Mercurial > hg > xemacs-beta
view src/hash.c @ 563:183866b06e0b
[xemacs-hg @ 2001-05-24 07:50:48 by ben]
Makefile.in.in, abbrev.c, alloc.c, buffer.c, bytecode.c, callint.c, callproc.c, casetab.c, chartab.c, cmdloop.c, cmds.c, console-msw.c, console-msw.h, console-stream.c, console-tty.c, console-x.c, console.c, data.c, database.c, debug.c, device-gtk.c, device-msw.c, device-tty.c, device-x.c, device.c, dialog-gtk.c, dialog-msw.c, dialog-x.c, dialog.c, dired-msw.c, dired.c, doc.c, doprnt.c, dragdrop.c, editfns.c, eldap.c, eldap.h, elhash.c, emacs-widget-accessors.c, emacs.c, emodules.c, esd.c, eval.c, event-Xt.c, event-gtk.c, event-msw.c, event-stream.c, events.c, extents.c, faces.c, file-coding.c, fileio.c, filelock.c, floatfns.c, fns.c, font-lock.c, frame-gtk.c, frame-x.c, frame.c, general-slots.h, glade.c, glyphs-gtk.c, glyphs-msw.c, glyphs-widget.c, glyphs-x.c, glyphs.c, glyphs.h, gpmevent.c, gui-gtk.c, gui-x.c, gui.c, gutter.c, hpplay.c, indent.c, input-method-xlib.c, insdel.c, intl.c, keymap.c, libsst.c, libsst.h, linuxplay.c, lisp.h, lread.c, lstream.c, lstream.h, macros.c, marker.c, md5.c, menubar-gtk.c, menubar-msw.c, menubar-x.c, menubar.c, minibuf.c, miscplay.c, miscplay.h, mule-ccl.c, mule-charset.c, mule-wnnfns.c, mule.c, nas.c, ntplay.c, ntproc.c, objects-gtk.c, objects-msw.c, objects-x.c, objects.c, postgresql.c, print.c, process-nt.c, process-unix.c, process.c, ralloc.c, rangetab.c, redisplay.c, scrollbar.c, search.c, select-gtk.c, select-x.c, select.c, sgiplay.c, sheap.c, sound.c, specifier.c, sunplay.c, symbols.c, symeval.h, symsinit.h, syntax.c, sysdep.c, toolbar-msw.c, toolbar.c, tooltalk.c, ui-byhand.c, ui-gtk.c, undo.c, unexaix.c, unexapollo.c, unexconvex.c, unexec.c, widget.c, win32.c, window.c:
-- defsymbol -> DEFSYMBOL.
-- add an error type to all errors.
-- eliminate the error functions in eval.c that let you just
use Qerror as the type.
-- redo the error API to be more consistent, sensibly named,
and easier to use.
-- redo the error hierarchy somewhat. create new errors:
structure-formation-error, gui-error, invalid-constant,
stack-overflow, out-of-memory, process-error, network-error,
sound-error, printing-unreadable-object, base64-conversion-
error; coding-system-error renamed to text-conversion error;
some others.
-- fix Mule problems in error strings in emodules.c, tooltalk.c.
-- fix error handling in mswin open-network-stream.
-- Mule-ize all sound files and clean up the headers.
-- nativesound.h -> sound.h and used for all sound files.
-- move some shared stuff into glyphs-shared.c: first attempt
at eliminating some of the massive GTK code duplication.
xemacs.mak: add glyphs-shared.c.
