Mercurial > hg > xemacs-beta
view src/fns.c @ 5364:0f9aa4eb4bec
Make my Lisp a little more sophisticated, select.el.
2011-03-08 Aidan Kehoe <kehoea@parhasard.net>
* select.el (selection-preferred-types):
* select.el (cut-copy-clear-internal):
* select.el (create-image-functions):
* select.el (select-convert-from-image/gif):
* select.el (select-convert-from-image/jpeg):
* select.el (select-convert-from-image/png):
* select.el (select-convert-from-image/tiff):
* select.el (select-convert-from-image/xpm):
* select.el (select-convert-from-image/xbm):
* select.el (selection-converter-in-alist):
Make my Lisp a little more sophisticated in this file.
author | Aidan Kehoe <kehoea@parhasard.net> |
---|---|
date | Tue, 08 Mar 2011 21:00:36 +0000 |
parents | 46b53e84ea7a |
children | d967d96ca043 |
line wrap: on
line source
/* Random utility Lisp functions. Copyright (C) 1985, 86, 87, 93, 94, 95 Free Software Foundation, Inc. Copyright (C) 1995, 1996, 2000, 2001, 2002, 2003, 2010 Ben Wing. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: Mule 2.0, FSF 19.30. */ /* This file has been Mule-ized. */ /* Note: FSF 19.30 has bool vectors. We have bit vectors. */ /* Hacked on for Mule by Ben Wing, December 1994, January 1995. */ #include <config.h> /* Note on some machines this defines `vector' as a typedef, so make sure we don't use that name in this file. */ #undef vector #define vector ***** #include "lisp.h" #include "sysfile.h" #include "sysproc.h" /* for qxe_getpid() */ #include "buffer.h" #include "bytecode.h" #include "device.h" #include "events.h" #include "extents.h" #include "frame.h" #include "process.h" #include "systime.h" #include "insdel.h" #include "lstream.h" #include "opaque.h" /* NOTE: This symbol is also used in lread.c */ #define FEATUREP_SYNTAX Lisp_Object Qstring_lessp, Qmerge, Qfill, Qreplace, QassocX, QrassocX; Lisp_Object Qposition, Qfind, QdeleteX, QremoveX, Qidentity, Qadjoin; Lisp_Object Qvector, Qarray, Qbit_vector, QsortX, Q_from_end, Q_initial_value; Lisp_Object Qmapconcat, QmapcarX, Qmapvector, Qmapcan, Qmapc, Qmap, Qmap_into; Lisp_Object Qsome, Qevery, Qmaplist, Qmapl, Qmapcon, Qreduce, Qsubstitute; Lisp_Object Q_start1, Q_start2, Q_end1, Q_end2, Q_if_, Q_if_not, Q_stable; Lisp_Object Q_test_not, Q_count, Qnsubstitute, Qdelete_duplicates, Qmismatch; Lisp_Object Qintersection, Qset_difference, Qnset_difference; Lisp_Object Qnunion, Qnintersection, Qsubsetp, Qcar_less_than_car; Lisp_Object Qbase64_conversion_error; Lisp_Object Vpath_separator; extern Fixnum max_lisp_eval_depth; extern int lisp_eval_depth; static int internal_old_equal (Lisp_Object, Lisp_Object, int); Lisp_Object safe_copy_tree (Lisp_Object arg, Lisp_Object vecp, int depth); static DOESNT_RETURN mapping_interaction_error (Lisp_Object func, Lisp_Object object) { invalid_state_2 ("object modified while traversing it", func, object); } static void check_sequence_range (Lisp_Object sequence, Lisp_Object start, Lisp_Object end, Lisp_Object length) { Lisp_Object args[] = { Qzero, start, NILP (end) ? length : end, length }; if (NILP (Fleq (countof (args), args))) { args_out_of_range_3 (sequence, start, end); } } static Lisp_Object mark_bit_vector (Lisp_Object UNUSED (obj)) { return Qnil; } static void print_bit_vector (Lisp_Object obj, Lisp_Object printcharfun, int UNUSED (escapeflag)) { Elemcount i; Lisp_Bit_Vector *v = XBIT_VECTOR (obj); Elemcount len = bit_vector_length (v); Elemcount last = len; if (INTP (Vprint_length)) last = min (len, XINT (Vprint_length)); write_ascstring (printcharfun, "#*"); for (i = 0; i < last; i++) { if (bit_vector_bit (v, i)) write_ascstring (printcharfun, "1"); else write_ascstring (printcharfun, "0"); } if (last != len) write_ascstring (printcharfun, "..."); } static int bit_vector_equal (Lisp_Object obj1, Lisp_Object obj2, int UNUSED (depth), int UNUSED (foldcase)) { Lisp_Bit_Vector *v1 = XBIT_VECTOR (obj1); Lisp_Bit_Vector *v2 = XBIT_VECTOR (obj2); return ((bit_vector_length (v1) == bit_vector_length (v2)) && !memcmp (v1->bits, v2->bits, BIT_VECTOR_LONG_STORAGE (bit_vector_length (v1)) * sizeof (long))); } /* This needs to be algorithmically identical to internal_array_hash in elhash.c when equalp is one, so arrays and bit vectors with the same contents hash the same. It would be possible to enforce this by giving internal_ARRAYLIKE_hash its own file and including it twice, but right now that doesn't seem worth it. */ static Hashcode internal_bit_vector_equalp_hash (Lisp_Bit_Vector *v) { int ii, size = bit_vector_length (v); Hashcode hash = 0; if (size <= 5) { for (ii = 0; ii < size; ii++) { hash = HASH2 (hash, FLOAT_HASHCODE_FROM_DOUBLE ((double) (bit_vector_bit (v, ii)))); } return hash; } /* just pick five elements scattered throughout the array. A slightly better approach would be to offset by some noise factor from the points chosen below. */ for (ii = 0; ii < 5; ii++) hash = HASH2 (hash, FLOAT_HASHCODE_FROM_DOUBLE ((double) (bit_vector_bit (v, ii * size / 5)))); return hash; } static Hashcode bit_vector_hash (Lisp_Object obj, int UNUSED (depth), Boolint equalp) { Lisp_Bit_Vector *v = XBIT_VECTOR (obj); if (equalp) { return HASH2 (bit_vector_length (v), internal_bit_vector_equalp_hash (v)); } return HASH2 (bit_vector_length (v), memory_hash (v->bits, BIT_VECTOR_LONG_STORAGE (bit_vector_length (v)) * sizeof (long))); } static Bytecount size_bit_vector (Lisp_Object obj) { Lisp_Bit_Vector *v = XBIT_VECTOR (obj); return FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Bit_Vector, unsigned long, bits, BIT_VECTOR_LONG_STORAGE (bit_vector_length (v))); } static const struct memory_description bit_vector_description[] = { { XD_END } }; DEFINE_DUMPABLE_SIZABLE_LISP_OBJECT ("bit-vector", bit_vector, mark_bit_vector, print_bit_vector, 0, bit_vector_equal, bit_vector_hash, bit_vector_description, size_bit_vector, Lisp_Bit_Vector); /* Various test functions for #'member*, #'assoc* and the other functions that take both TEST and KEY arguments. */ static Boolint check_eq_nokey (Lisp_Object UNUSED (test), Lisp_Object UNUSED (key), Lisp_Object item, Lisp_Object elt) { return EQ (item, elt); } static Boolint check_eq_key (Lisp_Object UNUSED (test), Lisp_Object key, Lisp_Object item, Lisp_Object elt) { elt = IGNORE_MULTIPLE_VALUES (call1 (key, elt)); return EQ (item, elt); } /* The next two are not used by #'member* and #'assoc*, since we can decide on #'eq vs. #'equal when we have the type of ITEM. */ static Boolint check_eql_nokey (Lisp_Object UNUSED (test), Lisp_Object UNUSED (key), Lisp_Object elt1, Lisp_Object elt2) { return EQ (elt1, elt2) || (NON_FIXNUM_NUMBER_P (elt1) && internal_equal (elt1, elt2, 0)); } static Boolint check_eql_key (Lisp_Object UNUSED (test), Lisp_Object key, Lisp_Object item, Lisp_Object elt) { elt = IGNORE_MULTIPLE_VALUES (call1 (key, elt)); return EQ (item, elt) || (NON_FIXNUM_NUMBER_P (item) && internal_equal (item, elt, 0)); } static Boolint check_equal_nokey (Lisp_Object UNUSED (test), Lisp_Object UNUSED (key), Lisp_Object item, Lisp_Object elt) { return internal_equal (item, elt, 0); } static Boolint check_equal_key (Lisp_Object UNUSED (test), Lisp_Object key, Lisp_Object item, Lisp_Object elt) { elt = IGNORE_MULTIPLE_VALUES (call1 (key, elt)); return internal_equal (item, elt, 0); } static Boolint check_equalp_nokey (Lisp_Object UNUSED (test), Lisp_Object UNUSED (key), Lisp_Object item, Lisp_Object elt) { return internal_equalp (item, elt, 0); } static Boolint check_equalp_key (Lisp_Object UNUSED (test), Lisp_Object key, Lisp_Object item, Lisp_Object elt) { elt = IGNORE_MULTIPLE_VALUES (call1 (key, elt)); return internal_equalp (item, elt, 0); } static Boolint check_string_match_nokey (Lisp_Object UNUSED (test), Lisp_Object UNUSED (key), Lisp_Object item, Lisp_Object elt) { return !NILP (Fstring_match (item, elt, Qnil, Qnil)); } static Boolint check_string_match_key (Lisp_Object UNUSED (test), Lisp_Object key, Lisp_Object item, Lisp_Object elt) { elt = IGNORE_MULTIPLE_VALUES (call1 (key, elt)); return !NILP (Fstring_match (item, elt, Qnil, Qnil)); } static Boolint check_other_nokey (Lisp_Object test, Lisp_Object UNUSED (key), Lisp_Object item, Lisp_Object elt) { Lisp_Object args[] = { test, item, elt }; struct gcpro gcpro1; GCPRO1 (args[0]); gcpro1.nvars = countof (args); item = IGNORE_MULTIPLE_VALUES (Ffuncall (countof (args), args)); UNGCPRO; return !NILP (item); } static Boolint check_other_key (Lisp_Object test, Lisp_Object key, Lisp_Object item, Lisp_Object elt) { Lisp_Object args[] = { item, key, elt }; struct gcpro gcpro1; GCPRO1 (args[0]); gcpro1.nvars = countof (args); args[2] = IGNORE_MULTIPLE_VALUES (Ffuncall (countof (args) - 1, args + 1)); args[1] = item; args[0] = test; item = IGNORE_MULTIPLE_VALUES (Ffuncall (countof (args), args)); UNGCPRO; return !NILP (item); } static Boolint check_if_nokey (Lisp_Object test, Lisp_Object UNUSED (key), Lisp_Object UNUSED (item), Lisp_Object elt) { elt = IGNORE_MULTIPLE_VALUES (call1 (test, elt)); return !NILP (elt); } static Boolint check_if_key (Lisp_Object test, Lisp_Object key, Lisp_Object UNUSED (item), Lisp_Object elt) { Lisp_Object args[] = { key, elt }; struct gcpro gcpro1; GCPRO1 (args[0]); gcpro1.nvars = countof (args); args[1] = IGNORE_MULTIPLE_VALUES (Ffuncall (countof (args), args)); args[0] = test; elt = IGNORE_MULTIPLE_VALUES (Ffuncall (countof (args), args)); UNGCPRO; return !NILP (elt); } static Boolint check_match_eq_key (Lisp_Object UNUSED (test), Lisp_Object key, Lisp_Object elt1, Lisp_Object elt2) { Lisp_Object args[] = { key, elt1, elt2 }; struct gcpro gcpro1; GCPRO1 (args[0]); gcpro1.nvars = countof (args); args[0] = IGNORE_MULTIPLE_VALUES (Ffuncall (2, args)); args[1] = key; args[1] = IGNORE_MULTIPLE_VALUES (Ffuncall (2, args + 1)); UNGCPRO; return EQ (args[0], args[1]); } static Boolint check_match_eql_key (Lisp_Object UNUSED (test), Lisp_Object key, Lisp_Object elt1, Lisp_Object elt2) { Lisp_Object args[] = { key, elt1, elt2 }; struct gcpro gcpro1; GCPRO1 (args[0]); gcpro1.nvars = countof (args); args[0] = IGNORE_MULTIPLE_VALUES (Ffuncall (2, args)); args[1] = key; args[1] = IGNORE_MULTIPLE_VALUES (Ffuncall (2, args + 1)); UNGCPRO; return EQ (args[0], args[1]) || (NON_FIXNUM_NUMBER_P (args[0]) && internal_equal (args[0], args[1], 0)); } static Boolint check_match_equal_key (Lisp_Object UNUSED (test), Lisp_Object key, Lisp_Object elt1, Lisp_Object elt2) { Lisp_Object args[] = { key, elt1, elt2 }; struct gcpro gcpro1; GCPRO1 (args[0]); gcpro1.nvars = countof (args); args[0] = IGNORE_MULTIPLE_VALUES (Ffuncall (2, args)); args[1] = key; args[1] = IGNORE_MULTIPLE_VALUES (Ffuncall (2, args + 1)); UNGCPRO; return internal_equal (args[0], args[1], 0); } static Boolint check_match_equalp_key (Lisp_Object UNUSED (test), Lisp_Object key, Lisp_Object elt1, Lisp_Object elt2) { Lisp_Object args[] = { key, elt1, elt2 }; struct gcpro gcpro1; GCPRO1 (args[0]); gcpro1.nvars = countof (args); args[0] = IGNORE_MULTIPLE_VALUES (Ffuncall (2, args)); args[1] = key; args[1] = IGNORE_MULTIPLE_VALUES (Ffuncall (2, args + 1)); UNGCPRO; return internal_equalp (args[0], args[1], 0); } static Boolint check_match_other_key (Lisp_Object test, Lisp_Object key, Lisp_Object elt1, Lisp_Object elt2) { Lisp_Object args[] = { key, elt1, elt2 }; struct gcpro gcpro1; GCPRO1 (args[0]); gcpro1.nvars = countof (args); args[0] = IGNORE_MULTIPLE_VALUES (Ffuncall (2, args)); args[1] = key; args[2] = IGNORE_MULTIPLE_VALUES (Ffuncall (2, args + 1)); args[1] = args[0]; args[0] = test; elt1 = IGNORE_MULTIPLE_VALUES (Ffuncall (countof (args), args)); UNGCPRO; return !NILP (elt1); } static Boolint check_lss_nokey (Lisp_Object UNUSED (test), Lisp_Object UNUSED (key), Lisp_Object elt1, Lisp_Object elt2) { return bytecode_arithcompare (elt1, elt2) < 0; } static Boolint check_lss_key (Lisp_Object UNUSED (test), Lisp_Object key, Lisp_Object elt1, Lisp_Object elt2) { Lisp_Object args[] = { key, elt1, elt2 }; struct gcpro gcpro1; GCPRO1 (args[0]); gcpro1.nvars = countof (args); args[0] = IGNORE_MULTIPLE_VALUES (Ffuncall (2, args)); args[1] = key; args[1] = IGNORE_MULTIPLE_VALUES (Ffuncall (2, args + 1)); UNGCPRO; return bytecode_arithcompare (args[0], args[1]) < 0; } Boolint check_lss_key_car (Lisp_Object UNUSED (test), Lisp_Object UNUSED (key), Lisp_Object elt1, Lisp_Object elt2) { struct gcpro gcpro1, gcpro2; GCPRO2 (elt1, elt2); elt1 = CONSP (elt1) ? XCAR (elt1) : Fcar (elt1); elt2 = CONSP (elt2) ? XCAR (elt2) : Fcar (elt2); UNGCPRO; return bytecode_arithcompare (elt1, elt2) < 0; } Boolint check_string_lessp_nokey (Lisp_Object UNUSED (test), Lisp_Object UNUSED (key), Lisp_Object elt1, Lisp_Object elt2) { return !NILP (Fstring_lessp (elt1, elt2)); } static Boolint check_string_lessp_key (Lisp_Object UNUSED (test), Lisp_Object key, Lisp_Object elt1, Lisp_Object elt2) { Lisp_Object args[] = { key, elt1, elt2 }; struct gcpro gcpro1; GCPRO1 (args[0]); gcpro1.nvars = countof (args); args[0] = IGNORE_MULTIPLE_VALUES (Ffuncall (2, args)); args[1] = key; args[1] = IGNORE_MULTIPLE_VALUES (Ffuncall (2, args + 1)); UNGCPRO; return !NILP (Fstring_lessp (args[0], args[1])); } static Boolint check_string_lessp_key_car (Lisp_Object UNUSED (test), Lisp_Object UNUSED (key), Lisp_Object elt1, Lisp_Object elt2) { struct gcpro gcpro1, gcpro2; GCPRO2 (elt1, elt2); elt1 = CONSP (elt1) ? XCAR (elt1) : Fcar (elt1); elt2 = CONSP (elt2) ? XCAR (elt2) : Fcar (elt2); UNGCPRO; return !NILP (Fstring_lessp (elt1, elt2)); } static check_test_func_t get_check_match_function_1 (Lisp_Object item, Lisp_Object *test_inout, Lisp_Object test_not, Lisp_Object if_, Lisp_Object if_not, Lisp_Object key, Boolint *test_not_unboundp_out, check_test_func_t *test_func_out) { Lisp_Object test = *test_inout; check_test_func_t result = NULL, test_func = NULL; Boolint force_if = 0; if (!NILP (if_)) { if (!(NILP (test) && NILP (test_not) && NILP (if_not))) { invalid_argument ("only one keyword among :test :test-not " ":if :if-not allowed", if_); } test = *test_inout = if_; force_if = 1; } else if (!NILP (if_not)) { if (!