Mercurial > hg > xemacs-beta
view pkg-src/tree-x/tree.c @ 169:15872534500d r20-3b11
Import from CVS: tag r20-3b11
author | cvs |
---|---|
date | Mon, 13 Aug 2007 09:46:53 +0200 |
parents | 85ec50267440 |
children |
line wrap: on
line source
/* ---------------------------------------------------------------------------- * File : tree.c * Purpose : dynamic tree program based on Sven Moen's algorithm * ---------------------------------------------------------------------------- */ #include "defs.h" #include "tree.h" #include "dbl.h" #include "intf.h" #include <string.h> #include <stdlib.h> /* ------------------------------------------------------------------------- */ /* Global Variables */ /* ------------------------------------------------------------------------- */ static int NumLines = 0; static int NumNodes = 0; /* ---------------------------------------------------------------------------- * * MakeLine() allocates the memory required for a Polyline and * initializes the fields of a Polyline to the arguments. The * newly-allocated Polyline is returned by the function. * * ---------------------------------------------------------------------------- */ Polyline* MakeLine(short dx, short dy, Polyline *line) { Polyline *new_line = (Polyline *) malloc(sizeof(Polyline)); NASSERT(new_line, "could not allocate memory for polyline"); NumLines++; new_line->dx = dx; new_line->dy = dy; new_line->link = line; return new_line; } /* ---------------------------------------------------------------------------- * * MakeNode() allocates the memory required for a tree node, and * zeros out all the fields in the Node. It returns a pointer to the * tree node upon success, and NULL upon failure. * * ---------------------------------------------------------------------------- */ Tree* MakeNode(void) { Tree *node = (Tree *) malloc(sizeof(Tree)); NASSERT(node, "could not allocate memory for node"); NumNodes++; if (node == NULL) return NULL; else { memset((char *) node, 0, sizeof(Tree)); return node; } } /* ---------------------------------------------------------------------------- * * MakeBridge() * * ---------------------------------------------------------------------------- */ static Polyline* MakeBridge(Polyline *line1, int x1, int y1, Polyline *line2, int x2, int y2) { int dx, dy, s; Polyline *r; dx = x2 + line2->dx - x1; if (line2->dx == 0) dy = line2->dy; else { s = dx * line2->dy; dy = s / line2->dx; } r = MakeLine(dx, dy, line2->link); line1->link = MakeLine(0, y2 + line2->dy - dy - y1, r); return r; } /* ---------------------------------------------------------------------------- * * Offset() computes the necessary offset that prevents two line segments * from intersecting each other. This is the "heart" of the merge step * that computes how two subtree contours should be separated. * * The code is taken directly from Sven Moen's paper, with changes in * some variable names to give more meaning: * * - px,py indicate the x- and y-coordinates of the point on the longer * segment if the previous Offset() call had two unequal segments * * - lx,ly indicate the dx and dy values of the "lower" line segment * * - ux,uy indicate the dx and dy values of the "upper" line segment * * ---------------------------------------------------------------------------- */ static int Offset(int px, int py, int lx, int ly, int ux, int uy) { int d, s, t; if (ux <= px || px+lx <= 0) return 0; t = ux*ly - lx*uy; if (t > 0) { if (px < 0) { s = px*ly; d = s/lx - py; } else if (px > 0) { s = px*uy; d = s/ux - py; } else { d = -py; } } else { if (ux < px+lx) { s = (ux-px) * ly; d = uy - (py + s/lx); } else if (ux > px+lx) { s = (lx+px) * uy; d = s/ux - (py+ly); } else { d = uy - (py+ly); } } return MAX(0, d); } /* ---------------------------------------------------------------------------- * * Merge() * * ---------------------------------------------------------------------------- */ static int Merge(Polygon *c1, Polygon *c2) { int x, y, total, d; Polyline *lower, *upper, *bridge; x = y = total = 0; /* compare lower