xemacs-faq.texi: document how to debug X errors
subr.el: fix doc string to reflect reality
author | ben |
---|---|
date | Thu, 24 May 2001 07:51:33 +0000 |
parents | abe6d1db359e |
children | b39c14581166 |
line wrap: on
line source
/* Hash tables. Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: Not in FSF. */ #include <config.h> #include "lisp.h" #include "hash.h" #define NULL_ENTRY ((void *) 0xdeadbeef) #define COMFORTABLE_SIZE(size) (21 * (size) / 16) #define KEYS_DIFFER_P(old, new, testfun) \ (((old) != (new)) && (!(testfun) || !(testfun) ((old),(new)))) static void rehash (hentry *harray, struct hash_table *ht, hash_size_t size); unsigned long memory_hash (const void *xv, size_t size) { unsigned int h = 0; unsigned const char *x = (unsigned const char *) xv; if (!x) return 0; while (size--) { unsigned int g; h = (h << 4) + *x++; if ((g = h & 0xf0000000) != 0) h = (h ^ (g >> 24)) ^ g; } return h; } unsigned long string_hash (const char *xv) { unsigned int h = 0; unsigned const char *x = (unsigned const char *) xv; if (!x) return 0; while (*x) { unsigned int g; h = (h << 4) + *x++; if ((g = h & 0xf0000000) != 0) h = (h ^ (g >> 24)) ^ g; } return h; } /* Return a suitable size for a hash table, with at least SIZE slots. */ static size_t hash_table_size (size_t requested_size) { /* Return some prime near, but greater than or equal to, SIZE. Decades from the time of writing, someone will have a system large enough that the list below will be too short... */ static const size_t primes [] = { 19, 29, 41, 59, 79, 107, 149, 197, 263, 347, 457, 599, 787, 1031, 1361, 1777, 2333, 3037, 3967, 5167, 6719, 8737, 11369, 14783, 19219, 24989, 32491, 42257, 54941, 71429, 92861, 120721, 156941, 204047, 265271, 344857, 448321, 582821, 757693, 985003, 1280519, 1664681, 2164111, 2813353, 3657361, 4754591, 6180989, 8035301, 10445899, 13579681, 17653589, 22949669, 29834603, 38784989, 50420551, 65546729, 85210757, 110774011, 144006217, 187208107, 243370577, 316381771, 411296309, 534685237, 695090819, 903618083, 1174703521, 1527114613, 1985248999, 2580823717UL, 3355070839UL }; /* We've heard of binary search. */ int low, high; for (low = 0, high = countof (primes) - 1; high - low > 1;) { /* Loop Invariant: size < primes [high] */ int mid = (low + high) / 2; if (primes [mid] < requested_size) low = mid; else high = mid; } return primes [high]; } const void * gethash (const void *key, struct hash_table *hash_table, const void **ret_value) { if (!key) { *ret_value = hash_table->zero_entry; return (void *) hash_table->zero_set; } else { hentry *harray = hash_table->harray; hash_table_test_function test_function = hash_table->test_function; hash_size_t size = hash_table->size; unsigned int hcode_initial = hash_table->hash_function ? hash_table->hash_function (key) : (unsigned long) key; unsigned int hcode = hcode_initial % size; hentry *e = &harray [hcode]; const void *e_key = e->key; if (e_key ? KEYS_DIFFER_P (e_key, key, test_function) : e->contents == NULL_ENTRY) { size_t h2 = size - 2; unsigned int incr = 1 + (hcode_initial % h2); do { hcode += incr; if (hcode >= size) hcode -= size; e = &harray [hcode]; e_key = e->key; } while (e_key ? KEYS_DIFFER_P (e_key, key, test_function) : e->contents == NULL_ENTRY); } *ret_value = e->contents; return e->key; } } void clrhash (struct hash_table *hash_table) { memset (hash_table->harray, 0, sizeof (hentry) * hash_table->size); hash_table->zero_entry = 0; hash_table->zero_set = 0; hash_table->fullness = 0; } void free_hash_table (struct hash_table *hash_table) { xfree (hash_table->harray); xfree (hash_table); } struct hash_table* make_hash_table (hash_size_t size) { struct hash_table *hash_table = xnew_and_zero (struct hash_table); hash_table->size = hash_table_size (COMFORTABLE_SIZE (size)); hash_table->harray = xnew_array (hentry, hash_table->size); clrhash (hash_table); return hash_table; } struct hash_table * make_general_hash_table (hash_size_t size, hash_table_hash_function hash_function, hash_table_test_function test_function) { struct hash_table* hash_table = make_hash_table (size); hash_table->hash_function = hash_function; hash_table->test_function = test_function; return hash_table; } static void grow_hash_table (struct hash_table *hash_table, hash_size_t new_size) { hash_size_t old_size = hash_table->size; hentry *old_harray = hash_table->harray; hash_table->size = hash_table_size (new_size); hash_table->harray = xnew_array (hentry, hash_table->size); /* do the rehash on the "grown" table */ { long old_zero_set = hash_table->zero_set; void *old_zero_entry = hash_table->zero_entry; clrhash (hash_table); hash_table->zero_set = old_zero_set; hash_table->zero_entry = old_zero_entry; rehash (old_harray, hash_table, old_size); } xfree (old_harray); } void puthash (const void *key, void *contents, struct hash_table *hash_table) { if (!key) { hash_table->zero_entry = contents; hash_table->zero_set = 1; } else { hash_table_test_function test_function = hash_table->test_function; hash_size_t size = hash_table->size; hentry *harray = hash_table->harray; unsigned int hcode_initial = hash_table->hash_function ? hash_table->hash_function (key) : (unsigned long) key; unsigned int hcode = hcode_initial % size; size_t h2 = size - 2; unsigned int incr = 1 + (hcode_initial % h2); const void *e_key = harray [hcode].key; const void *oldcontents; if (e_key && KEYS_DIFFER_P (e_key, key, test_function)) { do { hcode += incr; if (hcode >= size) hcode -= size; e_key = harray [hcode].key; } while (e_key && KEYS_DIFFER_P (e_key, key, test_function)); } oldcontents = harray [hcode].contents; harray [hcode].key = key; harray [hcode].contents = contents; /* If the entry that we used was a deleted entry, check for a non deleted entry of the same key, then delete it. */ if (!e_key && oldcontents == NULL_ENTRY) { hentry *e; do { hcode += incr; if (hcode >= size) hcode -= size; e = &harray [hcode]; e_key = e->key; } while (e_key ? KEYS_DIFFER_P (e_key, key, test_function): e->contents == NULL_ENTRY); if (e_key) { e->key = 0; e->contents = NULL_ENTRY; } } /* only increment the fullness when we used up a new hentry */ if (!e_key || KEYS_DIFFER_P (e_key, key, test_function)) { hash_size_t comfortable_size = COMFORTABLE_SIZE (++(hash_table->fullness)); if (hash_table->size < comfortable_size) grow_hash_table (hash_table, comfortable_size + 1); } } } static void rehash (hentry *harray, struct hash_table *hash_table, hash_size_t size) { hentry *limit = harray + size; hentry *e; for (e = harray; e < limit; e++) { if (e->key) puthash (e->key, e->contents, hash_table); } } void remhash (const void *key, struct hash_table *hash_table) { if (!key) { hash_table->zero_entry = 0; hash_table->zero_set = 0; } else { hentry *harray = hash_table->harray; hash_table_test_function test_function = hash_table->test_function; hash_size_t size = hash_table->size; unsigned int hcode_initial = (hash_table->hash_function) ? (hash_table->hash_function (key)) : ((unsigned long) key); unsigned int hcode = hcode_initial % size; hentry *e = &harray [hcode]; const void *e_key = e->key; if (e_key ? KEYS_DIFFER_P (e_key, key, test_function) : e->contents == NULL_ENTRY) { size_t h2 = size - 2; unsigned int incr = 1 + (hcode_initial % h2); do { hcode += incr; if (hcode >= size) hcode -= size; e = &harray [hcode]; e_key = e->key; } while (e_key? KEYS_DIFFER_P (e_key, key, test_function): e->contents == NULL_ENTRY); } if (e_key) { e->key = 0; e->contents = NULL_ENTRY; /* Note: you can't do fullness-- here, it breaks the world. */ } } } void maphash (maphash_function mf, struct hash_table *hash_table, void *arg) { hentry *e; hentry *limit; if (hash_table->zero_set) { if (mf (0, hash_table->zero_entry, arg)) return; } for (e = hash_table->harray, limit = e + hash_table->size; e < limit; e++) { if (e->key && mf (e->key, e->contents, arg)) return; } } void map_remhash (remhash_predicate predicate, struct hash_table *hash_table, void *arg) { hentry *e; hentry *limit; if (hash_table->zero_set && predicate (0, hash_table->zero_entry, arg)) { hash_table->zero_set = 0; hash_table->zero_entry = 0; } for (e = hash_table->harray, limit = e + hash_table->size; e < limit; e++) if (predicate (e->key, e->contents, arg)) { e->key = 0; e->contents = NULL_ENTRY; } }