(NILP (test) && NILP (test_not))) { invalid_argument ("only one keyword among :test :test-not " ":if :if-not allowed", if_not); } test_not = if_not; force_if = 1; } if (NILP (test)) { if (!NILP (test_not)) { test = *test_inout = test_not; if (NULL != test_not_unboundp_out) { *test_not_unboundp_out = 0; } } else { test = Qeql; if (NULL != test_not_unboundp_out) { *test_not_unboundp_out = 1; } } } else if (!NILP (test_not)) { invalid_argument_2 ("conflicting :test and :test-not keyword arguments", test, test_not); } test = indirect_function (test, 1); if (NILP (key) || EQ (indirect_function (key, 1), XSYMBOL_FUNCTION (Qidentity))) { key = Qidentity; } if (force_if) { result = EQ (key, Qidentity) ? check_if_nokey : check_if_key; if (NULL != test_func_out) { *test_func_out = result; } return result; } if (!UNBOUNDP (item) && EQ (test, XSYMBOL_FUNCTION (Qeql))) { test = XSYMBOL_FUNCTION (NON_FIXNUM_NUMBER_P (item) ? Qequal : Qeq); } #define FROB(known_test, eq_condition) \ if (EQ (test, XSYMBOL_FUNCTION (Q##known_test))) do \ { \ if (eq_condition) \ { \ test = XSYMBOL_FUNCTION (Qeq); \ goto force_eq_check; \ } \ \ if (!EQ (Qidentity, key)) \ { \ test_func = check_##known_test##_key; \ result = check_match_##known_test##_key; \ } \ else \ { \ result = test_func = check_##known_test##_nokey; \ } \ } while (0) FROB (eql, 0); else if (SUBRP (test)) { force_eq_check: FROB (eq, 0); else FROB (equal, (SYMBOLP (item) || INTP (item) || CHARP (item))); else FROB (equalp, (SYMBOLP (item))); else if (EQ (test, XSYMBOL_FUNCTION (Qstring_match))) { if (EQ (Qidentity, key)) { test_func = result = check_string_match_nokey; } else { test_func = check_string_match_key; result = check_other_key; } } } if (NULL == result) { if (EQ (Qidentity, key)) { test_func = result = check_other_nokey; } else { test_func = check_other_key; result = check_match_other_key; } } if (NULL != test_func_out) { *test_func_out = test_func; } return result; } #undef FROB /* Given TEST, TEST_NOT, IF, IF_NOT, KEY, and ITEM, return a C function pointer appropriate for use in deciding whether a given element of a sequence satisfies TEST. Set *test_not_unboundp_out to 1 if TEST_NOT was not bound; set it to zero if it was bound, and set *test_inout to the value it was bound to. If TEST was not bound, leave *test_inout alone; the value is not used by check_eq_*key() or check_equal_*key(), which are the defaults, depending on the type of ITEM. The returned function takes arguments (TEST, KEY, ITEM, ELT), where ITEM is the item being searched for and ELT is the element of the sequence being examined. Error if both TEST and TEST_NOT were specified, which Common Lisp says is undefined behaviour. */ static check_test_func_t get_check_test_function (Lisp_Object item, Lisp_Object *test_inout, Lisp_Object test_not, Lisp_Object if_, Lisp_Object if_not, Lisp_Object key, Boolint *test_not_unboundp_out) { check_test_func_t result = NULL; get_check_match_function_1 (item, test_inout, test_not, if_, if_not, key, test_not_unboundp_out, &result); return result; } /* Given TEST, TEST_NOT, IF, IF_NOT and KEY, return a C function pointer appropriate for use in deciding whether two given elements of a sequence satisfy TEST. Set *test_not_unboundp_out to 1 if TEST_NOT was not bound; set it to zero if it was bound, and set *test_inout to the value it was bound to. If TEST was not bound, leave *test_inout alone; the value is not used by check_eql_*key(). The returned function takes arguments (TEST, KEY, ELT1, ELT2), where ELT1 and ELT2 are elements of the sequence being examined. The value that would be given by get_check_test_function() is returned in *TEST_FUNC_OUT, which allows calling functions to do their own key checks if they're processing one element at a time. Error if both TEST and TEST_NOT were specified, which Common Lisp says is undefined behaviour. */ static check_test_func_t get_check_match_function (Lisp_Object *test_inout, Lisp_Object test_not, Lisp_Object if_, Lisp_Object if_not, Lisp_Object key, Boolint *test_not_unboundp_out, check_test_func_t *test_func_out) { return get_check_match_function_1 (Qunbound, test_inout, test_not, if_, if_not, key, test_not_unboundp_out, test_func_out); } /* Given PREDICATE and KEY, return a C function pointer appropriate for use in deciding whether one given elements of a sequence is less than another. */ static check_test_func_t get_merge_predicate (Lisp_Object predicate, Lisp_Object key) { predicate = indirect_function (predicate, 1); if (NILP (key)) { key = Qidentity; } else { key = indirect_function (key, 1); if (EQ (key, XSYMBOL_FUNCTION (Qidentity))) { key = Qidentity; } } if (EQ (key, Qidentity) && EQ (predicate, XSYMBOL_FUNCTION (Qcar_less_than_car))) { key = XSYMBOL_FUNCTION (Qcar); predicate = XSYMBOL_FUNCTION (Qlss); } if (EQ (predicate, XSYMBOL_FUNCTION (Qlss))) { if (EQ (key, Qidentity)) { return check_lss_nokey; } if (EQ (key, XSYMBOL_FUNCTION (Qcar))) { return check_lss_key_car; } return check_lss_key; } if (EQ (predicate, XSYMBOL_FUNCTION (Qstring_lessp))) { if (EQ (key, Qidentity)) { return check_string_lessp_nokey; } if (EQ (key, XSYMBOL_FUNCTION (Qcar))) { return check_string_lessp_key_car; } return check_string_lessp_key; } if (EQ (key, Qidentity)) { return check_other_nokey; } return check_match_other_key; } DEFUN ("identity", Fidentity, 1, 1, 0, /* Return the argument unchanged. */ (arg)) { return arg; } DEFUN ("random", Frandom, 0, 1, 0, /* Return a pseudo-random number. All fixnums are equally likely. On most systems, this is 31 bits' worth. With positive integer argument LIMIT, return random number in interval [0, LIMIT). LIMIT can be a bignum, in which case the range of possible values is extended. With argument t, set the random number seed from the current time and pid. */ (limit)) { EMACS_INT val; unsigned long denominator; if (EQ (limit, Qt)) seed_random (qxe_getpid () + time (NULL)); if (NATNUMP (limit) && !ZEROP (limit)) { #ifdef HAVE_BIGNUM if (BIGNUMP (limit)) { bignum_random (scratch_bignum, XBIGNUM_DATA (limit)); return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); } #endif /* Try to take our random number from the higher bits of VAL, not the lower, since (says Gentzel) the low bits of `random' are less random than the higher ones. We do this by using the quotient rather than the remainder. At the high end of the RNG it's possible to get a quotient larger than limit; discarding these values eliminates the bias that would otherwise appear when using a large limit. */ denominator = ((unsigned long)1 << INT_VALBITS) / XINT (limit); do val = get_random () / denominator; while (val >= XINT (limit)); } else val = get_random (); return make_int (val); } /* Random data-structure functions */ #ifdef LOSING_BYTECODE /* #### Delete this shit */ /* Charcount is a misnomer here as we might be dealing with the length of a vector or list, but emphasizes that we're not dealing with Bytecounts in strings */ static Charcount length_with_bytecode_hack (Lisp_Object seq) { if (!COMPILED_FUNCTIONP (seq)) return XINT (Flength (seq)); else { Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (seq); return (f->flags.interactivep ? COMPILED_INTERACTIVE : f->flags.domainp ? COMPILED_DOMAIN : COMPILED_DOC_STRING) + 1; } } #endif /* LOSING_BYTECODE */ void check_losing_bytecode (const Ascbyte *function, Lisp_Object seq) { if (COMPILED_FUNCTIONP (seq)) signal_ferror_with_frob (Qinvalid_argument, seq, "As of 20.3, `%s' no longer works with compiled-function objects", function); } DEFUN ("length", Flength, 1, 1, 0, /* Return the length of vector, bit vector, list or string SEQUENCE. */ (sequence)) { retry: if (STRINGP (sequence)) return make_int (string_char_length (sequence)); else if (CONSP (sequence)) { Elemcount len; GET_EXTERNAL_LIST_LENGTH (sequence, len); return make_int (len); } else if (VECTORP (sequence)) return make_int (XVECTOR_LENGTH (sequence)); else if (NILP (sequence)) return Qzero; else if (BIT_VECTORP (sequence)) return make_int (bit_vector_length (XBIT_VECTOR (sequence))); else { check_losing_bytecode ("length", sequence); sequence = wrong_type_argument (Qsequencep, sequence); goto retry; } } DEFUN ("safe-length", Fsafe_length, 1, 1, 0, /* Return the length of a list, but avoid error or infinite loop. This function never gets an error. If LIST is not really a list, it returns 0. If LIST is circular, it returns a finite value which is at least the number of distinct elements. */ (list)) { Lisp_Object hare, tortoise; Elemcount len; for (hare = tortoise = list, len = 0; CONSP (hare) && (! EQ (hare, tortoise) || len == 0); hare = XCDR (hare), len++) { if (len & 1) tortoise = XCDR (tortoise); } return make_int (len); } /* This is almost the above, but is defined by Common Lisp. We need it in C for shortest_length_among_sequences(), below, for the various sequence functions that can usefully operate on circular lists. */ DEFUN ("list-length", Flist_length, 1, 1, 0, /* Return the length of LIST. Return nil if LIST is circular. Error if LIST is dotted. */ (list)) { Lisp_Object hare, tortoise; Elemcount len; for (hare = tortoise = list, len = 0; CONSP (hare) && (! EQ (hare, tortoise) || len == 0); hare = XCDR (hare), len++) { if (len & 1) tortoise = XCDR (tortoise); } if (!LISTP (hare)) { signal_malformed_list_error (list); } return EQ (hare, tortoise) && len != 0 ? Qnil : make_int (len); } static Lisp_Object string_count_from_end (Lisp_Object, Lisp_Object , check_test_func_t, Boolint, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object); static Lisp_Object list_count_from_end (Lisp_Object, Lisp_Object, check_test_func_t, Boolint, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object); /* Count the number of occurrences of ITEM in SEQUENCE; if SEQUENCE is a list, store the cons cell of which the car is the last ITEM in SEQUENCE, at the address given by tail_out. */ static Lisp_Object count_with_tail (Lisp_Object *tail_out, int nargs, Lisp_Object *args, Lisp_Object caller) { Lisp_Object item = args[0], sequence = args[1]; Elemcount starting = 0, ending = EMACS_INT_MAX, encountered = 0; Elemcount len, ii = 0, counting = EMACS_INT_MAX; Boolint test_not_unboundp = 1; check_test_func_t check_test = NULL; PARSE_KEYWORDS_8 (caller, nargs, args, 9, (test, key, start, end, from_end, test_not, count, if_, if_not), (start = Qzero), 2, 0); CHECK_SEQUENCE (sequence); CHECK_NATNUM (start); starting = BIGNUMP (start) ? 1 + EMACS_INT_MAX : XINT (start); if (!NILP (end)) { CHECK_NATNUM (end); ending = BIGNUMP (end) ? 1 + EMACS_INT_MAX : XINT (end); } if (!NILP (count)) { CHECK_INTEGER (count); counting = BIGNUMP (count) ? EMACS_INT_MAX + 1 : XINT (count); /* Our callers should have filtered out non-positive COUNT. */ assert (counting >= 0); /* And we're not prepared to handle COUNT from any other caller at the moment. */ assert (EQ (caller, QremoveX)); } check_test = get_check_test_function (item, &test, test_not, if_, if_not, key, &test_not_unboundp); *tail_out = Qnil; if (CONSP (sequence)) { Lisp_Object elt, tail = Qnil; struct gcpro gcpro1; if (EQ (caller, Qcount) && !NILP (from_end) && (!EQ (key, Qnil) || check_test == check_other_nokey || check_test == check_if_nokey)) { /* #'count, #'count-if, and #'count-if-not are documented to have a given traversal order if :from-end t is passed in, even though forward traversal of the sequence has the same result and is algorithmically less expensive for lists and strings. This order isn't necessary for other callers, though. */ return list_count_from_end (item, sequence, check_test, test_not_unboundp, test, key, start, end); } GCPRO1 (tail); /* If COUNT is non-nil and FROM-END is t, we can give the tail containing the last match, since that's what #'remove* is interested in (a zero or negative COUNT won't ever reach count_with_tail(), our callers will return immediately on seeing it). */ if (!NILP (count) && !NILP (from_end)) { counting = EMACS_INT_MAX; } { EXTERNAL_LIST_LOOP_4_NO_DECLARE (elt, sequence, tail, len) { if (!(ii < ending)) { break; } if (starting <= ii && check_test (test, key, item, elt) == test_not_unboundp) { encountered++; *tail_out = tail; if (encountered == counting) { break; } } ii++; } } UNGCPRO; if ((ii < starting || (ii < ending && !NILP (end))) && encountered != counting) { check_sequence_range (args[1], start, end, Flength (args[1])); } } else if (STRINGP (sequence)) { Ibyte *startp = XSTRING_DATA (sequence), *cursor = startp; Bytecount byte_len = XSTRING_LENGTH (sequence), cursor_offset = 0; Lisp_Object character = Qnil; if (EQ (caller, Qcount) && !NILP (from_end) && (!EQ (key, Qnil) || check_test == check_other_nokey || check_test == check_if_nokey)) { /* See comment above in the list code. */ return string_count_from_end (item, sequence, check_test, test_not_unboundp, test, key, start, end); } while (cursor_offset < byte_len && ii < ending && encountered < counting) { if (ii >= starting) { character = make_char (itext_ichar (cursor)); if (check_test (test, key, item, character) == test_not_unboundp) { encountered++; } startp = XSTRING_DATA (sequence); cursor = startp + cursor_offset; if (byte_len != XSTRING_LENGTH (sequence) || !valid_ibyteptr_p (cursor)) { mapping_interaction_error (caller, sequence); } } INC_IBYTEPTR (cursor); cursor_offset = cursor - startp; ii++; } if (ii < starting || (ii < ending && !NILP (end))) { check_sequence_range (sequence, start, end, Flength (sequence)); } } else { Lisp_Object object = Qnil; len = XINT (Flength (sequence)); check_sequence_range (sequence, start, end, make_int (len)); ending = min (ending, len); if (0 == len) { /* Catches the case where we have nil. */ return make_integer (encountered); } if (NILP (from_end)) { for (ii = starting; ii < ending && encountered < counting; ii++) { object = Faref (sequence, make_int (ii)); if (check_test (test, key, item, object) == test_not_unboundp) { encountered++; } } } else { for (ii = ending - 1; ii >= starting && encountered < counting; ii--) { object = Faref (sequence, make_int (ii)); if (check_test (test, key, item, object) == test_not_unboundp) { encountered++; } } } } return make_integer (encountered); } static Lisp_Object list_count_from_end (Lisp_Object item, Lisp_Object sequence, check_test_func_t check_test, Boolint test_not_unboundp, Lisp_Object test, Lisp_Object key, Lisp_Object start, Lisp_Object end) { Elemcount length = XINT (Flength (sequence)), ii = 0, starting = XINT (start); Elemcount ending = NILP (end) ? length : XINT (end), encountered = 0; Lisp_Object *storage; struct gcpro gcpro1; check_sequence_range (sequence, start, end, make_integer (length)); storage = alloca_array (Lisp_Object, ending - starting); { EXTERNAL_LIST_LOOP_2 (elt, sequence) { if (starting <= ii && ii < ending) { storage[ii - starting] = elt; } ii++; } } GCPRO1 (storage[0]); gcpro1.nvars = ending - starting; for (ii = ending - 1; ii >= starting; ii--) { if (check_test (test, key, item, storage[ii - starting]) == test_not_unboundp) { encountered++; } } UNGCPRO; return make_integer (encountered); } static Lisp_Object string_count_from_end (Lisp_Object item, Lisp_Object sequence, check_test_func_t check_test, Boolint test_not_unboundp, Lisp_Object test, Lisp_Object key, Lisp_Object start, Lisp_Object end) { Elemcount length = string_char_length (sequence), ii = 0; Elemcount starting = XINT (start), ending = NILP (end) ? length : XINT (end); Elemcount encountered = 0; Ibyte *cursor = XSTRING_DATA (sequence); Ibyte *endp = cursor + XSTRING_LENGTH (sequence); Ichar *storage; check_sequence_range (sequence, start, end, make_integer (length)); storage = alloca_array (Ichar, ending - starting); while (cursor < endp && ii < ending) { if (starting <= ii && ii < ending) { storage [ii - starting] = itext_ichar (cursor); } ii++; INC_IBYTEPTR (cursor); } for (ii = ending - 1; ii >= starting; ii--) { if (check_test (test, key, item, make_char (storage [ii - starting])) == test_not_unboundp) { encountered++; } } return make_integer (encountered); } DEFUN ("count", Fcount, 2, MANY, 0, /* Count the number of occurrences of ITEM in SEQUENCE. See `remove*' for the meaning of the keywords. arguments: (ITEM SEQUENCE &key (TEST #'eql) (KEY #'identity) (START 0) END FROM-END TEST-NOT) */ (int nargs, Lisp_Object *args)) { Lisp_Object tail = Qnil; /* count_with_tail() accepts more keywords than we do, check those we've been given. */ PARSE_KEYWORDS (Fcount, nargs, args, 8, (test, test_not, if_, if_not, key, start, end, from_end), NULL); return count_with_tail (&tail, nargs, args, Qcount); } /*** string functions. ***/ DEFUN ("string-equal", Fstring_equal, 2, 2, 0, /* Return t if two strings have identical contents. Case is significant. Text properties are ignored. \(Under XEmacs, `equal' also ignores text properties and extents in strings, but this is not the case under FSF Emacs 19. In FSF Emacs 20 `equal' is the same as in XEmacs, in that respect.) Symbols are also allowed; their print names are used instead. */ (string1, string2)) { Bytecount len; Lisp_Object p1, p2; if (SYMBOLP (string1)) p1 = XSYMBOL (string1)->name; else { CHECK_STRING (string1); p1 = string1; } if (SYMBOLP (string2)) p2 = XSYMBOL (string2)->name; else { CHECK_STRING (string2); p2 = string2; } return (((len = XSTRING_LENGTH (p1)) == XSTRING_LENGTH (p2)) && !memcmp (XSTRING_DATA (p1), XSTRING_DATA (p2), len)) ? Qt : Qnil; } DEFUN ("compare-strings", Fcompare_strings, 6, 7, 0, /* Compare the contents of two strings, maybe ignoring case. In string STR1, skip the first START1 characters and stop at END1. In string STR2, skip the first START2 characters and stop at END2. END1 and END2 default to the full lengths of the respective strings, and arguments that are outside the string (negative STARTi or ENDi greater than length) are coerced to 0 or string length as appropriate. Optional IGNORE-CASE non-nil means use case-insensitive comparison. Case is significant by default. The value is t if the strings (or specified portions) match. If string STR1 is less, the value is a negative number N; - 1 - N is the number of characters that match at the beginning. If string STR1 is greater, the value is a positive number N; N - 1 is the number of characters that match at the beginning. */ (str1, start1, end1, str2, start2, end2, ignore_case)) { Charcount ccstart1, ccend1, ccstart2, ccend2; Bytecount bstart1, blen1, bstart2, blen2; Charcount matching; int res; CHECK_STRING (str1); CHECK_STRING (str2); get_string_range_char (str1, start1, end1, &ccstart1, &ccend1, GB_HISTORICAL_STRING_BEHAVIOR|GB_COERCE_RANGE); get_string_range_char (str2, start2, end2, &ccstart2, &ccend2, GB_HISTORICAL_STRING_BEHAVIOR|GB_COERCE_RANGE); bstart1 = string_index_char_to_byte (str1, ccstart1); blen1 = string_offset_char_to_byte_len (str1, bstart1, ccend1 - ccstart1); bstart2 = string_index_char_to_byte (str2, ccstart2); blen2 = string_offset_char_to_byte_len (str2, bstart2, ccend2 - ccstart2); res = ((NILP (ignore_case) ? qxetextcmp_matching : qxetextcasecmp_matching) (XSTRING_DATA (str1) + bstart1, blen1, XSTRING_DATA (str2) + bstart2, blen2, &matching)); if (!res) return Qt; else if (res > 0) return make_int (1 + matching); else return make_int (-1 - matching); } DEFUN ("string-lessp", Fstring_lessp, 2, 2, 0, /* Return t if first arg string is less than second in lexicographic order. Comparison is simply done on a character-by-character basis using the numeric value of a character. (Note that this may not produce particularly meaningful results under Mule if characters from different charsets are being compared.) Symbols are also allowed; their print names are used instead. Currently we don't do proper language-specific collation or handle multiple character sets. This may be changed when Unicode support is implemented. */ (string1, string2)) { Lisp_Object p1, p2; Charcount end, len2; int i; if (SYMBOLP (string1)) p1 = XSYMBOL (string1)->name; else { CHECK_STRING (string1); p1 = string1; } if (SYMBOLP (string2)) p2 = XSYMBOL (string2)->name; else { CHECK_STRING (string2); p2 = string2; } end = string_char_length (p1); len2 = string_char_length (p2); if (end > len2) end = len2; { Ibyte *ptr1 = XSTRING_DATA (p1); Ibyte *ptr2 = XSTRING_DATA (p2); /* #### It is not really necessary to do this: We could compare byte-by-byte and still get a reasonable comparison, since this would compare characters with a charset in the same way. With a little rearrangement of the leading bytes, we could make most inter-charset comparisons work out the same, too; even if some don't, this is not a big deal because inter-charset comparisons aren't really well-defined anyway. */ for (i = 0; i < end; i++) { if (itext_ichar (ptr1) != itext_ichar (ptr2)) return itext_ichar (ptr1) < itext_ichar (ptr2) ? Qt : Qnil; INC_IBYTEPTR (ptr1); INC_IBYTEPTR (ptr2); } } /* Can't do i < len2 because then comparison between "foo" and "foo^@" won't work right in I18N2 case */ return end < len2 ? Qt : Qnil; } DEFUN ("string-modified-tick", Fstring_modified_tick, 1, 1, 0, /* Return STRING's tick counter, incremented for each change to the string. Each string has a tick counter which is incremented each time the contents of the string are changed (e.g. with `aset'). It wraps around occasionally. */ (string)) { CHECK_STRING (string); if (CONSP (XSTRING_PLIST (string)) && INTP (XCAR (XSTRING_PLIST (string)))) return XCAR (XSTRING_PLIST (string)); else return Qzero; } void bump_string_modiff (Lisp_Object str) { Lisp_Object *ptr = &XSTRING_PLIST (str); #ifdef I18N3 /* #### remove the `string-translatable' property from the string, if there is one. */ #endif /* skip over extent info if it's there */ if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr))) ptr = &XCDR (*ptr); if (CONSP (*ptr) && INTP (XCAR (*ptr))) XCAR (*ptr) = make_int (1+XINT (XCAR (*ptr))); else *ptr = Fcons (make_int (1), *ptr); } enum concat_target_type { c_cons, c_string, c_vector, c_bit_vector }; static Lisp_Object concat (int nargs, Lisp_Object *args, enum concat_target_type target_type, int last_special); Lisp_Object concat2 (Lisp_Object string1, Lisp_Object string2) { Lisp_Object args[2]; args[0] = string1; args[1] = string2; return concat (2, args, c_string, 0); } Lisp_Object concat3 (Lisp_Object string1, Lisp_Object string2, Lisp_Object string3) { Lisp_Object args[3]; args[0] = string1; args[1] = string2; args[2] = string3; return concat (3, args, c_string, 0); } Lisp_Object vconcat2 (Lisp_Object vec1, Lisp_Object vec2) { Lisp_Object args[2]; args[0] = vec1; args[1] = vec2; return concat (2, args, c_vector, 0); } Lisp_Object vconcat3 (Lisp_Object vec1, Lisp_Object vec2, Lisp_Object vec3) { Lisp_Object args[3]; args[0] = vec1; args[1] = vec2; args[2] = vec3; return concat (3, args, c_vector, 0); } DEFUN ("append", Fappend, 0, MANY, 0, /* Concatenate all the arguments and make the result a list. The result is a list whose elements are the elements of all the arguments. Each argument may be a list, vector, bit vector, or string. The last argument is not copied, just used as the tail of the new list. Also see: `nconc'. arguments: (&rest ARGS) */ (int nargs, Lisp_Object *args)) { return concat (nargs, args, c_cons, 1); } DEFUN ("concat", Fconcat, 0, MANY, 0, /* Concatenate all the arguments and make the result a string. The result is a string whose elements are the elements of all the arguments. Each argument may be a string or a list or vector of characters. As of XEmacs 21.0, this function does NOT accept individual integers as arguments. Old code that relies on, for example, (concat "foo" 50) returning "foo50" will fail. To fix such code, either apply `int-to-string' to the integer argument, or use `format'. arguments: (&rest ARGS) */ (int nargs, Lisp_Object *args)) { return concat (nargs, args, c_string, 0); } DEFUN ("vconcat", Fvconcat, 0, MANY, 0, /* Concatenate all the arguments and make the result a vector. The result is a vector whose elements are the elements of all the arguments. Each argument may be a list, vector, bit vector, or string. arguments: (&rest ARGS) */ (int nargs, Lisp_Object *args)) { return concat (nargs, args, c_vector, 0); } DEFUN ("bvconcat", Fbvconcat, 0, MANY, 0, /* Concatenate all the arguments and make the result a bit vector. The result is a bit vector whose elements are the elements of all the arguments. Each argument may be a list, vector, bit vector, or string. arguments: (&rest ARGS) */ (int nargs, Lisp_Object *args)) { return concat (nargs, args, c_bit_vector, 0); } /* Copy a (possibly dotted) list. LIST must be a cons. Can't use concat (1, &alist, c_cons, 0) - doesn't handle dotted lists. */ static Lisp_Object copy_list (Lisp_Object list) { Lisp_Object list_copy = Fcons (XCAR (list), XCDR (list)); Lisp_Object last = list_copy; Lisp_Object hare, tortoise; Elemcount len; for (tortoise = hare = XCDR (list), len = 1; CONSP (hare); hare = XCDR (hare), len++) { XCDR (last) = Fcons (XCAR (hare), XCDR (hare)); last = XCDR (last); if (len < CIRCULAR_LIST_SUSPICION_LENGTH) continue; if (len & 1) tortoise = XCDR (tortoise); if (EQ (tortoise, hare)) signal_circular_list_error (list); } return list_copy; } DEFUN ("copy-list", Fcopy_list, 1, 1, 0, /* Return a copy of list LIST, which may be a dotted list. The elements of LIST are not copied; they are shared with the original. */ (list)) { again: if (NILP (list)) return list; if (CONSP (list)) return copy_list (list); list = wrong_type_argument (Qlistp, list); goto again; } DEFUN ("copy-sequence", Fcopy_sequence, 1, 1, 0, /* Return a copy of list, vector, bit vector or string SEQUENCE. The elements of a list or vector are not copied; they are shared with the original. SEQUENCE may be a dotted list. */ (sequence)) { again: if (NILP (sequence)) return sequence; if (CONSP (sequence)) return copy_list (sequence); if (STRINGP (sequence)) return concat (1, &sequence, c_string, 0); if (VECTORP (sequence)) return concat (1, &sequence, c_vector, 0); if (BIT_VECTORP (sequence)) return concat (1, &sequence, c_bit_vector, 0); check_losing_bytecode ("copy-sequence", sequence); sequence = wrong_type_argument (Qsequencep, sequence); goto again; } struct merge_string_extents_struct { Lisp_Object string; Bytecount entry_offset; Bytecount entry_length; }; static Lisp_Object concat (int nargs, Lisp_Object *args, enum concat_target_type target_type, int last_special) { Lisp_Object val; Lisp_Object tail = Qnil; int toindex; int argnum; Lisp_Object last_tail; Lisp_Object prev; struct merge_string_extents_struct *args_mse = 0; Ibyte *string_result = 0; Ibyte *string_result_ptr = 0; struct gcpro gcpro1; int sdep = specpdl_depth (); /* The modus operandi in Emacs is "caller gc-protects args". However, concat is called many times in Emacs on freshly created stuff. So we help those callers out by protecting the args ourselves to save them a lot of temporary-variable grief. */ GCPRO1 (args[0]); gcpro1.nvars = nargs; #ifdef I18N3 /* #### if the result is a string and any of the strings have a string for the `string-translatable' property, then concat should also concat the args but use the `string-translatable' strings, and store the result in the returned string's `string-translatable' property. */ #endif if (target_type == c_string) args_mse = alloca_array (struct merge_string_extents_struct, nargs); /* In append, the last arg isn't treated like the others */ if (last_special && nargs > 0) { nargs--; last_tail = args[nargs]; } else last_tail = Qnil; /* Check and coerce the arguments. */ for (argnum = 0; argnum < nargs; argnum++) { Lisp_Object seq = args[argnum]; if (LISTP (seq)) ; else if (VECTORP (seq) || STRINGP (seq) || BIT_VECTORP (seq)) ; #ifdef LOSING_BYTECODE else if (COMPILED_FUNCTIONP (seq)) /* Urk! We allow this, for "compatibility"... */ ; #endif #if 0 /* removed for XEmacs 21 */ else if (INTP (seq)) /* This is too revolting to think about but maintains compatibility with FSF (and lots and lots of old code). */ args[argnum] = Fnumber_to_string (seq); #endif else { check_losing_bytecode ("concat", seq); args[argnum] = wrong_type_argument (Qsequencep, seq); } if (args_mse) { if (STRINGP (seq)) args_mse[argnum].string = seq; else args_mse[argnum].string = Qnil; } } { /* Charcount is a misnomer here as we might be dealing with the length of a vector or list, but emphasizes that we're not dealing with Bytecounts in strings */ Charcount total_length; for (argnum = 0, total_length = 0; argnum < nargs; argnum++) { #ifdef LOSING_BYTECODE Charcount thislen = length_with_bytecode_hack (args[argnum]); #else Charcount thislen = XINT (Flength (args[argnum])); #endif total_length += thislen; } switch (target_type) { case c_cons: if (total_length == 0) { unbind_to (sdep); /* In append, if all but last arg are nil, return last arg */ RETURN_UNGCPRO (last_tail); } val = Fmake_list (make_int (total_length), Qnil); break; case c_vector: val = make_vector (total_length, Qnil); break; case c_bit_vector: val = make_bit_vector (total_length, Qzero); break; case c_string: /* We don't make the string yet because we don't know the actual number of bytes. This loop was formerly written to call Fmake_string() here and then call set_string_char() for each char. This seems logical enough but is waaaaaaaay slow -- set_string_char() has to scan the whole string up to the place where the substitution is called for in order to find the place to change, and may have to do some realloc()ing in order to make the char fit properly. O(N^2) yuckage. */ val = Qnil; string_result = (Ibyte *) MALLOC_OR_ALLOCA (total_length * MAX_ICHAR_LEN); string_result_ptr = string_result; break; default: val = Qnil; ABORT (); } } if (CONSP (val)) tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */ else toindex = 0; prev = Qnil; for (argnum = 0; argnum < nargs; argnum++) { Charcount thisleni = 0; Charcount thisindex = 0; Lisp_Object seq = args[argnum]; Ibyte *string_source_ptr = 0; Ibyte *string_prev_result_ptr = string_result_ptr; if (!CONSP (seq)) { #ifdef LOSING_BYTECODE thisleni = length_with_bytecode_hack (seq); #else thisleni = XINT (Flength (seq)); #endif } if (STRINGP (seq)) string_source_ptr = XSTRING_DATA (seq); while (1) { Lisp_Object elt; /* We've come to the end of this arg, so exit. */ if (NILP (seq)) break; /* Fetch next element of `seq' arg into `elt' */ if (CONSP (seq)) { elt = XCAR (seq); seq = XCDR (seq); } else { if (thisindex >= thisleni) break; if (STRINGP (seq)) { elt = make_char (itext_ichar (string_source_ptr)); INC_IBYTEPTR (string_source_ptr); } else if (VECTORP (seq)) elt = XVECTOR_DATA (seq)[thisindex]; else if (BIT_VECTORP (seq)) elt = make_int (bit_vector_bit (XBIT_VECTOR (seq), thisindex)); else elt = Felt (seq, make_int (thisindex)); thisindex++; } /* Store into result */ if (toindex < 0) { /* toindex negative means we are making a list */ XCAR (tail) = elt; prev = tail; tail = XCDR (tail); } else if (VECTORP (val)) XVECTOR_DATA (val)[toindex++] = elt; else if (BIT_VECTORP (val)) { CHECK_BIT (elt); set_bit_vector_bit (XBIT_VECTOR (val), toindex++, XINT (elt)); } else { CHECK_CHAR_COERCE_INT (elt); string_result_ptr += set_itext_ichar (string_result_ptr, XCHAR (elt)); } } if (args_mse) { args_mse[argnum].entry_offset = string_prev_result_ptr - string_result; args_mse[argnum].entry_length = string_result_ptr - string_prev_result_ptr; } } /* Now we finally make the string. */ if (target_type == c_string) { val = make_string (string_result, string_result_ptr - string_result); for (argnum = 0; argnum < nargs; argnum++) { if (STRINGP (args_mse[argnum].string)) copy_string_extents (val, args_mse[argnum].string, args_mse[argnum].entry_offset, 0, args_mse[argnum].entry_length); } } if (!NILP (prev)) XCDR (prev) = last_tail; unbind_to (sdep); RETURN_UNGCPRO (val); } DEFUN ("copy-alist", Fcopy_alist, 1, 1, 0, /* Return a copy of ALIST. This is an alist which represents the same mapping from objects to objects, but does not share the alist structure with ALIST. The objects mapped (cars and cdrs of elements of the alist) are shared, however. Elements of ALIST that are not conses are also shared. */ (alist)) { Lisp_Object tail; if (NILP (alist)) return alist; CHECK_CONS (alist); alist = concat (1, &alist, c_cons, 0); for (tail = alist; CONSP (tail); tail = XCDR (tail)) { Lisp_Object car = XCAR (tail); if (CONSP (car)) XCAR (tail) = Fcons (XCAR (car), XCDR (car)); } return alist; } DEFUN ("copy-tree", Fcopy_tree, 1, 2, 0, /* Return a copy of a list and substructures. The argument is copied, and any lists contained within it are copied recursively. Circularities and shared substructures are not preserved. Second arg VECP causes vectors to be copied, too. Strings and bit vectors are not copied. */ (arg, vecp)) { return safe_copy_tree (arg, vecp, 0); } Lisp_Object safe_copy_tree (Lisp_Object arg, Lisp_Object vecp, int depth) { if (depth + lisp_eval_depth > max_lisp_eval_depth) stack_overflow ("Stack overflow in copy-tree", arg); if (CONSP (arg)) { Lisp_Object rest; rest = arg = Fcopy_sequence (arg); while (CONSP (rest)) { Lisp_Object elt = XCAR (rest); QUIT; if (CONSP (elt) || VECTORP (elt)) XCAR (rest) = safe_copy_tree (elt, vecp, depth + 1); if (VECTORP (XCDR (rest))) /* hack for (a b . [c d]) */ XCDR (rest) = safe_copy_tree (XCDR (rest), vecp, depth +1); rest = XCDR (rest); } } else if (VECTORP (arg) && ! NILP (vecp)) { int i = XVECTOR_LENGTH (arg); int j; arg = Fcopy_sequence (arg); for (j = 0; j < i; j++) { Lisp_Object elt = XVECTOR_DATA (arg) [j]; QUIT; if (CONSP (elt) || VECTORP (elt)) XVECTOR_DATA (arg) [j] = safe_copy_tree (elt, vecp, depth + 1); } } return arg; } DEFUN ("subseq", Fsubseq, 2, 3, 0, /* Return the subsequence of SEQUENCE starting at START and ending before END. END may be omitted; then the subsequence runs to the end of SEQUENCE. If START or END is negative, it counts from the end, in contravention of Common Lisp. The returned subsequence is always of the same type as SEQUENCE. If SEQUENCE is a string, relevant parts of the string-extent-data are copied to the new string. See also `substring-no-properties', which only operates on strings, and does not copy extent data. */ (sequence, start, end)) { Elemcount len, ss, ee = EMACS_INT_MAX, ii; Lisp_Object result = Qnil; CHECK_SEQUENCE (sequence); CHECK_INT (start); ss = XINT (start); if (!NILP (end)) { CHECK_INT (end); ee = XINT (end); } if (STRINGP (sequence)) { Bytecount bstart, blen; get_string_range_char (sequence, start, end, &ss, &ee, GB_HISTORICAL_STRING_BEHAVIOR); bstart = string_index_char_to_byte (sequence, ss); blen = string_offset_char_to_byte_len (sequence, bstart, ee - ss); result = make_string (XSTRING_DATA (sequence) + bstart, blen); /* Copy any applicable extent information into the new string. */ copy_string_extents (result, sequence, 0, bstart, blen); } else if (CONSP (sequence)) { Lisp_Object result_tail, saved = sequence; if (ss < 0 || ee < 0) { len = XINT (Flength (sequence)); if (ss < 0) { ss = len + ss; start = make_integer (ss); } if (ee < 0) { ee = len + ee; end = make_integer (ee); } else { ee = min (ee, len); } } if (0 != ss) { sequence = Fnthcdr (make_int (ss), sequence); } ii = ss + 1; if (ss < ee && !NILP (sequence)) { result = result_tail = Fcons (Fcar (sequence), Qnil); sequence = Fcdr (sequence); { EXTERNAL_LIST_LOOP_2 (elt, sequence) { if (!