death; /* If synch_process_death is zero, this is exit code of synchronous subprocess. */ int synch_process_retcode; /* Clean up when exiting Fcall_process_internal. On Windows, delete the temporary file on any kind of termination. On Unix, kill the process and any children on termination by signal. */ /* Nonzero if this is termination due to exit. */ static int call_process_exited; static Lisp_Object call_process_kill (Lisp_Object fdpid) { Lisp_Object fd = Fcar (fdpid); Lisp_Object pid = Fcdr (fdpid); if (!NILP (fd)) retry_close (XINT (fd)); if (!NILP (pid)) EMACS_KILLPG (XINT (pid), SIGKILL); synch_process_alive = 0; return Qnil; } static Lisp_Object call_process_cleanup (Lisp_Object fdpid) { int fd = XINT (Fcar (fdpid)); int pid = XINT (Fcdr (fdpid)); if (!call_process_exited && EMACS_KILLPG (pid, SIGINT) == 0) { int speccount = specpdl_depth (); record_unwind_protect (call_process_kill, fdpid); /* #### "c-G" -- need non-consing Single-key-description */ message ("Waiting for process to die...(type C-g again to kill it instantly)"); wait_for_termination (pid); /* "Discard" the unwind protect. */ XCAR (fdpid) = Qnil; XCDR (fdpid) = Qnil; unbind_to (speccount); message ("Waiting for process to die... done"); } synch_process_alive = 0; retry_close (fd); return Qnil; } DEFUN ("old-call-process-internal", Fold_call_process_internal, 1, MANY, 0, /* Call PROGRAM synchronously in separate process, with coding-system specified. Arguments are (PROGRAM &optional INFILE BUFFER DISPLAY &rest ARGS). The program's input comes from file INFILE (nil means `/dev/null'). Insert output in BUFFER before point; t means current buffer; nil for BUFFER means discard it; 0 means discard and don't wait. If BUFFER is a string, then find or create a buffer with that name, then insert the output in that buffer, before point. BUFFER can also have the form (REAL-BUFFER STDERR-FILE); in that case, REAL-BUFFER says what to do with standard output, as above, while STDERR-FILE says what to do with standard error in the child. STDERR-FILE may be nil (discard standard error output), t (mix it with ordinary output), or a file name string. Fourth arg DISPLAY non-nil means redisplay buffer as output is inserted. Remaining arguments are strings passed as command arguments to PROGRAM. If BUFFER is 0, `call-process' returns immediately with value nil. Otherwise it waits for PROGRAM to terminate and returns a numeric exit status or a signal description string. If you quit, the process is killed with SIGINT, or SIGKILL if you quit again. */ (int nargs, Lisp_Object *args)) { /* This function can GC */ Lisp_Object infile, buffer, current_dir, display, path; int fd[2]; int filefd; int pid; char buf[16384]; char *bufptr = buf; int bufsize = 16384; int speccount = specpdl_depth (); struct gcpro gcpro1, gcpro2, gcpro3; Intbyte **new_argv = alloca_array (Intbyte *, max (2, nargs - 2)); /* File to use for stderr in the child. t means use same as standard output. */ Lisp_Object error_file; CHECK_STRING (args[0]); error_file = Qt; #if defined (NO_SUBPROCESSES) /* Without asynchronous processes we cannot have BUFFER == 0. */ if (nargs >= 3 && !INTP (args[2])) signal_error (Qunimplemented, "Operating system cannot handle asynchronous subprocesses", Qunbound); #endif /* NO_SUBPROCESSES */ /* Do all filename munging before building new_argv because GC in * Lisp code called by various filename-hacking routines might * relocate strings */ locate_file (Vexec_path, args[0], Vlisp_EXEC_SUFFIXES, &path, X_OK); /* Make sure that the child will be able to chdir to the current buffer's current directory, or its unhandled equivalent. [[ We can't just have the child check for an error when it does the chdir, since it's in a vfork. ]] -- not any more, we don't use vfork. -ben Note: These calls are spread out to insure that the return values of the calls (which may be newly-created strings) are properly GC-protected. */ { struct gcpro ngcpro1, ngcpro2; NGCPRO2 (current_dir, path); /* Caller gcprotects args[] */ current_dir = current_buffer->directory; /* If the current dir has no terminating slash, we'll get undesirable results, so put the slash back. */ current_dir = Ffile_name_as_directory (current_dir); current_dir = Funhandled_file_name_directory (current_dir); current_dir = expand_and_dir_to_file (current_dir, Qnil); #if 0 /* This is in FSF, but it breaks everything in the presence of ange-ftp-visited files, so away with it. */ if (NILP (Ffile_accessible_directory_p (current_dir))) signal_error (Qprocess_error, "Setting current directory", current_buffer->directory); #endif /* 0 */ NUNGCPRO; } GCPRO2 (current_dir, path); if (nargs >= 2 && ! NILP (args[1])) { struct gcpro ngcpro1; NGCPRO1 (current_buffer->directory); infile = Fexpand_file_name (args[1], current_buffer->directory); NUNGCPRO; CHECK_STRING (infile); } else infile = build_string (NULL_DEVICE); UNGCPRO; GCPRO3 (infile, current_dir, path); /* Fexpand_file_name might trash it */ if (nargs >= 3) { buffer = args[2]; /* If BUFFER is a list, its meaning is (BUFFER-FOR-STDOUT FILE-FOR-STDERR). */ if (CONSP (buffer)) { if (CONSP (XCDR (buffer))) { Lisp_Object file_for_stderr = XCAR (XCDR (buffer)); if (NILP (file_for_stderr) || EQ (Qt, file_for_stderr)) error_file = file_for_stderr; else error_file = Fexpand_file_name (file_for_stderr, Qnil); } buffer = XCAR (buffer); } if (!(EQ (buffer, Qnil) || EQ (buffer, Qt) || ZEROP (buffer))) { Lisp_Object spec_buffer = buffer; buffer = Fget_buffer_create (buffer); /* Mention the buffer name for a better error message. */ if (NILP (buffer)) CHECK_BUFFER (spec_buffer); CHECK_BUFFER (buffer); } } else buffer = Qnil; UNGCPRO; display = ((nargs >= 4) ? args[3] : Qnil); /* From here we assume we won't GC (unless an error is signaled). */ { REGISTER int i; for (i = 4; i < nargs; i++) { CHECK_STRING (args[i]); new_argv[i - 3] = XSTRING_DATA (args[i]); } } new_argv[max(nargs - 3,1)] = 0; if (NILP (path)) signal_error (Qprocess_error, "Searching for program", Fcons (args[0], Qnil)); new_argv[0] = XSTRING_DATA (path); filefd = qxe_open (XSTRING_DATA (infile), O_RDONLY | OPEN_BINARY, 0); if (filefd < 0) report_process_error ("Opening process input file", infile); if (INTP (buffer)) { fd[1] = qxe_open ((Intbyte *) NULL_DEVICE, O_WRONLY | OPEN_BINARY, 0); fd[0] = -1; } else { pipe (fd); #if 0 /* Replaced by close_process_descs */ set_exclusive_use (fd[0]); #endif } { REGISTER int fd1 = fd[1]; int fd_error = fd1; /* Record that we're about to create a synchronous process. */ synch_process_alive = 1; /* These vars record information from process termination. Clear them now before process can possibly terminate, to avoid timing error if process terminates soon. */ synch_process_death = 0; synch_process_retcode = 0; if (NILP (error_file)) fd_error = qxe_open ((Intbyte *) NULL_DEVICE, O_WRONLY | OPEN_BINARY); else if (STRINGP (error_file)) { fd_error = qxe_open (XSTRING_DATA (error_file), O_WRONLY | O_TRUNC | O_CREAT | OPEN_BINARY, CREAT_MODE); } if (fd_error < 0) { int save_errno = errno; retry_close (filefd); retry_close (fd[0]); if (fd1 >= 0) retry_close (fd1); errno = save_errno; report_process_error ("Cannot open", Fcons (error_file, Qnil)); } pid = fork (); if (pid == 0) { if (fd[0] >= 0) retry_close (fd[0]); /* This is necessary because some shells may attempt to access the current controlling terminal and will hang if they are run in the background, as will be the case when XEmacs is started in the background. Martin Buchholz observed this problem running a subprocess that used zsh to call gzip to uncompress an info file. */ disconnect_controlling_terminal (); child_setup (filefd, fd1, fd_error, new_argv, current_dir); } if (fd_error >= 0) retry_close (fd_error); /* Close most of our fd's, but not fd[0] since we will use that to read input from. */ retry_close (filefd); if (fd1 >= 0) retry_close (fd1); } if (pid < 0) { int save_errno = errno; if (fd[0] >= 0) retry_close (fd[0]); errno = save_errno; report_process_error ("Doing fork", Qunbound); } if (INTP (buffer)) { if (fd[0] >= 0) retry_close (fd[0]); #if defined (NO_SUBPROCESSES) /* If Emacs has been built with asynchronous subprocess support, we don't need to do this, I think because it will then have the facilities for handling SIGCHLD. */ wait_without_blocking (); #endif /* NO_SUBPROCESSES */ return Qnil; } { int nread; int total_read = 0; Lisp_Object instream; struct gcpro ngcpro1; /* Enable sending signal if user quits below. */ call_process_exited = 0; record_unwind_protect (call_process_cleanup, Fcons (make_int (fd[0]), make_int (pid))); /* FSFmacs calls Fset_buffer() here. We don't have to because we can insert into buffers other than the current one. */ if (EQ (buffer, Qt)) buffer = wrap_buffer (current_buffer); instream = make_filedesc_input_stream (fd[0], 0, -1, LSTR_ALLOW_QUIT); instream = make_coding_input_stream (XLSTREAM (instream), get_coding_system_for_text_file (Vcoding_system_for_read, 1), CODING_DECODE, 0); NGCPRO1 (instream); while (1) { QUIT; /* Repeatedly read until we've filled as much as possible of the buffer size we have. But don't read less than 1024--save that for the next bufferfull. */ nread = 0; while (nread < bufsize - 1024) { Bytecount this_read = Lstream_read (XLSTREAM (instream), bufptr + nread, bufsize - nread); if (this_read < 0) goto give_up; if (this_read == 0) goto give_up_1; nread += this_read; } give_up_1: /* Now NREAD is the total amount of data in the buffer. */ if (nread == 0) break; #if 0 /* [[check Vbinary_process_output]] */ #endif total_read += nread; if (!NILP (buffer)) buffer_insert_raw_string (XBUFFER (buffer), (Intbyte *) bufptr, nread); /* Make the buffer bigger as we continue to read more data, but not past 64k. */ if (bufsize < 64 * 1024 && total_read > 32 * bufsize) { bufsize *= 2; bufptr = (char *) alloca (bufsize); } if (!NILP (display) && INTERACTIVE) { redisplay (); } } give_up: Lstream_close (XLSTREAM (instream)); NUNGCPRO; QUIT; /* Wait for it to terminate, unless it already has. */ wait_for_termination (pid); /* Don't kill any children that the subprocess may have left behind when exiting. */ call_process_exited = 1; unbind_to (speccount); if (synch_process_death) return build_msg_string (synch_process_death); return make_int (synch_process_retcode); } } /* Move the file descriptor FD so that its number is not less than MIN. * The original file descriptor remains open. */ static int relocate_fd (int fd, int min) { if (fd >= min) return fd; else { int newfd = dup (fd); if (newfd == -1) { Intbyte *errmess; GET_STRERROR (errmess, errno); stderr_out ("Error while setting up child: %s\n", errmess); _exit (1); } return relocate_fd (newfd, min); } } /* This is the last thing run in a newly forked inferior either synchronous or asynchronous. Copy descriptors IN, OUT and ERR as descriptors STDIN_FILENO, STDOUT_FILENO, and STDERR_FILENO. Initialize inferior's priority, pgrp, connected dir and environment. then exec another program based on new_argv. XEmacs: We've removed the SET_PGRP argument because it's already done by the callers of child_setup. CURRENT_DIR is an elisp string giving the path of the current directory the subprocess should have. Since we can't really signal a decent error from within the child (not quite correct in XEmacs?), this should be verified as an executable directory by the parent. */ void child_setup (int in, int out, int err, Intbyte **new_argv, Lisp_Object current_dir) { Intbyte **env; Intbyte *pwd; #ifdef SET_EMACS_PRIORITY if (emacs_priority != 0) nice (- emacs_priority); #endif /* Under Windows, we are not in a child process at all, so we should not close handles inherited from the parent -- we are the parent and doing so will screw up all manner of things! Similarly, most of the rest of the cleanup done in this function is not done under Windows. #### This entire child_setup() function is an utter and complete piece of shit. I would rewrite it, at the very least splitting out the Windows and non-Windows stuff into two completely different functions; but instead I'm trying to make it go away entirely, using the Lisp