part of upper child's contour * with upper part of lower child's contour */ upper = c1->lower.head; lower = c2->upper.head; while (lower && upper) { d = Offset(x, y, lower->dx, lower->dy, upper->dx, upper->dy); y += d; total += d; if (x + lower->dx <= upper->dx) { x += lower->dx; y += lower->dy; lower = lower->link; } else { x -= upper->dx; y -= upper->dy; upper = upper->link; } } if (lower) { bridge = MakeBridge(c1->upper.tail, 0, 0, lower, x, y); c1->upper.tail = (bridge->link) ? c2->upper.tail : bridge; c1->lower.tail = c2->lower.tail; } else { bridge = MakeBridge(c2->lower.tail, x, y, upper, 0, 0); if (!bridge->link) c1->lower.tail = bridge; } c1->lower.head = c2->lower.head; return total; } /* ---------------------------------------------------------------------------- * * DetachParent() reverses the effects of AttachParent by removing * the four line segments that connect the subtree contour to the * node specified by 'tree'. * * ---------------------------------------------------------------------------- */ static void DetachParent(Tree *tree) { free(tree->contour.upper.head->link); free(tree->contour.upper.head); tree->contour.upper.head = NULL; tree->contour.upper.tail = NULL; free(tree->contour.lower.head->link); free(tree->contour.lower.head); tree->contour.lower.head = NULL; tree->contour.lower.tail = NULL; NumLines -= 4; } /* ---------------------------------------------------------------------------- * * AttachParent() * This function also establishes the position of the first child * The code follows Sven Moen's version, with slight modification to * support varying borders at different levels. * * ---------------------------------------------------------------------------- */ static void AttachParent(Tree *tree, int h) { int x, y1, y2; if (TreeAlignNodes) x = tree->border + (TreeParentDistance * 2) + (TreeParentDistance - tree->width); else x = tree->border + TreeParentDistance; y2 = (h - tree->height)/2 - tree->border; y1 = y2 + tree->height + (2 * tree->border) - h; tree->child->offset.x = x + tree->width; tree->child->offset.y = y1; tree->contour.upper.head = MakeLine(tree->width, 0, MakeLine(x, y1, tree->contour.upper.head)); tree->contour.lower.head = MakeLine(tree->width, 0, MakeLine(x, y2, tree->contour.lower.head)); } /* ---------------------------------------------------------------------------- * * Split() * The tree passed to Split() must have at least 1 child, because * it doesn't make sense to split a leaf (there are no bridges) * * ---------------------------------------------------------------------------- */ static void Split(Tree *tree) { Tree *child; Polyline *link; FOREACH_CHILD(child, tree) { if ((link = child->contour.upper.tail->link)) { free(link->link); free(link); child->contour.upper.tail->link = NULL; NumLines -= 2; } if ((link = child->contour.lower.tail->link)) { free(link->link); free(link); NumLines -= 2; child->contour.lower.tail->link = NULL; } } } /* ---------------------------------------------------------------------------- * * Join() merges all subtree contours of the given tree and returns the * height of the entire tree contour. * * ---------------------------------------------------------------------------- */ static int Join(Tree *tree) { Tree *child; int d, h, sum; /* to start, set the parent's contour and height * to contour and height of first child */ child = tree->child; tree->contour = child->contour; sum = h = child->height + (2 * child->border); /* extend contour to include contours of all children of parent */ for (child = child->sibling ; child ; child = child->sibling) { d = Merge(&tree->contour, &child->contour); child->offset.y = d + h; child->offset.x = 0; h = child->height + (2 * child->border); /* keep cumulative heights of subtree contours */ sum += d + h; } return sum; } /* ---------------------------------------------------------------------------- * * RuboutLeaf() accepts a single node (leaf) and removes its contour. * The memory associated with the contour is