(ii < ee)) { break; } XSETCDR (result_tail, Fcons (elt, Qnil)); result_tail = XCDR (result_tail); ii++; } } } if (NILP (result) || (ii < ee && !NILP (end))) { /* We were handed a cons, which definitely has elements. nil result means either ss >= ee or SEQUENCE was nil after the nthcdr; in both cases that means START and END were incorrectly specified for this sequence. ii < ee with a non-nil end means the user handed us a bogus end value. */ check_sequence_range (saved, start, end, Flength (saved)); } } else { len = XINT (Flength (sequence)); if (ss < 0) { ss = len + ss; start = make_integer (ss); } if (ee < 0) { ee = len + ee; end = make_integer (ee); } else { ee = min (len, ee); } check_sequence_range (sequence, start, end, make_int (len)); if (VECTORP (sequence)) { result = Fvector (ee - ss, XVECTOR_DATA (sequence) + ss); } else if (BIT_VECTORP (sequence)) { result = make_bit_vector (ee - ss, Qzero); for (ii = ss; ii < ee; ii++) { set_bit_vector_bit (XBIT_VECTOR (result), ii - ss, bit_vector_bit (XBIT_VECTOR (sequence), ii)); } } else if (NILP (sequence)) { DO_NOTHING; } else { /* Won't happen, since CHECK_SEQUENCE didn't error. */ ABORT (); } } return result; } DEFUN ("substring-no-properties", Fsubstring_no_properties, 1, 3, 0, /* Return a substring of STRING, without copying the extents. END may be nil or omitted; then the substring runs to the end of STRING. If START or END is negative, it counts from the end. With one argument, copy STRING without its properties. */ (string, start, end)) { Charcount ccstart, ccend; Bytecount bstart, blen; Lisp_Object val; CHECK_STRING (string); get_string_range_char (string, start, end, &ccstart, &ccend, GB_HISTORICAL_STRING_BEHAVIOR); bstart = string_index_char_to_byte (string, ccstart); blen = string_offset_char_to_byte_len (string, bstart, ccend - ccstart); val = make_string (XSTRING_DATA (string) + bstart, blen); return val; } /* Split STRING into a list of substrings. The substrings are the parts of original STRING separated by SEPCHAR. If UNESCAPE is non-zero, ESCAPECHAR specifies a character that will quote SEPCHAR, and cause it not to split STRING. A double ESCAPECHAR is necessary for ESCAPECHAR to appear once in a substring. */ static Lisp_Object split_string_by_ichar_1 (const Ibyte *string, Bytecount size, Ichar sepchar, int unescape, Ichar escapechar) { Lisp_Object result = Qnil; const Ibyte *end = string + size; if (unescape) { Ibyte unescape_buffer[64], *unescape_buffer_ptr = unescape_buffer, escaped[MAX_ICHAR_LEN], *unescape_cursor; Bytecount unescape_buffer_size = countof (unescape_buffer), escaped_len = set_itext_ichar (escaped, escapechar); Boolint deleting_escapes, previous_escaped; Ichar pchar; while (1) { const Ibyte *p = string, *cursor; deleting_escapes = 0; previous_escaped = 0; while (p < end) { pchar = itext_ichar (p); if (pchar == sepchar) { if (!previous_escaped) { break; } } else if (pchar == escapechar /* Doubled escapes don't escape: */ && !previous_escaped) { ++deleting_escapes; previous_escaped = 1; } else { previous_escaped = 0; } INC_IBYTEPTR (p); } if (deleting_escapes) { if (((p - string) - (escaped_len * deleting_escapes)) > unescape_buffer_size) { unescape_buffer_size = ((p - string) - (escaped_len * deleting_escapes)) * 1.5; unescape_buffer_ptr = alloca_ibytes (unescape_buffer_size); } cursor = string; unescape_cursor = unescape_buffer_ptr; previous_escaped = 0; while (cursor < p) { pchar = itext_ichar (cursor); if (pchar != escapechar || previous_escaped) { memcpy (unescape_cursor, cursor, itext_ichar_len (cursor)); INC_IBYTEPTR (unescape_cursor); } previous_escaped = !previous_escaped && (pchar == escapechar); INC_IBYTEPTR (cursor); } result = Fcons (make_string (unescape_buffer_ptr, unescape_cursor - unescape_buffer_ptr), result); } else { result = Fcons (make_string (string, p - string), result); } if (p < end) { string = p; INC_IBYTEPTR (string); /* skip sepchar */ } else break; } } else { while (1) { const Ibyte *p = string; while (p < end) { if (itext_ichar (p) == sepchar) break; INC_IBYTEPTR (p); } result = Fcons (make_string (string, p - string), result); if (p < end) { string = p; INC_IBYTEPTR (string); /* skip sepchar */ } else break; } } return Fnreverse (result); } /* The same as the above, except PATH is an external C string (it is converted using Qfile_name), and sepchar is hardcoded to SEPCHAR (':' or whatever). */ Lisp_Object split_external_path (const Extbyte *path) { Bytecount newlen; Ibyte *newpath; if (!path) return Qnil; TO_INTERNAL_FORMAT (C_STRING, path, ALLOCA, (newpath, newlen), Qfile_name); /* #### Does this make sense? It certainly does for split_env_path(), but it looks dubious here. Does any code depend on split_external_path("") returning nil instead of an empty string? */ if (!newlen) return Qnil; return split_string_by_ichar_1 (newpath, newlen, SEPCHAR, 0, 0); } Lisp_Object split_env_path (const CIbyte *evarname, const Ibyte *default_) { const Ibyte *path = 0; if (evarname) path = egetenv (evarname); if (!path) path = default_; if (!path) return Qnil; return split_string_by_ichar_1 (path, qxestrlen (path), SEPCHAR, 0, 0); } /* Ben thinks this function should not exist or be exported to Lisp. We use it to define split-path-string in subr.el (not!). */ DEFUN ("split-string-by-char", Fsplit_string_by_char, 2, 3, 0, /* Split STRING into a list of substrings originally separated by SEPCHAR. With optional ESCAPE-CHAR, any instances of SEPCHAR preceded by that character will not split the string, and a double instance of ESCAPE-CHAR will be necessary for a single ESCAPE-CHAR to appear in the output string. */ (string, sepchar, escape_char)) { Ichar escape_ichar = 0; CHECK_STRING (string); CHECK_CHAR (sepchar); if (!NILP (escape_char)) { CHECK_CHAR (escape_char); escape_ichar = XCHAR (escape_char); } return split_string_by_ichar_1 (XSTRING_DATA (string), XSTRING_LENGTH (string), XCHAR (sepchar), !NILP (escape_char), escape_ichar); } /* #### This was supposed to be in subr.el, but is used VERY early in the bootstrap process, so it goes here. Damn. */ DEFUN ("split-path", Fsplit_path, 1, 1, 0, /* Explode a search path into a list of strings. The path components are separated with the characters specified with `path-separator'. */ (path)) { CHECK_STRING (path); while (!STRINGP (Vpath_separator) || (string_char_length (Vpath_separator) != 1)) Vpath_separator = signal_continuable_error (Qinvalid_state, "`path-separator' should be set to a single-character string", Vpath_separator); return (split_string_by_ichar_1 (XSTRING_DATA (path), XSTRING_LENGTH (path), itext_ichar (XSTRING_DATA (Vpath_separator)), 0, 0)); } DEFUN ("nthcdr", Fnthcdr, 2, 2, 0, /* Take cdr N times on LIST, and return the result. */ (n, list)) { /* This function can GC */ REGISTER EMACS_INT i; REGISTER Lisp_Object tail = list; CHECK_NATNUM (n); for (i = BIGNUMP (n) ? 1 + EMACS_INT_MAX : XINT (n); i; i--) { if (CONSP (tail)) tail = XCDR (tail); else if (NILP (tail)) return Qnil; else { tail = wrong_type_argument (Qlistp, tail); i++; } } return tail; } DEFUN ("nth", Fnth, 2, 2, 0, /* Return the Nth element of LIST. N counts from zero. If LIST is not that long, nil is returned. */ (n, list)) { /* This function can GC */ return Fcar (Fnthcdr (n, list)); } DEFUN ("elt", Felt, 2, 2, 0, /* Return element of SEQUENCE at index N. */ (sequence, n)) { /* This function can GC */ retry: CHECK_INT_COERCE_CHAR (n); /* yuck! */ if (LISTP (sequence)) { Lisp_Object tem = Fnthcdr (n, sequence); /* #### Utterly, completely, fucking disgusting. * #### The whole point of "elt" is that it operates on * #### sequences, and does error- (bounds-) checking. */ if (CONSP (tem)) return XCAR (tem); else #if 1 /* This is The Way It Has Always Been. */ return Qnil; #else /* This is The Way Mly and Cltl2 say It Should Be. */ args_out_of_range (sequence, n); #endif } else if (STRINGP (sequence) || VECTORP (sequence) || BIT_VECTORP (sequence)) return Faref (sequence, n); #ifdef LOSING_BYTECODE else if (COMPILED_FUNCTIONP (sequence)) { EMACS_INT idx = XINT (n); if (idx < 0) { lose: args_out_of_range (sequence, n); } /* Utter perversity */ { Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (sequence); switch (idx) { case COMPILED_ARGLIST: return compiled_function_arglist (f); case COMPILED_INSTRUCTIONS: return compiled_function_instructions (f); case COMPILED_CONSTANTS: return compiled_function_constants (f); case COMPILED_STACK_DEPTH: return compiled_function_stack_depth (f); case COMPILED_DOC_STRING: return compiled_function_documentation (f); case COMPILED_DOMAIN: return compiled_function_domain (f); case COMPILED_INTERACTIVE: if (f->flags.interactivep) return compiled_function_interactive (f); /* if we return nil, can't tell interactive with no args from noninteractive. */ goto lose; default: goto lose; } } } #endif /* LOSING_BYTECODE */ else { check_losing_bytecode ("elt", sequence); sequence = wrong_type_argument (Qsequencep, sequence); goto retry; } } DEFUN ("last", Flast, 1, 2, 0, /* Return the tail of list LIST, of length N (default 1). LIST may be a dotted list, but not a circular list. Optional argument N must be a non-negative integer. If N is zero, then the atom that terminates the list is returned. If N is greater than the length of LIST, then LIST itself is returned. */ (list, n)) { EMACS_INT int_n, count; Lisp_Object retval, tortoise, hare; CHECK_LIST (list); if (NILP (n)) int_n = 1; else { CHECK_NATNUM (n); int_n = BIGNUMP (n) ? 1 + EMACS_INT_MAX : XINT (n); } for (retval = tortoise = hare = list, count = 0; CONSP (hare); hare = XCDR (hare), (int_n-- <= 0 ? ((void) (retval = XCDR (retval))) : (void)0), count++) { if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue; if (count & 1) tortoise = XCDR (tortoise); if (EQ (hare, tortoise)) signal_circular_list_error (list); } return retval; } DEFUN ("nbutlast", Fnbutlast, 1, 2, 0, /* Modify LIST to remove the last N (default 1) elements. If LIST has N or fewer elements, nil is returned and LIST is unmodified. Otherwise, LIST may be dotted, but not circular. */ (list, n)) { Elemcount int_n = 1; CHECK_LIST (list); if (!NILP (n)) { CHECK_NATNUM (n); int_n = BIGNUMP (n) ? 1 + EMACS_INT_MAX : XINT (n); } if (CONSP (list)) { Lisp_Object last_cons = list; EXTERNAL_LIST_LOOP_3 (elt, list, tail) { if (int_n-- < 0) { last_cons = XCDR (last_cons); } if (!CONSP (XCDR (tail))) { break; } } if (int_n >= 0) { return Qnil; } XCDR (last_cons) = Qnil; } return list; } DEFUN ("butlast", Fbutlast, 1, 2, 0, /* Return a copy of LIST with the last N (default 1) elements removed. If LIST has N or fewer elements, nil is returned. Otherwise, LIST may be dotted, but not circular, and `(butlast LIST 0)' converts a dotted into a true list. */ (list, n)) { Lisp_Object retval = Qnil, retval_tail = Qnil; Elemcount int_n = 1; CHECK_LIST (list); if (!NILP (n)) { CHECK_NATNUM (n); int_n = BIGNUMP (n) ? 1 + EMACS_INT_MAX : XINT (n); } if (CONSP (list)) { Lisp_Object tail = list; EXTERNAL_LIST_LOOP_3 (elt, list, list_tail) { if (--int_n < 0) { if (NILP (retval_tail)) { retval = retval_tail = Fcons (XCAR (tail), Qnil); } else { XSETCDR (retval_tail, Fcons (XCAR (tail), Qnil)); retval_tail = XCDR (retval_tail); } tail = XCDR (tail); } if (!CONSP (XCDR (list_tail))) { break; } } } return retval; } DEFUN ("member", Fmember, 2, 2, 0, /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'. The value is actually the tail of LIST whose car is ELT. */ (elt, list)) { EXTERNAL_LIST_LOOP_3 (list_elt, list, tail) { if (internal_equal (elt, list_elt, 0)) return tail; } return Qnil; } DEFUN ("old-member", Fold_member, 2, 2, 0, /* Return non-nil if ELT is an element of LIST. Comparison done with `old-equal'. The value is actually the tail of LIST whose car is ELT. This function is provided only for byte-code compatibility with v19. Do not use it. */ (elt, list)) { EXTERNAL_LIST_LOOP_3 (list_elt, list, tail) { if (internal_old_equal (elt, list_elt, 0)) return tail; } return Qnil; } DEFUN ("memq", Fmemq, 2, 2, 0, /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'. The value is actually the tail of LIST whose car is ELT. */ (elt, list)) { EXTERNAL_LIST_LOOP_3 (list_elt, list, tail) { if (EQ_WITH_EBOLA_NOTICE (elt, list_elt)) return tail; } return Qnil; } DEFUN ("old-memq", Fold_memq, 2, 2, 0, /* Return non-nil if ELT is an element of LIST. Comparison done with `old-eq'. The value is actually the tail of LIST whose car is ELT. This function is provided only for byte-code compatibility with v19. Do not use it. */ (elt, list)) { EXTERNAL_LIST_LOOP_3 (list_elt, list, tail) { if (HACKEQ_UNSAFE (elt, list_elt)) return tail; } return Qnil; } Lisp_Object memq_no_quit (Lisp_Object elt, Lisp_Object list) { LIST_LOOP_3 (list_elt, list, tail) { if (EQ_WITH_EBOLA_NOTICE (elt, list_elt)) return tail; } return Qnil; } /* Return the first index of ITEM in LIST. In CONS_OUT, return the cons cell before that containing the element. If the element is in the first cons cell, return Qnil in CONS_OUT. TEST, KEY, START, END are as in #'remove*; CHECK_TEST and TEST_NOT_UNBOUNDP should have been initialized with get_check_match_function() or get_check_test_function(). A non-zero REVERSE_TEST_ORDER means call TEST with the element from LIST as its first argument and ITEM as its second. Error if LIST is ill-formed, or circular. */ static Lisp_Object list_position_cons_before (Lisp_Object *cons_out, Lisp_Object item, Lisp_Object list, check_test_func_t check_test, Boolint test_not_unboundp, Lisp_Object test, Lisp_Object key, Boolint reverse_test_order, Lisp_Object start, Lisp_Object end) { struct gcpro gcpro1, gcpro2; Lisp_Object elt = Qnil, tail = list, tail_before = Qnil; Elemcount len, ii = 0, starting = XINT (start); Elemcount ending = NILP (end) ? EMACS_INT_MAX : XINT (end); GCPRO2 (elt, tail); if (check_test == check_eq_nokey) { /* TEST is #'eq, no need to call any C functions, and the test order won't be visible. */ EXTERNAL_LIST_LOOP_4_NO_DECLARE (elt, list, tail, len) { if (starting <= ii && ii < ending && EQ (item, elt) == test_not_unboundp) { *cons_out = tail_before; RETURN_UNGCPRO (make_integer (ii)); } else { if (ii >= ending) { break; } } ii++; tail_before = tail; } } else { EXTERNAL_LIST_LOOP_4_NO_DECLARE (elt, list, tail, len) { if (starting <= ii && ii < ending && (reverse_test_order ? check_test (test, key, elt, item) : check_test (test, key, item, elt)) == test_not_unboundp) { *cons_out = tail_before; RETURN_UNGCPRO (make_integer (ii)); } else { if (ii >= ending) { break; } } ii++; tail_before = tail; } } RETURN_UNGCPRO (Qnil); } DEFUN ("member*", FmemberX, 2, MANY, 0, /* Return the first sublist of LIST with car ITEM, or nil if no such sublist. The keyword :test specifies a two-argument function that is used to compare ITEM with elements in LIST; if omitted, it defaults to `eql'. The keyword :test-not is similar, but specifies a negated function. That is, ITEM is considered equal to an element in LIST if the given function returns nil. Common Lisp deprecates :test-not, and if both are specified, XEmacs signals an error. :key specifies a one-argument function that transforms elements of LIST into \"comparison keys\" before the test predicate is applied. For example, if :key is #'car, then ITEM is compared with the car of elements from LIST. The :key function, however, is not applied to ITEM, and does not affect the elements in the returned list, which are taken directly from the elements in LIST. arguments: (ITEM LIST &key (TEST #'eql) TEST-NOT (KEY #'identity)) */ (int nargs, Lisp_Object *args)) { Lisp_Object item = args[0], list = args[1], result = Qnil, position0; Boolint test_not_unboundp = 1; check_test_func_t check_test = NULL; PARSE_KEYWORDS (FmemberX, nargs, args, 5, (test, if_not, if_, test_not, key), NULL); check_test = get_check_test_function (item, &test, test_not, if_, if_not, key, &test_not_unboundp); position0 = list_position_cons_before (&result, item, list, check_test, test_not_unboundp, test, key, 0, Qzero, Qnil); return CONSP (result) ? XCDR (result) : ZEROP (position0) ? list : Qnil; } /* This macro might eventually find a better home than here. */ #define CHECK_KEY_ARGUMENT(key) \ do { \ if (NILP (key)) \ { \ key = Qidentity; \ } \ \ if (!EQ (key, Qidentity)) \ { \ key = indirect_function (key, 1); \ if (EQ (key, XSYMBOL_FUNCTION (Qidentity))) \ { \ key = Qidentity; \ } \ } \ } while (0) #define KEY(key, item) (EQ (Qidentity, key) ? item : \ IGNORE_MULTIPLE_VALUES (call1 (key, item))) DEFUN ("adjoin", Fadjoin, 2, MANY, 0, /* Return ITEM consed onto the front of LIST, if not already in LIST. Otherwise, return LIST unmodified. See `member*' for the meaning of the keywords. arguments: (ITEM LIST &key (TEST #'eql) (KEY #'identity) TEST-NOT) */ (int nargs, Lisp_Object *args)) { Lisp_Object item = args[0], list = args[1], keyed = Qnil, ignore = Qnil; struct gcpro gcpro1; Boolint test_not_unboundp = 1; check_test_func_t check_test = NULL; PARSE_KEYWORDS (Fadjoin, nargs, args, 3, (test, key, test_not), NULL); CHECK_KEY_ARGUMENT (key); keyed = KEY (key, item); GCPRO1 (keyed); check_test = get_check_test_function (keyed, &test, test_not, Qnil, Qnil, key, &test_not_unboundp); if (NILP (list_position_cons_before (&ignore, keyed, list, check_test, test_not_unboundp, test, key, 0, Qzero, Qnil))) { RETURN_UNGCPRO (Fcons (item, list)); } RETURN_UNGCPRO (list); } DEFUN ("assoc", Fassoc, 2, 2, 0, /* Return non-nil if KEY is `equal' to the car of an element of ALIST. The value is actually the element of ALIST whose car equals KEY. */ (key, alist)) { /* This function can GC. */ EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) { if (internal_equal (key, elt_car, 0)) return elt; } return Qnil; } DEFUN ("old-assoc", Fold_assoc, 2, 2, 0, /* Return non-nil if KEY is `old-equal' to the car of an element of ALIST. The value is actually the element of ALIST whose car equals KEY. */ (key, alist)) { /* This function can GC. */ EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) { if (internal_old_equal (key, elt_car, 0)) return elt; } return Qnil; } Lisp_Object assoc_no_quit (Lisp_Object key, Lisp_Object alist) { int speccount = specpdl_depth (); specbind (Qinhibit_quit, Qt); return unbind_to_1 (speccount, Fassoc (key, alist)); } DEFUN ("assq", Fassq, 2, 2, 0, /* Return non-nil if KEY is `eq' to the car of an element of ALIST. The value is actually the element of ALIST whose car is KEY. Elements of ALIST that are not conses are ignored. */ (key, alist)) { EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) { if (EQ_WITH_EBOLA_NOTICE (key, elt_car)) return elt; } return Qnil; } DEFUN ("old-assq", Fold_assq, 2, 2, 0, /* Return non-nil if KEY is `old-eq' to the car of an element of ALIST. The value is actually the element of ALIST whose car is KEY. Elements of ALIST that are not conses are ignored. This function is provided only for byte-code compatibility with v19. Do not use it. */ (key, alist)) { EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) { if (HACKEQ_UNSAFE (key, elt_car)) return elt; } return Qnil; } /* Like Fassq but never report an error and do not allow quits. Use only on lists known never to be circular. */ Lisp_Object assq_no_quit (Lisp_Object key, Lisp_Object alist) { /* This cannot GC. */ LIST_LOOP_2 (elt, alist) { Lisp_Object elt_car = XCAR (elt); if (EQ_WITH_EBOLA_NOTICE (key, elt_car)) return elt; } return Qnil; } DEFUN ("assoc*", FassocX, 2, MANY, 0, /* Find the first item whose car matches ITEM in ALIST. See `member*' for the meaning of :test, :test-not and :key. arguments: (ITEM ALIST &key (TEST #'eql) (KEY #'identity) TEST-NOT) */ (int nargs, Lisp_Object *args)) { Lisp_Object item = args[0], alist = args[1]; Boolint test_not_unboundp = 1; check_test_func_t check_test = NULL; PARSE_KEYWORDS (FassocX, nargs, args, 5, (test, if_, if_not, test_not, key), NULL); check_test = get_check_test_function (item, &test, test_not, if_, if_not, key, &test_not_unboundp); if (check_test == check_eq_nokey) { /* TEST is #'eq, no need to call any C functions. */ EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) { if (EQ (item, elt_car) == test_not_unboundp) { return elt; } } } else { Lisp_Object tailed = alist; struct gcpro gcpro1; GCPRO1 (tailed); { EXTERNAL_ALIST_LOOP_5 (elt, elt_car, elt_cdr, alist, tail) { tailed = tail; if (check_test (test, key, item, elt_car) == test_not_unboundp) { RETURN_UNGCPRO (elt); } } } UNGCPRO; } return Qnil; } DEFUN ("rassoc", Frassoc, 2, 2, 0, /* Return non-nil if VALUE is `equal' to the cdr of an element of ALIST. The value is actually the element of ALIST whose cdr equals VALUE. */ (value, alist)) { EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) { if (internal_equal (value, elt_cdr, 0)) return elt; } return Qnil; } DEFUN ("old-rassoc", Fold_rassoc, 2, 2, 0, /* Return non-nil if VALUE is `old-equal' to the cdr of an element of ALIST. The value is actually the element of ALIST whose cdr equals VALUE. */ (value, alist)) { EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) { if (internal_old_equal (value, elt_cdr, 0)) return elt; } return Qnil; } DEFUN ("rassq", Frassq, 2, 2, 0, /* Return non-nil if VALUE is `eq' to the cdr of an element of ALIST. The value is actually the element of ALIST whose cdr is VALUE. */ (value, alist)) { EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) { if (EQ_WITH_EBOLA_NOTICE (value, elt_cdr)) return elt; } return Qnil; } DEFUN ("old-rassq", Fold_rassq, 2, 2, 0, /* Return non-nil if VALUE is `old-eq' to the cdr of an element of ALIST. The value is actually the element of ALIST whose cdr is VALUE. */ (value, alist)) { EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) { if (HACKEQ_UNSAFE (value, elt_cdr)) return elt; } return Qnil; } /* Like Frassq, but caller must ensure that ALIST is properly nil-terminated and ebola-free. */ Lisp_Object rassq_no_quit (Lisp_Object value, Lisp_Object alist) { LIST_LOOP_2 (elt, alist) { Lisp_Object elt_cdr = XCDR (elt); if (EQ_WITH_EBOLA_NOTICE (value, elt_cdr)) return elt; } return Qnil; } DEFUN ("rassoc*", FrassocX, 2, MANY, 0, /* Find the first item whose cdr matches ITEM in ALIST. See `member*' for the meaning of :test, :test-not and :key. arguments: (ITEM ALIST &key (TEST #'eql) (KEY #'identity) TEST-NOT) */ (int nargs, Lisp_Object *args)) { Lisp_Object item = args[0], alist = args[1]; Boolint test_not_unboundp = 1; check_test_func_t check_test = NULL; PARSE_KEYWORDS (FrassocX, nargs, args, 5, (test, if_, if_not, test_not, key), NULL); check_test = get_check_test_function (item, &test, test_not, if_, if_not, key, &test_not_unboundp); if (check_test == check_eq_nokey) { /* TEST is #'eq, no need to call any C functions. */ EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) { if (EQ (item, elt_cdr) == test_not_unboundp) { return elt; } } } else { struct gcpro gcpro1; Lisp_Object tailed = alist; GCPRO1 (tailed); { EXTERNAL_ALIST_LOOP_5 (elt, elt_car, elt_cdr, alist, tail) { tailed = tail; if (check_test (test, key, item, elt_cdr) == test_not_unboundp) { RETURN_UNGCPRO (elt); } } } UNGCPRO; } return Qnil; } /* This is the implementation of both #'find and #'position. */ static Lisp_Object position (Lisp_Object *object_out, Lisp_Object item, Lisp_Object sequence, check_test_func_t check_test, Boolint test_not_unboundp, Lisp_Object test, Lisp_Object key, Lisp_Object start, Lisp_Object end, Lisp_Object from_end, Lisp_Object default_, Lisp_Object caller) { Lisp_Object result = Qnil; Elemcount starting = 0, ending = EMACS_INT_MAX, len, ii = 0; CHECK_SEQUENCE (sequence); CHECK_NATNUM (start); starting = INTP (start) ? XINT (start) : 1 + EMACS_INT_MAX; if (!NILP (end)) { CHECK_NATNUM (end); ending = INTP (end) ? XINT (end) : 1 + EMACS_INT_MAX; } *object_out = default_; if (CONSP (sequence)) { Lisp_Object elt, tail = Qnil; struct gcpro gcpro1; if (!(starting < ending)) { check_sequence_range (sequence, start, end, Flength (sequence)); /* starting could be equal to ending, in which case nil is what we want to return. */ return Qnil; } GCPRO1 (tail); { EXTERNAL_LIST_LOOP_4_NO_DECLARE (elt, sequence, tail, len) { if (starting <= ii && ii < ending && check_test (test, key, item, elt) == test_not_unboundp) { result = make_integer (ii); *object_out = elt; if (NILP (from_end)) { UNGCPRO; return result; } } else if (ii == ending) { break; } ii++; } } UNGCPRO; if (ii < starting || (ii < ending && !NILP (end))) { check_sequence_range (sequence, start, end, Flength (sequence)); } } else if (STRINGP (sequence)) { Ibyte *startp = XSTRING_DATA (sequence), *cursor = startp; Bytecount byte_len = XSTRING_LENGTH (sequence), cursor_offset = 0; Lisp_Object character = Qnil; while (cursor_offset < byte_len && ii < ending) { if (ii >= starting) { character = make_char (itext_ichar (cursor)); if (check_test (test, key, item, character) == test_not_unboundp) { result = make_integer (ii); *object_out = character; if (NILP (from_end)) { return result; } } startp = XSTRING_DATA (sequence); cursor = startp + cursor_offset; if (byte_len != XSTRING_LENGTH (sequence) || !valid_ibyteptr_p (cursor)) { mapping_interaction_error (caller, sequence); } } INC_IBYTEPTR (cursor); cursor_offset = cursor - startp; ii++; } if (ii < starting || (ii < ending && !NILP (end))) { check_sequence_range (sequence, start, end, Flength (sequence)); } } else { Lisp_Object object = Qnil; len = XINT (Flength (sequence)); check_sequence_range (sequence, start, end, make_int (len)); ending = min (ending, len); if (0 == len) { /* Catches the case where we have nil. */ return result; } if (NILP (from_end)) { for (ii = starting; ii < ending; ii++) { object = Faref (sequence, make_int (ii)); if (check_test (test, key, item, object) == test_not_unboundp) { result = make_integer (ii); *object_out = object; return result; } } } else { for (ii = ending - 1; ii >= starting; ii--) { object = Faref (sequence, make_int (ii)); if (check_test (test, key, item, object) == test_not_unboundp) { result = make_integer (ii); *object_out = object; return result; } } } } return result; } DEFUN ("position", Fposition, 2, MANY, 0, /* Return the index of the first occurrence of ITEM in SEQUENCE. Return nil if not found. See `remove*' for the meaning of the keywords. arguments: (ITEM SEQUENCE &key (TEST #'eql) (KEY #'identity) (START 0) (END (length SEQUENCE)) FROM-END TEST-NOT) */ (int nargs, Lisp_Object *args)) { Lisp_Object object = Qnil, item = args[0], sequence = args[1]; Boolint test_not_unboundp = 1; check_test_func_t check_test = NULL; PARSE_KEYWORDS (Fposition, nargs, args, 8, (test, if_, test_not, if_not, key, start, end, from_end), (start = Qzero)); check_test = get_check_test_function (item, &test, test_not, if_, if_not, key, &test_not_unboundp); return position (&object, item, sequence, check_test, test_not_unboundp, test, key, start, end, from_end, Qnil, Qposition); } DEFUN ("find", Ffind, 2, MANY, 0, /* Find the first occurrence of ITEM in SEQUENCE. Return the matching ITEM, or nil if not found. See `remove*' for the meaning of the keywords. The keyword :default, not specified by Common Lisp, designates an object to return instead of nil if ITEM is not found. arguments: (ITEM SEQUENCE &key (TEST #'eql) (KEY #'identity) (START 0) (END (length SEQUENCE)) DEFAULT FROM-END TEST-NOT) */ (int nargs, Lisp_Object *args)) { Lisp_Object object = Qnil, item = args[0], sequence = args[1]; Boolint test_not_unboundp = 1; check_test_func_t check_test = NULL; PARSE_KEYWORDS (Ffind, nargs, args, 9, (test, if_, test_not, if_not, key, start, end, from_end, default_), (start = Qzero)); check_test = get_check_test_function (item, &test, test_not, if_, if_not, key, &test_not_unboundp); position (&object, item, sequence, check_test, test_not_unboundp, test, key, start, end, from_end, default_, Qposition); return object; } DEFUN ("old-delete", Fold_delete, 2, 2, 0, /* Delete by side effect any occurrences of ELT as a member of LIST. The modified LIST is returned. Comparison is done with `old-equal'. If the first member of LIST is ELT, there is no way to remove it by side effect; therefore, write `(setq foo (old-delete element foo))' to be sure of changing the value of `foo'. */ (elt, list)) { EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list, (internal_old_equal (elt, list_elt, 0))); return list; } DEFUN ("old-delq", Fold_delq, 2, 2, 0, /* Delete by side effect any occurrences of ELT as a member of LIST. The modified LIST is returned. Comparison is done with `old-eq'. If the first member of LIST is ELT, there is no way to remove it by side effect; therefore, write `(setq foo (old-delq element foo))' to be sure of changing the value of `foo'. */ (elt, list)) { EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list, (HACKEQ_UNSAFE (elt, list_elt))); return list; } /* Like Fdelq, but caller must ensure that LIST is properly nil-terminated and ebola-free. */ Lisp_Object delq_no_quit (Lisp_Object elt, Lisp_Object list) { LIST_LOOP_DELETE_IF (list_elt, list, (EQ_WITH_EBOLA_NOTICE (elt, list_elt))); return list; } /* Be VERY careful with this. This is like delq_no_quit() but also calls free_cons() on the removed conses. You must be SURE that no pointers to the freed conses remain around (e.g. someone else is pointing to part of the list). This function is useful on internal lists that are used frequently and where the actual list doesn't escape beyond known code bounds. */ Lisp_Object delq_no_quit_and_free_cons (Lisp_Object elt, Lisp_Object list) { REGISTER Lisp_Object tail = list; REGISTER Lisp_Object prev = Qnil; while (!NILP (tail)) { REGISTER Lisp_Object tem = XCAR (tail); if (EQ (elt, tem)) { Lisp_Object cons_to_free = tail; if (NILP (prev)) list = XCDR (tail); else XCDR (prev) = XCDR (tail); tail = XCDR (tail); free_cons (cons_to_free); } else { prev = tail; tail = XCDR (tail); } } return list; } DEFUN ("delete*", FdeleteX, 2, MANY, 0, /* Remove all occurrences of ITEM in SEQUENCE, destructively. If SEQUENCE is a non-nil list, this modifies the list directly. A non-list SEQUENCE will not be destructively modified, rather, if ITEM occurs in it, a new SEQUENCE of the same type without ITEM will be returned. See `remove*' for a non-destructive alternative, and for explanation of the keyword arguments. arguments: (ITEM SEQUENCE &key (TEST #'eql) (KEY #'identity) (START 0) (END (length SEQUENCE)) FROM-END COUNT TEST-NOT) */ (int nargs, Lisp_Object *args)) { Lisp_Object item = args[0], sequence = args[1], tail = sequence; Elemcount starting = 0, ending = EMACS_INT_MAX, counting = EMACS_INT_MAX; Elemcount len, ii = 0, encountered = 0, presenting = 0; Boolint test_not_unboundp = 1; check_test_func_t check_test = NULL; struct gcpro gcpro1; PARSE_KEYWORDS (FdeleteX, nargs, args, 9, (test, if_not, if_, test_not, key, start, end, from_end, count), (start = Qzero, count = Qunbound)); CHECK_SEQUENCE (sequence); CHECK_NATNUM (start); starting = BIGNUMP (start) ? 1 + EMACS_INT_MAX : XINT (start); if (!NILP (end)) { CHECK_NATNUM (end); ending = BIGNUMP (end) ? 1 + EMACS_INT_MAX : XINT (end); } if (!UNBOUNDP (count)) { if (!NILP (count)) { CHECK_INTEGER (count); if (INTP (count)) { counting = XINT (count); } #ifdef HAVE_BIGNUM else { counting = bignum_sign (XBIGNUM_DATA (count)) > 0 ? 1 + EMACS_INT_MAX : EMACS_INT_MIN - 1; } #endif if (counting < 1) { return sequence; } } } check_test = get_check_test_function (item, &test, test_not, if_, if_not, key, &test_not_unboundp); if (CONSP (sequence)) { Lisp_Object prev_tail_list_elt = Qnil, list_elt = Qnil; Elemcount list_len = 0, deleted = 0; if (!NILP (count) && !NILP (from_end)) { /* Both COUNT and FROM-END were specified; we need to traverse the list twice. */ Lisp_Object present = count_with_tail (&list_elt, nargs, args, QdeleteX); if (ZEROP (present)) { return sequence; } presenting = XINT (present); /* If there are fewer items in the list than we have permission to delete, we don't need to differentiate between the :from-end nil and :from-end t cases. Otherwise, presenting is the number of matching items we need to ignore before we start to delete. */ presenting = presenting <= counting ? 0 : presenting - counting; } GCPRO1 (tail); ii = -1; { EXTERNAL_LIST_LOOP_4_NO_DECLARE (list_elt, sequence, tail, list_len) { ii++; if (starting <= ii && ii < ending && (check_test (test, key, item, list_elt) == test_not_unboundp) && (presenting ? encountered++ >= presenting : encountered++ < counting)) { if (NILP (prev_tail_list_elt)) { sequence = XCDR (tail); } else { XSETCDR (prev_tail_list_elt, XCDR (tail)); } /* Keep tortoise from ever passing hare. */ list_len = 0; deleted++; } else { prev_tail_list_elt = tail; if (ii >= ending || (!presenting && encountered > counting)) { break; } } } } UNGCPRO; if ((ii < starting || (ii < ending && !NILP (end))) && !