definition in process.el. What's left is to fix up the routines in event-msw.c (and in event-Xt.c and event-tty.c) to allow for stream devices to be handled correctly. There isn't much to do, in fact, and I'll fix it shortly. That way, the Lisp definition can be used non-interactively too. */ #if !defined (NO_SUBPROCESSES) /* Close Emacs's descriptors that this process should not have. */ close_process_descs (); #endif /* not NO_SUBPROCESSES */ close_load_descs (); /* [[Note that use of alloca is always safe here. It's obvious for systems that do not have true vfork or that have true (stack) alloca. If using vfork and C_ALLOCA it is safe because that changes the superior's static variables as if the superior had done alloca and will be cleaned up in the usual way.]] -- irrelevant because XEmacs does not use vfork. */ { REGISTER Bytecount i; i = XSTRING_LENGTH (current_dir); pwd = alloca_array (Intbyte, i + 6); memcpy (pwd, "PWD=", 4); memcpy (pwd + 4, XSTRING_DATA (current_dir), i); i += 4; if (!IS_DIRECTORY_SEP (pwd[i - 1])) pwd[i++] = DIRECTORY_SEP; pwd[i] = 0; /* [[We can't signal an Elisp error here; we're in a vfork. Since the callers check the current directory before forking, this should only return an error if the directory's permissions are changed between the check and this chdir, but we should at least check.]] -- irrelevant because XEmacs does not use vfork. */ if (qxe_chdir (pwd + 4) < 0) { /* Don't report the chdir error, or ange-ftp.el doesn't work. */ /* (FSFmacs does _exit (errno) here.) */ pwd = 0; } else { /* Strip trailing "/". Cretinous *[]&@$#^%@#$% Un*x */ /* leave "//" (from FSF) */ while (i > 6 && IS_DIRECTORY_SEP (pwd[i - 1])) pwd[--i] = 0; } } /* Set `env' to a vector of the strings in Vprocess_environment. */ /* + 2 to include PWD and terminating 0. */ env = alloca_array (Intbyte *, XINT (Flength (Vprocess_environment)) + 2); { REGISTER Lisp_Object tail; Intbyte **new_env = env; /* If we have a PWD envvar and we know the real current directory, pass one down, but with corrected value. */ if (pwd && egetenv ("PWD")) *new_env++ = pwd; /* Copy the Vprocess_environment strings into new_env. */ for (tail = Vprocess_environment; CONSP (tail) && STRINGP (XCAR (tail)); tail = XCDR (tail)) { Intbyte **ep = env; Intbyte *envvar = XSTRING_DATA (XCAR (tail)); /* See if envvar duplicates any string already in the env. If so, don't put it in. When an env var has multiple definitions, we keep the definition that comes first in process-environment. */ for (; ep != new_env; ep++) { Intbyte *p = *ep, *q = envvar; while (1) { if (*q == 0) /* The string is malformed; might as well drop it. */ goto duplicate; if (*q != *p) break; if (*q == '=') goto duplicate; p++, q++; } } if (pwd && !qxestrncmp ((Intbyte *) "PWD=", envvar, 4)) { *new_env++ = pwd; pwd = 0; } else *new_env++ = envvar; duplicate: ; } *new_env = 0; } /* Make sure that in, out, and err are not actually already in descriptors zero, one, or two; this could happen if Emacs is started with its standard in, out, or error closed, as might happen under X. */ in = relocate_fd (in, 3); out = relocate_fd (out, 3); err = relocate_fd (err, 3); /* Set the standard input/output channels of the new process. */ retry_close (STDIN_FILENO); retry_close (STDOUT_FILENO); retry_close (STDERR_FILENO); dup2 (in, STDIN_FILENO); dup2 (out, STDOUT_FILENO); dup2 (err, STDERR_FILENO); retry_close (in); retry_close (out); retry_close (err); /* I can't think of any reason why child processes need any more than the standard 3 file descriptors. It would be cleaner to close just the ones that need to be, but the following brute force approach is certainly effective, and not too slow. */ { int fd; for (fd=3; fd<=64; fd++) retry_close (fd); } #ifdef vipc something missing here; #endif /* vipc */ /* we've wrapped execve; it translates its arguments */ qxe_execve (new_argv[0], new_argv, env); stdout_out ("Can't exec program %s\n", new_argv[0]); _exit (1); } void syms_of_callproc (void) { DEFSUBR (Fold_call_process_internal); }