deallocated. * * ---------------------------------------------------------------------------- */ void RuboutLeaf(Tree *tree) { free(tree->contour.upper.head); free(tree->contour.lower.tail); free(tree->contour.lower.head); tree->contour.upper.head = NULL; tree->contour.upper.tail = NULL; tree->contour.lower.head = NULL; tree->contour.lower.tail = NULL; NumLines -= 3; } /* ---------------------------------------------------------------------------- * * LayoutLeaf() accepts a single node (leaf) and forms its contour. This * function assumes that the width, height, and border fields of the * node have been assigned meaningful values. * * ---------------------------------------------------------------------------- */ void LayoutLeaf(Tree *tree) { tree->node_height = 0; tree->border = TreeBorderSize; tree->contour.upper.tail = MakeLine(tree->width + 2 * tree->border, 0, NULL); tree->contour.upper.head = tree->contour.upper.tail; tree->contour.lower.tail = MakeLine(0, -tree->height - 2 * tree->border, NULL); tree->contour.lower.head = MakeLine(tree->width + 2 * tree->border, 0, tree->contour.lower.tail); } /* ---------------------------------------------------------------------------- * * LayoutTree() traverses the given tree (in depth-first order), and forms * subtree or leaf contours at each node as needed. Each node's contour is * stored in its "contour" field. Elision is also supported by generating * the contour for both the expanded and collapsed node. This routine * also computes the tree height of each node in the tree, so that variable * density layout can be demonstrated. * * ---------------------------------------------------------------------------- */ void LayoutTree(Tree *tree) { Tree *child; int height = 0; FOREACH_CHILD(child, tree) { LayoutTree(child); if (child->elision) { /* support elision */ child->old_contour = child->contour; LayoutLeaf(child); } } if (tree->child) { FOREACH_CHILD(child, tree) height = MAX(child->node_height, height); tree->node_height = height + 1; if (TreeLayoutDensity == Fixed) tree->border = TreeBorderSize; else tree->border = (int) (TreeBorderSize * (tree->node_height * DENSITY_FACTOR)); AttachParent(tree, Join(tree)); } else LayoutLeaf(tree); } /* ------------------------------------------------------------------------- */ void Unzip(Tree *tree) { Tree *child; #ifdef INTF if (TreeShowSteps) { HiliteNode(tree, New); tree->on_path = TRUE; StatusMsg("Unzip: follow parent links up to root", 0); Pause(); } #endif if (tree->parent) Unzip(tree->parent); if (tree->child) { #ifdef INTF /* draw entire contour; do it only for root, because the last * frame drawn in this function will have already drawn the * contour for the most recently split subtree. */ if (TreeShowSteps) { if (tree->parent == NULL) { BeginFrame(); DrawTreeContour(tree, New, CONTOUR_COLOR, FALSE, FALSE, FALSE); DrawTree(TheTree, New); EndFrame(); StatusMsg("Unzip: disassemble entire contour", 0); Pause(); } } #endif #ifdef INTF /* draw contour as it would appear after DetachParent() */ if (TreeShowSteps) { BeginFrame(); #if 0 /* mrb */ DrawTreeContour(tree, New, CONTOUR_COLOR, TRUE, FALSE, FALSE, FALSE); #endif DrawTreeContour(tree, New, CONTOUR_COLOR, TRUE, FALSE, FALSE); DrawTree(TheTree, New); EndFrame(); StatusMsg("Unzip: detach parent", 0); Pause(); } #endif DetachParent(tree); Split(tree); #ifdef INTF if (TreeShowSteps) { BeginFrame(); /* mark other subtree contours as split, and */ /* draw only the contour on path in full */ FOREACH_CHILD(child, tree) { if (!child->on_path) child->split = TRUE; else DrawTreeContour(child, New, CONTOUR_COLOR, FALSE, FALSE, FALSE); } DrawTree(TheTree, New); EndFrame(); StatusMsg("Unzip: split tree", 0); Pause(); } #endif } else RuboutLeaf(tree); /* leaf node */ } /* ------------------------------------------------------------------------- */ void Zip(Tree *tree) { if (tree->child) AttachParent(tree, Join(tree)); else LayoutLeaf(tree); if (tree->parent) Zip(tree->parent); } /* ---------------------------------------------------------------------------- * * Insert() adds the specified