(presenting ? encountered == presenting : encountered == counting)) { check_sequence_range (args[1], start, end, make_int (deleted + XINT (Flength (args[1])))); } return sequence; } else if (STRINGP (sequence)) { Ibyte *staging = alloca_ibytes (XSTRING_LENGTH (sequence)); Ibyte *staging_cursor = staging, *startp = XSTRING_DATA (sequence); Ibyte *cursor = startp; Bytecount cursor_offset = 0, byte_len = XSTRING_LENGTH (sequence); Lisp_Object character, result = sequence; if (!NILP (count) && !NILP (from_end)) { Lisp_Object present = count_with_tail (&character, nargs, args, QdeleteX); if (ZEROP (present)) { return sequence; } presenting = XINT (present); /* If there are fewer items in the list than we have permission to delete, we don't need to differentiate between the :from-end nil and :from-end t cases. Otherwise, presenting is the number of matching items we need to ignore before we start to delete. */ presenting = presenting <= counting ? 0 : presenting - counting; } ii = 0; while (cursor_offset < byte_len) { if (ii >= starting && ii < ending) { character = make_char (itext_ichar (cursor)); if ((check_test (test, key, item, character) == test_not_unboundp) && (presenting ? encountered++ >= presenting : encountered++ < counting)) { DO_NOTHING; } else { staging_cursor += set_itext_ichar (staging_cursor, XCHAR (character)); } startp = XSTRING_DATA (sequence); cursor = startp + cursor_offset; if (byte_len != XSTRING_LENGTH (sequence) || !valid_ibyteptr_p (cursor)) { mapping_interaction_error (QdeleteX, sequence); } } else { staging_cursor += itext_copy_ichar (cursor, staging_cursor); } INC_IBYTEPTR (cursor); cursor_offset = cursor - startp; ii++; } if (ii < starting || (ii < ending && !NILP (end))) { check_sequence_range (sequence, start, end, Flength (sequence)); } if (0 != encountered) { result = make_string (staging, staging_cursor - staging); copy_string_extents (result, sequence, 0, 0, staging_cursor - staging); sequence = result; } return sequence; } else { Lisp_Object position0 = Qnil, object = Qnil; Lisp_Object *staging = NULL, *staging_cursor, *staging_limit; Elemcount positioning; len = XINT (Flength (sequence)); check_sequence_range (sequence, start, end, make_int (len)); position0 = position (&object, item, sequence, check_test, test_not_unboundp, test, key, start, end, from_end, Qnil, QdeleteX); if (NILP (position0)) { return sequence; } ending = min (ending, len); positioning = XINT (position0); encountered = 1; if (NILP (from_end)) { staging = alloca_array (Lisp_Object, len - 1); staging_cursor = staging; ii = 0; while (ii < positioning) { *staging_cursor++ = Faref (sequence, make_int (ii)); ii++; } ii = positioning + 1; while (ii < ending) { object = Faref (sequence, make_int (ii)); if (encountered < counting && (check_test (test, key, item, object) == test_not_unboundp)) { encountered++; } else { *staging_cursor++ = object; } ii++; } while (ii < len) { *staging_cursor++ = Faref (sequence, make_int (ii)); ii++; } } else { staging = alloca_array (Lisp_Object, len - 1); staging_cursor = staging_limit = staging + len - 1; ii = len - 1; while (ii > positioning) { *--staging_cursor = Faref (sequence, make_int (ii)); ii--; } ii = positioning - 1; while (ii >= starting) { object = Faref (sequence, make_int (ii)); if (encountered < counting && (check_test (test, key, item, object) == test_not_unboundp)) { encountered++; } else { *--staging_cursor = object; } ii--; } while (ii >= 0) { *--staging_cursor = Faref (sequence, make_int (ii)); ii--; } staging = staging_cursor; staging_cursor = staging_limit; } if (VECTORP (sequence)) { return Fvector (staging_cursor - staging, staging); } else if (BIT_VECTORP (sequence)) { return Fbit_vector (staging_cursor - staging, staging); } /* A nil sequence will have given us a nil #'position, above. */ ABORT (); return Qnil; } } DEFUN ("remove*", FremoveX, 2, MANY, 0, /* Remove all occurrences of ITEM in SEQUENCE, non-destructively. If SEQUENCE is a list, `remove*' makes a copy if that is necessary to avoid corrupting the original SEQUENCE. The keywords :test and :test-not specify two-argument test and negated-test predicates, respectively; :test defaults to `eql'. :key specifies a one-argument function that transforms elements of SEQUENCE into \"comparison keys\" before the test predicate is applied. See `member*' for more information on these keywords. :start and :end, if given, specify indices of a subsequence of SEQUENCE to be processed. Indices are 0-based and processing involves the subsequence starting at the index given by :start and ending just before the index given by :end. :count, if given, limits the number of items removed to the number specified. :from-end, if given, causes processing to proceed starting from the end instead of the beginning; in this case, this matters only if :count is given. arguments: (ITEM SEQUENCE &key (TEST #'eql) (KEY #'identity) (START 0) (END (length SEQUENCE)) FROM-END COUNT TEST-NOT) */ (int nargs, Lisp_Object *args)) { Lisp_Object item = args[0], sequence = args[1], matched_count = Qnil, tail = Qnil; Elemcount starting = 0, ending = EMACS_INT_MAX, counting = EMACS_INT_MAX; Elemcount len, ii = 0, encountered = 0, presenting = 0; Boolint test_not_unboundp = 1; check_test_func_t check_test = NULL; struct gcpro gcpro1; PARSE_KEYWORDS (FremoveX, nargs, args, 9, (test, if_not, if_, test_not, key, start, end, from_end, count), (start = Qzero)); if (!CONSP (sequence)) { return FdeleteX (nargs, args); } CHECK_NATNUM (start); starting = BIGNUMP (start) ? 1 + EMACS_INT_MAX : XINT (start); if (!NILP (end)) { CHECK_NATNUM (end); ending = BIGNUMP (end) ? 1 + EMACS_INT_MAX : XINT (end); } if (!NILP (count)) { CHECK_INTEGER (count); if (INTP (count)) { counting = XINT (count); } #ifdef HAVE_BIGNUM else { counting = bignum_sign (XBIGNUM_DATA (count)) > 0 ? 1 + EMACS_INT_MAX : -1 + EMACS_INT_MIN; } #endif if (counting <= 0) { return sequence; } } check_test = get_check_test_function (item, &test, test_not, if_, if_not, key, &test_not_unboundp); matched_count = count_with_tail (&tail, nargs, args, QremoveX); if (!ZEROP (matched_count)) { Lisp_Object elt, tailing = Qnil, result = Qnil, result_tail = Qnil; GCPRO1 (tailing); if (!NILP (count) && !NILP (from_end)) { presenting = XINT (matched_count); /* If there are fewer matching elements in the list than we have permission to delete, we don't need to differentiate between the :from-end nil and :from-end t cases. Otherwise, presenting is the number of matching items we need to ignore before we start to delete. */ presenting = presenting <= counting ? 0 : presenting - counting; } { EXTERNAL_LIST_LOOP_4_NO_DECLARE (elt, sequence, tailing, len) { if (EQ (tail, tailing)) { if (NILP (result)) { RETURN_UNGCPRO (XCDR (tail)); } XSETCDR (result_tail, XCDR (tail)); RETURN_UNGCPRO (result); } else if (starting <= ii && ii < ending && (check_test (test, key, item, elt) == test_not_unboundp) && (presenting ? encountered++ >= presenting : encountered++ < counting)) { DO_NOTHING; } else if (NILP (result)) { result = result_tail = Fcons (elt, Qnil); } else { XSETCDR (result_tail, Fcons (elt, Qnil)); result_tail = XCDR (result_tail); } if (ii == ending) { break; } ii++; } } UNGCPRO; if (ii < starting || (ii < ending && !NILP (end))) { check_sequence_range (args[0], start, end, Flength (args[0])); } return result; } return sequence; } DEFUN ("remassoc", Fremassoc, 2, 2, 0, /* Delete by side effect any elements of ALIST whose car is `equal' to KEY. The modified ALIST is returned. If the first member of ALIST has a car that is `equal' to KEY, there is no way to remove it by side effect; therefore, write `(setq foo (remassoc key foo))' to be sure of changing the value of `foo'. */ (key, alist)) { EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist, (CONSP (elt) && internal_equal (key, XCAR (elt), 0))); return alist; } Lisp_Object remassoc_no_quit (Lisp_Object key, Lisp_Object alist) { int speccount = specpdl_depth (); specbind (Qinhibit_quit, Qt); return unbind_to_1 (speccount, Fremassoc (key, alist)); } DEFUN ("remassq", Fremassq, 2, 2, 0, /* Delete by side effect any elements of ALIST whose car is `eq' to KEY. The modified ALIST is returned. If the first member of ALIST has a car that is `eq' to KEY, there is no way to remove it by side effect; therefore, write `(setq foo (remassq key foo))' to be sure of changing the value of `foo'. */ (key, alist)) { EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist, (CONSP (elt) && EQ_WITH_EBOLA_NOTICE (key, XCAR (elt)))); return alist; } /* no quit, no errors; be careful */ Lisp_Object remassq_no_quit (Lisp_Object key, Lisp_Object alist) { LIST_LOOP_DELETE_IF (elt, alist, (CONSP (elt) && EQ_WITH_EBOLA_NOTICE (key, XCAR (elt)))); return alist; } DEFUN ("remrassoc", Fremrassoc, 2, 2, 0, /* Delete by side effect any elements of ALIST whose cdr is `equal' to VALUE. The modified ALIST is returned. If the first member of ALIST has a car that is `equal' to VALUE, there is no way to remove it by side effect; therefore, write `(setq foo (remrassoc value foo))' to be sure of changing the value of `foo'. */ (value, alist)) { EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist, (CONSP (elt) && internal_equal (value, XCDR (elt), 0))); return alist; } DEFUN ("remrassq", Fremrassq, 2, 2, 0, /* Delete by side effect any elements of ALIST whose cdr is `eq' to VALUE. The modified ALIST is returned. If the first member of ALIST has a car that is `eq' to VALUE, there is no way to remove it by side effect; therefore, write `(setq foo (remrassq value foo))' to be sure of changing the value of `foo'. */ (value, alist)) { EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist, (CONSP (elt) && EQ_WITH_EBOLA_NOTICE (value, XCDR (elt)))); return alist; } /* Like Fremrassq, fast and unsafe; be careful */ Lisp_Object remrassq_no_quit (Lisp_Object value, Lisp_Object alist) { LIST_LOOP_DELETE_IF (elt, alist, (CONSP (elt) && EQ_WITH_EBOLA_NOTICE (value, XCDR (elt)))); return alist; } /* Remove duplicate elements between START and END from LIST, a non-nil list; if COPY is zero, do so destructively. Items to delete are selected according to the algorithm used when :from-end t is passed to #'delete-duplicates. Error if LIST is ill-formed or circular. TEST and KEY are as in #'remove*; CHECK_TEST and TEST_NOT_UNBOUNDP should reflect them, having been initialised with get_check_match_function() or get_check_test_function(). */ static Lisp_Object list_delete_duplicates_from_end (Lisp_Object list, check_test_func_t check_test, Boolint test_not_unboundp, Lisp_Object test, Lisp_Object key, Lisp_Object start, Lisp_Object end, Boolint copy) { Lisp_Object checking = Qnil, elt, tail, result = list; Lisp_Object keyed, positioned, position_cons = Qnil, result_tail; Elemcount len = XINT (Flength (list)), pos, starting = XINT (start); Elemcount ending = (NILP (end) ? len : XINT (end)), greatest_pos_seen = -1; Elemcount ii = 0; struct gcpro gcpro1, gcpro2; /* We can't delete (or remove) as we go, because that breaks START and END. We could if END were nil, and that would change an ON(N + 2) algorithm to an ON^2 algorithm; list_position_cons_before() would need to be modified to return the cons *before* the one containing the item for that. Here and now it doesn't matter, though, #'delete-duplicates is relatively expensive no matter what. */ struct Lisp_Bit_Vector *deleting = (Lisp_Bit_Vector *) ALLOCA (sizeof (struct Lisp_Bit_Vector) + (sizeof (long) * (BIT_VECTOR_LONG_STORAGE (len) - 1))); check_sequence_range (list, start, end, make_integer (len)); deleting->size = len; memset (&(deleting->bits), 0, sizeof (long) * BIT_VECTOR_LONG_STORAGE (len)); GCPRO2 (tail, keyed); { EXTERNAL_LIST_LOOP_4_NO_DECLARE (elt, list, tail, len) { if (!(starting <= ii && ii <= ending) || bit_vector_bit (deleting, ii)) { ii++; continue; } keyed = KEY (key, elt); checking = XCDR (tail); pos = ii + 1; while (!NILP ((positioned = list_position_cons_before (&position_cons, keyed, checking, check_test, test_not_unboundp, test, key, 0, make_int (max (starting - pos, 0)), make_int (ending - pos))))) { pos = XINT (positioned) + pos; set_bit_vector_bit (deleting, pos, 1); greatest_pos_seen = max (greatest_pos_seen, pos); checking = NILP (position_cons) ? XCDR (checking) : XCDR (XCDR (position_cons)); pos += 1; } ii++; } } UNGCPRO; ii = 0; if (greatest_pos_seen > -1) { if (copy) { result = result_tail = Fcons (XCAR (list), Qnil); list = XCDR (list); ii = 1; { EXTERNAL_LIST_LOOP_4_NO_DECLARE (elt, list, tail, len) { if (ii == greatest_pos_seen) { XSETCDR (result_tail, XCDR (tail)); break; } else if (!bit_vector_bit (deleting, ii)) { XSETCDR (result_tail, Fcons (elt, Qnil)); result_tail = XCDR (result_tail); } ii++; } } } else { EXTERNAL_LIST_LOOP_DELETE_IF (elt0, list, bit_vector_bit (deleting, ii++)); } } return result; } DEFUN ("delete-duplicates", Fdelete_duplicates, 1, MANY, 0, /* Remove all duplicate elements from SEQUENCE, destructively. If SEQUENCE is a list and has duplicates, modify and return it. Note that SEQUENCE may start with an element to be deleted; because of this, if modifying a variable, be sure to write `(setq VARIABLE (delete-duplicates VARIABLE))' to be certain to have a list without duplicate elements. If SEQUENCE is an array and has duplicates, return a newly-allocated array of the same type comprising all unique elements of SEQUENCE. If there are no duplicate elements in SEQUENCE, return it unmodified. See `remove*' for the meaning of the keywords. See `remove-duplicates' for a non-destructive version of this function. arguments: (SEQUENCE &key (TEST #'eql) (KEY #'identity) (START 0) END FROM-END TEST-NOT) */ (int nargs, Lisp_Object *args)) { Lisp_Object sequence = args[0], tail = sequence, keyed = Qnil, elt = Qnil; Lisp_Object elt0 = Qnil, positioned = Qnil, ignore = Qnil; Elemcount starting = 0, ending = EMACS_INT_MAX, len, ii = 0, jj = 0; Boolint test_not_unboundp = 1; check_test_func_t check_test = NULL; struct gcpro gcpro1, gcpro2; PARSE_KEYWORDS (Fdelete_duplicates, nargs, args, 6, (test, key, test_not, start, end, from_end), (start = Qzero)); CHECK_SEQUENCE (sequence); CHECK_NATNUM (start); starting = BIGNUMP (start) ? 1 + EMACS_INT_MAX : XINT (start); if (!NILP (end)) { CHECK_NATNUM (end); ending = BIGNUMP (end) ? 1 + EMACS_INT_MAX : XINT (end); } CHECK_KEY_ARGUMENT (key); get_check_match_function (&test, test_not, Qnil, Qnil, key, &test_not_unboundp, &check_test); if (CONSP (sequence)) { if (NILP (from_end)) { Lisp_Object prev_tail = Qnil; Elemcount deleted = 0; GCPRO2 (tail, keyed); { EXTERNAL_LIST_LOOP_4_NO_DECLARE (elt, sequence, tail, len) { if (starting <= ii && ii < ending) { keyed = KEY (key, elt); positioned = list_position_cons_before (&ignore, keyed, XCDR (tail), check_test, test_not_unboundp, test, key, 0, make_int (max (starting - (ii + 1), 0)), make_int (ending - (ii + 1))); if (!NILP (positioned)) { sequence = XCDR (tail); deleted++; } else { break; } } else { break; } ii++; } } { EXTERNAL_LIST_LOOP_4_NO_DECLARE (elt0, sequence, tail, len) { if (!(starting <= ii && ii <= ending)) { prev_tail = tail; ii++; continue; } keyed = KEY (key, elt0); positioned = list_position_cons_before (&ignore, keyed, XCDR (tail), check_test, test_not_unboundp, test, key, 0, make_int (max (starting - (ii + 1), 0)), make_int (ending - (ii + 1))); if (!NILP (positioned)) { /* We know this isn't the first iteration of the loop, because we advanced above to the point where we have at least one non-duplicate entry at the head of the list. */ XSETCDR (prev_tail, XCDR (tail)); len = 0; deleted++; } else { prev_tail = tail; if (ii >= ending) { break; } } ii++; } } UNGCPRO; if ((ii < starting || (ii < ending && !NILP (end)))) { check_sequence_range (args[0], start, end, make_int (deleted + XINT (Flength (args[0])))); } } else { sequence = list_delete_duplicates_from_end (sequence, check_test, test_not_unboundp, test, key, start, end, 0); } } else if (STRINGP (sequence)) { if (EQ (Qidentity, key)) { /* We know all the elements will be characters; set check_test to reflect that. This isn't useful if KEY is not #'identity, since it may return non-characters for the elements. */ check_test = get_check_test_function (make_char ('a'), &test, test_not, Qnil, Qnil, key, &test_not_unboundp); } if (NILP (from_end)) { Bytecount byte_len = XSTRING_LENGTH (sequence), cursor_offset = 0; Ibyte *staging = alloca_ibytes (byte_len), *staging_cursor = staging; Ibyte *cursor = XSTRING_DATA (sequence), *startp = cursor; Elemcount deleted = 0; elt = Qnil; GCPRO1 (elt); while (cursor_offset < byte_len) { if (starting <= ii && ii < ending) { Ibyte *cursor0 = cursor; Bytecount cursor0_offset; Boolint delete_this = 0; elt = KEY (key, make_char (itext_ichar (cursor))); INC_IBYTEPTR (cursor0); cursor0_offset = cursor0 - startp; for (jj = ii + 1; jj < ending && cursor0_offset < byte_len; jj++) { if (check_test (test, key, elt, make_char (itext_ichar (cursor0))) == test_not_unboundp) { delete_this = 1; deleted++; break; } startp = XSTRING_DATA (sequence); cursor0 = startp + cursor0_offset; if (byte_len != XSTRING_LENGTH (sequence) || !valid_ibyteptr_p (cursor0)) { mapping_interaction_error (Qdelete_duplicates, sequence); } INC_IBYTEPTR (cursor0); cursor0_offset = cursor0 - startp; } startp = XSTRING_DATA (sequence); cursor = startp + cursor_offset; if (byte_len != XSTRING_LENGTH (sequence) || !valid_ibyteptr_p (cursor)) { mapping_interaction_error (Qdelete_duplicates, sequence); } if (!delete_this) { staging_cursor += itext_copy_ichar (cursor, staging_cursor); } } else { staging_cursor += itext_copy_ichar (cursor, staging_cursor); } INC_IBYTEPTR (cursor); cursor_offset = cursor - startp; ii++; } UNGCPRO; if (ii < starting || (ii < ending && !NILP (end))) { check_sequence_range (sequence, start, end, Flength (sequence)); } if (0 != deleted) { sequence = make_string (staging, staging_cursor - staging); } } else { Elemcount deleted = 0; Ibyte *staging = alloca_ibytes ((len = string_char_length (sequence)) * MAX_ICHAR_LEN); Ibyte *staging_cursor = staging, *startp = XSTRING_DATA (sequence); Ibyte *endp = startp + XSTRING_LENGTH (sequence); struct Lisp_Bit_Vector *deleting = (Lisp_Bit_Vector *) ALLOCA (sizeof (struct Lisp_Bit_Vector) + (sizeof (long) * (BIT_VECTOR_LONG_STORAGE (len) - 1))); check_sequence_range (sequence, start, end, make_integer (len)); /* For the from_end t case; transform contents to an array with elements addressable in constant time, use the same algorithm as for vectors. */ deleting->size = len; memset (&(deleting->bits), 0, sizeof (long) * BIT_VECTOR_LONG_STORAGE (len)); while (startp < endp) { itext_copy_ichar (startp, staging + (ii * MAX_ICHAR_LEN)); INC_IBYTEPTR (startp); ii++; } GCPRO1 (elt); ending = min (ending, len); for (ii = ending - 1; ii >= starting; ii--) { elt = KEY (key, make_char (itext_ichar (staging + (ii * MAX_ICHAR_LEN)))); for (jj = ii - 1; jj >= starting; jj--) { if (check_test (test, key, elt, make_char (itext_ichar (staging + (jj * MAX_ICHAR_LEN)))) == test_not_unboundp) { set_bit_vector_bit (deleting, ii, 1); deleted++; break; } } } UNGCPRO; if (0 != deleted) { startp = XSTRING_DATA (sequence); for (ii = 0; ii < len; ii++) { if (!bit_vector_bit (deleting, ii)) { staging_cursor += itext_copy_ichar (startp, staging_cursor); } INC_IBYTEPTR (startp); } sequence = make_string (staging, staging_cursor - staging); } } } else if (VECTORP (sequence)) { Elemcount deleted = 0; Lisp_Object *content = XVECTOR_DATA (sequence); struct Lisp_Bit_Vector *deleting; len = XVECTOR_LENGTH (sequence); check_sequence_range (sequence, start, end, make_integer (len)); deleting = (Lisp_Bit_Vector *) ALLOCA (sizeof (struct Lisp_Bit_Vector) + (sizeof (long) * (BIT_VECTOR_LONG_STORAGE (len) - 1))); deleting->size = len; memset (&(deleting->bits), 0, sizeof (long) * BIT_VECTOR_LONG_STORAGE (len)); GCPRO1 (elt); ending = min (ending, len); if (NILP (from_end)) { for (ii = starting; ii < ending; ii++) { elt = KEY (key, content[ii]); for (jj = ii + 1; jj < ending; jj++) { if (check_test (test, key, elt, content[jj]) == test_not_unboundp) { set_bit_vector_bit (deleting, ii, 1); deleted++; break; } } } } else { for (ii = ending - 1; ii >= starting; ii--) { elt = KEY (key, content[ii]); for (jj = ii - 1; jj >= starting; jj--) { if (check_test (test, key, elt, content[jj]) == test_not_unboundp) { set_bit_vector_bit (deleting, ii, 1); deleted++; break; } } } } UNGCPRO; if (deleted) { Lisp_Object res = make_vector (len - deleted, Qnil), *res_content = XVECTOR_DATA (res); for (ii = jj = 0; ii < len; ii++) { if (!bit_vector_bit (deleting, ii)) { res_content[jj++] = content[ii]; } } sequence = res; } } else if (BIT_VECTORP (sequence)) { Lisp_Bit_Vector *bv = XBIT_VECTOR (sequence); Elemcount deleted = 0; /* I'm a little irritated at this. Basically, the only reasonable thing delete-duplicates should do if handed a bit vector is return something of maximum length two and minimum length 0 (because that's the possible number of distinct elements if EQ is regarded as identity, which it should be). But to support arbitrary TEST and KEY arguments, which may be non-deterministic from our perspective, we need the same algorithm as for vectors. */ struct Lisp_Bit_Vector *deleting; len = bit_vector_length (bv); if (EQ (Qidentity, key)) { /* We know all the elements will be bits; set check_test to reflect that. This isn't useful if KEY is not #'identity, since it may return non-bits for the elements. */ check_test = get_check_test_function (Qzero, &test, test_not, Qnil, Qnil, key, &test_not_unboundp); } check_sequence_range (sequence, start, end, make_integer (len)); deleting = (Lisp_Bit_Vector *) ALLOCA (sizeof (struct Lisp_Bit_Vector) + (sizeof (long) * (BIT_VECTOR_LONG_STORAGE (len) - 1))); deleting->size = len; memset (&(deleting->bits), 0, sizeof (long) * BIT_VECTOR_LONG_STORAGE (len)); ending = min (ending, len); GCPRO1 (elt); if (NILP (from_end)) { for (ii = starting; ii < ending; ii++) { elt = KEY (key, make_int (bit_vector_bit (bv, ii))); for (jj = ii + 1; jj < ending; jj++) { if (check_test (test, key, elt, make_int (bit_vector_bit (bv, jj))) == test_not_unboundp) { set_bit_vector_bit (deleting, ii, 1); deleted++; break; } } } } else { for (ii = ending - 1; ii >= starting; ii--) { elt = KEY (key, make_int (bit_vector_bit (bv, ii))); for (jj = ii - 1; jj >= starting; jj--) { if (check_test (test, key, elt, make_int (bit_vector_bit (bv, jj))) == test_not_unboundp) { set_bit_vector_bit (deleting, ii, 1); deleted++; break; } } } } UNGCPRO; if (deleted) { Lisp_Object res = make_bit_vector (len - deleted, Qzero); Lisp_Bit_Vector *resbv = XBIT_VECTOR (res); for (ii = jj = 0; ii < len; ii++) { if (!bit_vector_bit (deleting, ii)) { set_bit_vector_bit (resbv, jj++, bit_vector_bit (bv, ii)); } } sequence = res; } } return sequence; } DEFUN ("remove-duplicates", Fremove_duplicates, 1, MANY, 0, /* Remove duplicate elements from SEQUENCE, non-destructively. If there are no duplicate elements in SEQUENCE, return it unmodified; otherwise, return a new object. If SEQUENCE is a list, the new object may share list structure with SEQUENCE. See `remove*' for the meaning of the keywords. arguments: (SEQUENCE &key (TEST #'eql) (KEY #'identity) (START 0) END FROM-END TEST-NOT) */ (int nargs, Lisp_Object *args)) { Lisp_Object sequence = args[0], tail = sequence, keyed, positioned = Qnil; Lisp_Object result = sequence, result_tail = result, cursor = Qnil; Lisp_Object cons_with_shared_tail = Qnil, elt, elt0; Elemcount starting = 0, ending = EMACS_INT_MAX, len, ii = 0; Boolint test_not_unboundp = 1; check_test_func_t check_test = NULL; struct gcpro gcpro1, gcpro2, gcpro3; PARSE_KEYWORDS (Fremove_duplicates, nargs, args, 6, (test, key, test_not, start, end, from_end), (start = Qzero)); CHECK_SEQUENCE (sequence); if (!CONSP (sequence)) { return Fdelete_duplicates (nargs, args); } CHECK_NATNUM (start); starting = BIGNUMP (start) ? 1 + EMACS_INT_MAX : XINT (start); if (!NILP (end)) { CHECK_NATNUM (end); ending = BIGNUMP (end) ? 1 + EMACS_INT_MAX : XINT (end); } if (NILP (key)) { key = Qidentity; } get_check_match_function (&test, test_not, Qnil, Qnil, key, &test_not_unboundp, &check_test); if (NILP (from_end)) { Lisp_Object ignore = Qnil; GCPRO3 (tail, keyed, result); { EXTERNAL_LIST_LOOP_4_NO_DECLARE (elt, sequence, tail, len) { if (starting <= ii && ii <= ending) { keyed = KEY (key, elt); positioned = list_position_cons_before (&ignore, keyed, XCDR (tail), check_test, test_not_unboundp, test, key, 0, make_int (max (starting - (ii + 1), 0)), make_int (ending - (ii + 1))); if (!NILP (positioned)) { sequence = result = result_tail = XCDR (tail); } else { break; } } else { break; } ii++; } } { EXTERNAL_LIST_LOOP_4_NO_DECLARE (elt0, sequence, tail, len) { if (!(starting <= ii && ii <= ending)) { ii++; continue; } /* For this algorithm, each time we encounter an object to be removed, copy the output list from the tail beyond the last removed cons to this one. Otherwise, the tail of the output list is shared with the input list, which is OK. */ keyed = KEY (key, elt0); positioned = list_position_cons_before (&ignore, keyed, XCDR (tail), check_test, test_not_unboundp, test, key, 0, make_int (max (starting - (ii + 1), 0)), make_int (ending - (ii + 1))); if (!NILP (positioned)) { if (EQ (result, sequence)) { result = cons_with_shared_tail = Fcons (XCAR (sequence), XCDR (sequence)); } result_tail = cons_with_shared_tail; cursor = XCDR (cons_with_shared_tail); while (!EQ (cursor, tail) && !NILP (cursor)) { XSETCDR (result_tail, Fcons (XCAR (cursor), Qnil)); result_tail = XCDR (result_tail); cursor = XCDR (cursor); } XSETCDR (result_tail, XCDR (tail)); cons_with_shared_tail = result_tail; } ii++; } } UNGCPRO; if ((ii < starting || (ii < ending && !NILP (end)))) { check_sequence_range (args[0], start, end, Flength (args[0])); } } else { result = list_delete_duplicates_from_end (sequence, check_test, test_not_unboundp, test, key, start, end, 1); } return result; } #undef KEY DEFUN ("nreverse", Fnreverse, 1, 1, 0, /* Reverse SEQUENCE, destructively. Return the beginning of the reversed sequence, which will be a distinct Lisp object if SEQUENCE is a list with length greater than one. See also `reverse', the non-destructive version of this function. */ (sequence)) { CHECK_SEQUENCE (sequence); if (CONSP (sequence)) { struct gcpro gcpro1, gcpro2; Lisp_Object prev = Qnil; Lisp_Object tail = sequence; /* We gcpro our args; see `nconc' */ GCPRO2 (prev, tail); while (!NILP (tail)) { REGISTER Lisp_Object next; CONCHECK_CONS (tail); next = XCDR (tail); XCDR (tail) = prev; prev = tail; tail = next; } UNGCPRO; return prev; } else if (VECTORP (sequence)) { Elemcount length = XVECTOR_LENGTH (sequence), ii = length; Elemcount half = length / 2; Lisp_Object swap = Qnil; CHECK_LISP_WRITEABLE (sequence); while (ii > half) { swap = XVECTOR_DATA (sequence) [length - ii]; XVECTOR_DATA (sequence) [length - ii] = XVECTOR_DATA (sequence) [ii - 1]; XVECTOR_DATA (sequence) [ii - 1] = swap; --ii; } } else if (STRINGP (sequence)) { Elemcount length = XSTRING_LENGTH (sequence); Ibyte *staging = alloca_ibytes (length), *staging_end = staging + length; Ibyte *cursor = XSTRING_DATA (sequence), *endp = cursor + length; CHECK_LISP_WRITEABLE (sequence); while (cursor < endp) { staging_end -= itext_ichar_len (cursor); itext_copy_ichar (cursor, staging_end); INC_IBYTEPTR (cursor); } assert (staging == staging_end); memcpy (XSTRING_DATA (sequence), staging, length); init_string_ascii_begin (sequence); bump_string_modiff (sequence); sledgehammer_check_ascii_begin (sequence); } else if (BIT_VECTORP (sequence)) { Lisp_Bit_Vector *bv = XBIT_VECTOR (sequence); Elemcount length = bit_vector_length (bv), ii = length; Elemcount half = length / 2; int swap = 0; CHECK_LISP_WRITEABLE (sequence); while (ii > half) { swap = bit_vector_bit (bv, length - ii); set_bit_vector_bit (bv, length - ii, bit_vector_bit (bv, ii - 1)); set_bit_vector_bit (bv, ii - 1, swap); --ii; } } else { assert (NILP (sequence)); } return sequence; } DEFUN ("reverse", Freverse, 1, 1, 0, /* Reverse SEQUENCE, copying. Return the reversed sequence. See also the function `nreverse', which is used more often. */ (sequence)) { Lisp_Object result = Qnil; CHECK_SEQUENCE (sequence); if (CONSP (sequence)) { EXTERNAL_LIST_LOOP_2 (elt, sequence) { result = Fcons (elt, result); } } else if (VECTORP (sequence)) { Elemcount length = XVECTOR_LENGTH (sequence), ii = length; Lisp_Object *staging = alloca_array (Lisp_Object, length); while (ii > 0) { staging[length - ii] = XVECTOR_DATA (sequence) [ii - 1]; --ii; } result = Fvector (length, staging); } else if (STRINGP (sequence)) { Elemcount length = XSTRING_LENGTH (sequence); Ibyte *staging = alloca_ibytes (length), *staging_end = staging + length; Ibyte *cursor = XSTRING_DATA (sequence), *endp = cursor + length; while (cursor < endp) { staging_end -= itext_ichar_len (cursor); itext_copy_ichar (cursor, staging_end); INC_IBYTEPTR (cursor); } assert (staging == staging_end); result = make_string (staging, length); } else if (BIT_VECTORP (sequence)) { Lisp_Bit_Vector *bv = XBIT_VECTOR (sequence), *res; Elemcount length = bit_vector_length (bv), ii = length; result = make_bit_vector (length, Qzero); res = XBIT_VECTOR (result); while (ii > 0) { set_bit_vector_bit (res, length - ii, bit_vector_bit (bv, ii - 1)); --ii; } } else { assert (NILP (sequence)); } return result; } Lisp_Object list_merge (Lisp_Object org_l1, Lisp_Object org_l2, check_test_func_t check_merge, Lisp_Object predicate, Lisp_Object key) { Lisp_Object value; Lisp_Object tail; Lisp_Object tem; Lisp_Object l1, l2; Lisp_Object tortoises[2]; struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5; int l1_count = 0, l2_count = 0; l1 = org_l1; l2 = org_l2; tail = Qnil; value = Qnil; tortoises[0] = org_l1; tortoises[1] = org_l2; /* It is sufficient to protect org_l1 and org_l2. When l1 and l2 are updated, we copy the new values back into the org_ vars. */ GCPRO5 (org_l1, org_l2, predicate, value, tortoises[0]); gcpro5.nvars = 2; while (1) { if (NILP (l1)) { UNGCPRO; if (NILP (tail)) return l2; Fsetcdr (tail, l2); return value; } if (NILP (l2)) { UNGCPRO; if (NILP (tail)) return l1; Fsetcdr (tail, l1); return value; } if (check_merge (predicate, key, Fcar (l2), Fcar (l1)) == 0) { tem = l1; l1 = Fcdr (l1); org_l1 = l1; if (l1_count++ > CIRCULAR_LIST_SUSPICION_LENGTH) { if (l1_count & 1) { if (!CONSP (tortoises[0])) { mapping_interaction_error (Qmerge, tortoises[0]); } tortoises[0] = XCDR (tortoises[0]); } if (EQ (org_l1, tortoises[0])) { signal_circular_list_error (org_l1); } } } else { tem = l2; l2 = Fcdr (l2); org_l2 = l2; if (l2_count++ > CIRCULAR_LIST_SUSPICION_LENGTH) { if (l2_count & 1) { if (!CONSP (tortoises[1])) { mapping_interaction_error (Qmerge, tortoises[1]); } tortoises[1] = XCDR (tortoises[1]); } if (EQ (org_l2, tortoises[1])) { signal_circular_list_error (org_l2); } } } if (NILP (tail)) value = tem; else Fsetcdr (tail, tem); tail = tem; } } static void array_merge (Lisp_Object *dest, Elemcount dest_len, Lisp_Object *front, Elemcount front_len, Lisp_Object *back, Elemcount back_len, check_test_func_t check_merge, Lisp_Object predicate, Lisp_Object key) { Elemcount ii, fronting, backing; Lisp_Object *front_staging = front; Lisp_Object *back_staging = back; struct gcpro gcpro1, gcpro2; assert (dest_len == (back_len + front_len)); if (0 == dest_len) { return; } if (front >= dest && front < (dest + dest_len)) { front_staging = alloca_array (Lisp_Object, front_len); for (ii = 0; ii < front_len; ++ii) { front_staging[ii] = front[ii]; } } if (back >= dest && back < (dest + dest_len)) { back_staging = alloca_array (Lisp_Object, back_len); for (ii = 0; ii < back_len; ++ii) { back_staging[ii] = back[ii]; } } GCPRO2 (front_staging[0], back_staging[0]); gcpro1.nvars = front_len; gcpro2.nvars = back_len; for (ii = fronting = backing = 0; ii < dest_len; ++ii) { if (fronting >= front_len) { while (ii < dest_len) { dest[ii] = back_staging[backing]; ++ii, ++backing; } UNGCPRO; return; } if (backing >= back_len) { while (ii < dest_len) { dest[ii] = front_staging[fronting]; ++ii, ++fronting; } UNGCPRO; return; } if (check_merge (predicate, key, back_staging[backing], front_staging[fronting]) == 0) { dest[ii] = front_staging[fronting]; ++fronting; } else { dest[ii] = back_staging[backing]; ++backing; } } UNGCPRO; } static Lisp_Object list_array_merge_into_list (Lisp_Object list, Lisp_Object *array, Elemcount array_len, check_test_func_t check_merge, Lisp_Object predicate, Lisp_Object key, Boolint reverse_order) { Lisp_Object tail = Qnil, value = Qnil, tortoise = list; struct gcpro