child to parent, just after the specified * sibling. If 'sibling' is Null, the child is added as the first child. * * ---------------------------------------------------------------------------- */ void Insert(Tree *parent, Tree *child, Tree *sibling) { Unzip(parent); child->parent = parent; if (sibling) { child->sibling = sibling->sibling; sibling->sibling = child; } else { child->sibling = parent->child; parent->child = child; } Zip(parent); } /* ---------------------------------------------------------------------------- * * Delete() traverses the specified tree and frees all storage * allocated to the subtree, including contours and bridges. * If the tree had a preceding sibling, the preceding sibling is * modified to point to the tree's succeeding sibling, if any. * * ---------------------------------------------------------------------------- */ void Delete(Tree *tree) { Tree *sibling = NULL; Tree *parent, *child; /* find sibling */ parent = tree->parent; if (parent) { FOREACH_CHILD(child, parent) if (child->sibling == tree) { sibling = child; break; } } if (sibling) sibling->sibling = tree->sibling; else if (parent) parent->child = tree->sibling; DeleteTree(tree, FALSE); } /* ---------------------------------------------------------------------------- * * DeleteTree() is the recursive function that supports Delete(). * If 'contour' is True, then only the contours are recursively deleted. * This flag should be True when you are regenerating a tree's layout * and still want to preserve the nodes. Since contours would be deleted * only due to a change in sibling or level distance, each node's border * value is updated with the current value of TreeBorderSize; * * ---------------------------------------------------------------------------- */ void DeleteTree(Tree *tree, int contour) { Tree *child; if (tree->elision) { RuboutLeaf(tree); tree->contour = tree->old_contour; tree->old_contour.upper.head = NULL; /* flag to note 'NULL' contour */ } if (!IS_LEAF(tree)) { DetachParent(tree); Split(tree); FOREACH_CHILD(child,tree) DeleteTree(child, contour); } else RuboutLeaf(tree); if (contour) tree->border = TreeBorderSize; else { free(tree->label.text); free(tree); NumNodes--; } } /* ---------------------------------------------------------------------------- * * ComputeTreeSize() * This function should be called after tree layout. * * ---------------------------------------------------------------------------- */ void ComputeTreeSize(Tree *tree, int *width, int *height, int *x_offset, int *y_offset) { Polyline *contour, *tail; int upper_min_y = 0, lower_max_y = 0; int upper_abs_y = 0, lower_abs_y = 0; int x = 0; /* do upper contour */ contour = tree->contour.upper.head; tail = tree->contour.upper.tail; while (contour) { if ((contour->dy + upper_abs_y) < upper_min_y) upper_min_y = contour->dy + upper_abs_y; upper_abs_y += contour->dy; if (contour == tail) contour = NULL; else contour = contour->link; } /* do lower contour */ contour = tree->contour.lower.head; tail = tree->contour.lower.tail; while (contour) { if ((contour->dy + lower_abs_y) > lower_max_y) lower_max_y = contour->dy + lower_abs_y; lower_abs_y += contour->dy; x += contour->dx; if (contour == tail) contour = NULL; else contour = contour->link; } *width = x + 1; *height = lower_max_y - upper_min_y + (tree->height + (2 * tree->border)) + 1; if (x_offset) *x_offset = tree->border; if (y_offset) *y_offset = - upper_min_y + tree->border; } /* ---------------------------------------------------------------------------- * * PetrifyTree() * * ---------------------------------------------------------------------------- */ void PetrifyTree(Tree *tree, int x, int y) { tree->old_pos = tree->pos; /* used by AnimateTree */ /* fix position of each node */ tree->pos.x = x + tree->offset.x; tree->pos.y = y + tree->offset.y; if (tree->child) { PetrifyTree(tree->child, tree->pos.x, tree->pos.y); ComputeSubTreeExtent(tree); /* for benefit of interface picking */ } if (tree->sibling) PetrifyTree(tree->sibling, tree->pos.x, tree->pos.y); }