gcpro1, gcpro2, gcpro3, gcpro4; Elemcount array_index = 0; int looped = 0; GCPRO4 (list, tail, value, tortoise); while (1) { if (NILP (list)) { UNGCPRO; if (NILP (tail)) { return Flist (array_len, array); } Fsetcdr (tail, Flist (array_len - array_index, array + array_index)); return value; } if (array_index >= array_len) { UNGCPRO; if (NILP (tail)) { return list; } Fsetcdr (tail, list); return value; } if (reverse_order ? check_merge (predicate, key, Fcar (list), array [array_index]) : !check_merge (predicate, key, array [array_index], Fcar (list))) { if (NILP (tail)) { value = tail = list; } else { Fsetcdr (tail, list); tail = XCDR (tail); } list = Fcdr (list); } else { if (NILP (tail)) { value = tail = Fcons (array [array_index], Qnil); } else { Fsetcdr (tail, Fcons (array [array_index], tail)); tail = XCDR (tail); } ++array_index; } if (++looped > CIRCULAR_LIST_SUSPICION_LENGTH) { if (looped & 1) { tortoise = XCDR (tortoise); } if (EQ (list, tortoise)) { signal_circular_list_error (list); } } } } static void list_list_merge_into_array (Lisp_Object *output, Elemcount output_len, Lisp_Object list_one, Lisp_Object list_two, check_test_func_t check_merge, Lisp_Object predicate, Lisp_Object key) { Elemcount output_index = 0; while (output_index < output_len) { if (NILP (list_one)) { while (output_index < output_len) { output [output_index] = Fcar (list_two); list_two = Fcdr (list_two), ++output_index; } return; } if (NILP (list_two)) { while (output_index < output_len) { output [output_index] = Fcar (list_one); list_one = Fcdr (list_one), ++output_index; } return; } if (check_merge (predicate, key, Fcar (list_two), Fcar (list_one)) == 0) { output [output_index] = XCAR (list_one); list_one = XCDR (list_one); } else { output [output_index] = XCAR (list_two); list_two = XCDR (list_two); } ++output_index; /* No need to check for circularity. */ } } static void list_array_merge_into_array (Lisp_Object *output, Elemcount output_len, Lisp_Object list, Lisp_Object *array, Elemcount array_len, check_test_func_t check_merge, Lisp_Object predicate, Lisp_Object key, Boolint reverse_order) { Elemcount output_index = 0, array_index = 0; while (output_index < output_len) { if (NILP (list)) { if (array_len - array_index != output_len - output_index) { mapping_interaction_error (Qmerge, list); } while (array_index < array_len) { output [output_index++] = array [array_index++]; } return; } if (array_index >= array_len) { while (output_index < output_len) { output [output_index++] = Fcar (list); list = Fcdr (list); } return; } if (reverse_order ? check_merge (predicate, key, Fcar (list), array [array_index]) : !check_merge (predicate, key, array [array_index], Fcar (list))) { output [output_index] = XCAR (list); list = XCDR (list); } else { output [output_index] = array [array_index]; ++array_index; } ++output_index; } } #define STRING_DATA_TO_OBJECT_ARRAY(strdata, c_array, counter, len) \ do { \ c_array = alloca_array (Lisp_Object, len); \ for (counter = 0; counter < len; ++counter) \ { \ c_array[counter] = make_char (itext_ichar (strdata)); \ INC_IBYTEPTR (strdata); \ } \ } while (0) #define BIT_VECTOR_TO_OBJECT_ARRAY(v, c_array, counter, len) do { \ c_array = alloca_array (Lisp_Object, len); \ for (counter = 0; counter < len; ++counter) \ { \ c_array[counter] = make_int (bit_vector_bit (v, counter)); \ } \ } while (0) DEFUN ("merge", Fmerge, 4, MANY, 0, /* Destructively merge SEQUENCE-ONE and SEQUENCE-TWO, producing a new sequence. TYPE is the type of sequence to return. PREDICATE is a `less-than' predicate on the elements. Optional keyword argument KEY is a function used to extract an object to be used for comparison from each element of SEQUENCE-ONE and SEQUENCE-TWO. arguments: (TYPE SEQUENCE-ONE SEQUENCE-TWO PREDICATE &key (KEY #'IDENTITY)) */ (int nargs, Lisp_Object *args)) { Lisp_Object type = args[0], sequence_one = args[1], sequence_two = args[2], predicate = args[3], result = Qnil; check_test_func_t check_merge = NULL; PARSE_KEYWORDS (Fmerge, nargs, args, 1, (key), NULL); CHECK_SEQUENCE (sequence_one); CHECK_SEQUENCE (sequence_two); CHECK_KEY_ARGUMENT (key); check_merge = get_merge_predicate (predicate, key); if (EQ (type, Qlist) && (LISTP (sequence_one) || LISTP (sequence_two))) { if (NILP (sequence_two)) { result = Fappend (2, args + 1); } else if (NILP (sequence_one)) { args[3] = Qnil; /* Overwriting PREDICATE, and losing its GC protection, but that doesn't matter. */ result = Fappend (2, args + 2); } else if (CONSP (sequence_one) && CONSP (sequence_two)) { result = list_merge (sequence_one, sequence_two, check_merge, predicate, key); } else { Lisp_Object *array_storage, swap; Elemcount array_length, i; Boolint reverse_order = 0; if (!CONSP (sequence_one)) { /* Make sequence_one the cons, sequence_two the array: */ swap = sequence_one; sequence_one = sequence_two; sequence_two = swap; reverse_order = 1; } if (VECTORP (sequence_two)) { array_storage = XVECTOR_DATA (sequence_two); array_length = XVECTOR_LENGTH (sequence_two); } else if (STRINGP (sequence_two)) { Ibyte *strdata = XSTRING_DATA (sequence_two); array_length = string_char_length (sequence_two); /* No need to GCPRO, characters are immediate. */ STRING_DATA_TO_OBJECT_ARRAY (strdata, array_storage, i, array_length); } else { Lisp_Bit_Vector *v = XBIT_VECTOR (sequence_two); array_length = bit_vector_length (v); /* No need to GCPRO, fixnums are immediate. */ BIT_VECTOR_TO_OBJECT_ARRAY (v, array_storage, i, array_length); } result = list_array_merge_into_list (sequence_one, array_storage, array_length, check_merge, predicate, key, reverse_order); } } else { Elemcount sequence_one_len = XINT (Flength (sequence_one)), sequence_two_len = XINT (Flength (sequence_two)), i; Elemcount output_len = 1 + sequence_one_len + sequence_two_len; Lisp_Object *output = alloca_array (Lisp_Object, output_len), *sequence_one_storage = NULL, *sequence_two_storage = NULL; Boolint do_coerce = !(EQ (type, Qvector) || EQ (type, Qstring) || EQ (type, Qbit_vector) || EQ (type, Qlist)); Ibyte *strdata = NULL; Lisp_Bit_Vector *v = NULL; struct gcpro gcpro1; output[0] = do_coerce ? Qlist : type; for (i = 1; i < output_len; ++i) { output[i] = Qnil; } GCPRO1 (output[0]); gcpro1.nvars = output_len; if (VECTORP (sequence_one)) { sequence_one_storage = XVECTOR_DATA (sequence_one); } else if (STRINGP (sequence_one)) { strdata = XSTRING_DATA (sequence_one); STRING_DATA_TO_OBJECT_ARRAY (strdata, sequence_one_storage, i, sequence_one_len); } else if (BIT_VECTORP (sequence_one)) { v = XBIT_VECTOR (sequence_one); BIT_VECTOR_TO_OBJECT_ARRAY (v, sequence_one_storage, i, sequence_one_len); } if (VECTORP (sequence_two)) { sequence_two_storage = XVECTOR_DATA (sequence_two); } else if (STRINGP (sequence_two)) { strdata = XSTRING_DATA (sequence_two); STRING_DATA_TO_OBJECT_ARRAY (strdata, sequence_two_storage, i, sequence_two_len); } else if (BIT_VECTORP (sequence_two)) { v = XBIT_VECTOR (sequence_two); BIT_VECTOR_TO_OBJECT_ARRAY (v, sequence_two_storage, i, sequence_two_len); } if (LISTP (sequence_one) && LISTP (sequence_two)) { list_list_merge_into_array (output + 1, output_len - 1, sequence_one, sequence_two, check_merge, predicate, key); } else if (LISTP (sequence_one)) { list_array_merge_into_array (output + 1, output_len - 1, sequence_one, sequence_two_storage, sequence_two_len, check_merge, predicate, key, 0); } else if (LISTP (sequence_two)) { list_array_merge_into_array (output + 1, output_len - 1, sequence_two, sequence_one_storage, sequence_one_len, check_merge, predicate, key, 1); } else { array_merge (output + 1, output_len - 1, sequence_one_storage, sequence_one_len, sequence_two_storage, sequence_two_len, check_merge, predicate, key); } result = Ffuncall (output_len, output); if (do_coerce) { result = call2 (Qcoerce, result, type); } UNGCPRO; } return result; } Lisp_Object list_sort (Lisp_Object list, check_test_func_t check_merge, Lisp_Object predicate, Lisp_Object key) { struct gcpro gcpro1, gcpro2, gcpro3, gcpro4; Lisp_Object back, tem; Lisp_Object front = list; Lisp_Object len = Flength (list); if (XINT (len) < 2) return list; len = make_int (XINT (len) / 2 - 1); tem = Fnthcdr (len, list); back = Fcdr (tem); Fsetcdr (tem, Qnil); GCPRO4 (front, back, predicate, key); front = list_sort (front, check_merge, predicate, key); back = list_sort (back, check_merge, predicate, key); RETURN_UNGCPRO (list_merge (front, back, check_merge, predicate, key)); } static void array_sort (Lisp_Object *array, Elemcount array_len, check_test_func_t check_merge, Lisp_Object predicate, Lisp_Object key) { Elemcount split; if (array_len < 2) return; split = array_len / 2; array_sort (array, split, check_merge, predicate, key); array_sort (array + split, array_len - split, check_merge, predicate, key); array_merge (array, array_len, array, split, array + split, array_len - split, check_merge, predicate, key); } DEFUN ("sort*", FsortX, 2, MANY, 0, /* Sort SEQUENCE, comparing elements using PREDICATE. Returns the sorted sequence. SEQUENCE is modified by side effect. PREDICATE is called with two elements of SEQUENCE, and should return t if the first element is `less' than the second. Optional keyword argument KEY is a function used to extract an object to be used for comparison from each element of SEQUENCE. In this implementation, sorting is always stable; but call `stable-sort' if this stability is important to you, other implementations may not make the same guarantees. arguments: (SEQUENCE PREDICATE &key (KEY #'IDENTITY)) */ (int nargs, Lisp_Object *args)) { Lisp_Object sequence = args[0], predicate = args[1]; Lisp_Object *sequence_carray; check_test_func_t check_merge = NULL; Elemcount sequence_len, i; PARSE_KEYWORDS (FsortX, nargs, args, 1, (key), NULL); CHECK_SEQUENCE (sequence); CHECK_KEY_ARGUMENT (key); check_merge = get_merge_predicate (predicate, key); if (LISTP (sequence)) { sequence = list_sort (sequence, check_merge, predicate, key); } else if (VECTORP (sequence)) { array_sort (XVECTOR_DATA (sequence), XVECTOR_LENGTH (sequence), check_merge, predicate, key); } else if (STRINGP (sequence)) { Ibyte *strdata = XSTRING_DATA (sequence); sequence_len = string_char_length (sequence); STRING_DATA_TO_OBJECT_ARRAY (strdata, sequence_carray, i, sequence_len); /* No GCPRO necessary, characters are immediate. */ array_sort (sequence_carray, sequence_len, check_merge, predicate, key); strdata = XSTRING_DATA (sequence); CHECK_LISP_WRITEABLE (sequence); for (i = 0; i < sequence_len; ++i) { strdata += set_itext_ichar (strdata, XCHAR (sequence_carray[i])); } init_string_ascii_begin (sequence); bump_string_modiff (sequence); sledgehammer_check_ascii_begin (sequence); } else if (BIT_VECTORP (sequence)) { Lisp_Bit_Vector *v = XBIT_VECTOR (sequence); sequence_len = bit_vector_length (v); BIT_VECTOR_TO_OBJECT_ARRAY (v, sequence_carray, i, sequence_len); /* No GCPRO necessary, bits are immediate. */ array_sort (sequence_carray, sequence_len, check_merge, predicate, key); for (i = 0; i < sequence_len; ++i) { set_bit_vector_bit (v, i, XINT (sequence_carray [i])); } } return sequence; } /************************************************************************/ /* property-list functions */ /************************************************************************/ /* For properties of text, we need to do order-insensitive comparison of plists. That is, we need to compare two plists such that they are the same if they have the same set of keys, and equivalent values. So (a 1 b 2) would be equal to (b 2 a 1). NIL_MEANS_NOT_PRESENT is as in `plists-eq' etc. LAXP means use `equal' for comparisons. */ int plists_differ (Lisp_Object a, Lisp_Object b, int nil_means_not_present, int laxp, int depth, int foldcase) { int eqp = (depth == -1); /* -1 as depth means use eq, not equal. */ int la, lb, m, i, fill; Lisp_Object *keys, *vals; Boolbyte *flags; Lisp_Object rest; if (NILP (a) && NILP (b)) return 0; Fcheck_valid_plist (a); Fcheck_valid_plist (b); la = XINT (Flength (a)); lb = XINT (Flength (b)); m = (la > lb ? la : lb); fill = 0; keys = alloca_array (Lisp_Object, m); vals = alloca_array (Lisp_Object, m); flags = alloca_array (Boolbyte, m); /* First extract the pairs from A. */ for (rest = a; !NILP (rest); rest = XCDR (XCDR (rest))) { Lisp_Object k = XCAR (rest); Lisp_Object v = XCAR (XCDR (rest)); /* Maybe be Ebolified. */ if (nil_means_not_present && NILP (v)) continue; keys [fill] = k; vals [fill] = v; flags[fill] = 0; fill++; } /* Now iterate over B, and stop if we find something that's not in A, or that doesn't match. As we match, mark them. */ for (rest = b; !NILP (rest); rest = XCDR (XCDR (rest))) { Lisp_Object k = XCAR (rest); Lisp_Object v = XCAR (XCDR (rest)); /* Maybe be Ebolified. */ if (nil_means_not_present && NILP (v)) continue; for (i = 0; i < fill; i++) { if (!laxp ? EQ (k, keys [i]) : internal_equal_0 (k, keys [i], depth, foldcase)) { if (eqp /* We narrowly escaped being Ebolified here. */ ? !EQ_WITH_EBOLA_NOTICE (v, vals [i]) : !internal_equal_0 (v, vals [i], depth, foldcase)) /* a property in B has a different value than in A */ goto MISMATCH; flags [i] = 1; break; } } if (i == fill) /* there are some properties in B that are not in A */ goto MISMATCH; } /* Now check to see that all the properties in A were also in B */ for (i = 0; i < fill; i++) if (flags [i] == 0) goto MISMATCH; /* Ok. */ return 0; MISMATCH: return 1; } DEFUN ("plists-eq", Fplists_eq, 2, 3, 0, /* Return non-nil if property lists A and B are `eq'. A property list is an alternating list of keywords and values. This function does order-insensitive comparisons of the property lists: For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal. Comparison between values is done using `eq'. See also `plists-equal'. If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with a nil value is ignored. This feature is a virus that has infected old Lisp implementations, but should not be used except for backward compatibility. */ (a, b, nil_means_not_present)) { return (plists_differ (a, b, !NILP (nil_means_not_present), 0, -1, 0) ? Qnil : Qt); } DEFUN ("plists-equal", Fplists_equal, 2, 3, 0, /* Return non-nil if property lists A and B are `equal'. A property list is an alternating list of keywords and values. This function does order-insensitive comparisons of the property lists: For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal. Comparison between values is done using `equal'. See also `plists-eq'. If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with a nil value is ignored. This feature is a virus that has infected old Lisp implementations, but should not be used except for backward compatibility. */ (a, b, nil_means_not_present)) { return (plists_differ (a, b, !NILP (nil_means_not_present), 0, 1, 0) ? Qnil : Qt); } DEFUN ("lax-plists-eq", Flax_plists_eq, 2, 3, 0, /* Return non-nil if lax property lists A and B are `eq'. A property list is an alternating list of keywords and values. This function does order-insensitive comparisons of the property lists: For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal. Comparison between values is done using `eq'. See also `plists-equal'. A lax property list is like a regular one except that comparisons between keywords is done using `equal' instead of `eq'. If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with a nil value is ignored. This feature is a virus that has infected old Lisp implementations, but should not be used except for backward compatibility. */ (a, b, nil_means_not_present)) { return (plists_differ (a, b, !NILP (nil_means_not_present), 1, -1, 0) ? Qnil : Qt); } DEFUN ("lax-plists-equal", Flax_plists_equal, 2, 3, 0, /* Return non-nil if lax property lists A and B are `equal'. A property list is an alternating list of keywords and values. This function does order-insensitive comparisons of the property lists: For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal. Comparison between values is done using `equal'. See also `plists-eq'. A lax property list is like a regular one except that comparisons between keywords is done using `equal' instead of `eq'. If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with a nil value is ignored. This feature is a virus that has infected old Lisp implementations, but should not be used except for backward compatibility. */ (a, b, nil_means_not_present)) { return (plists_differ (a, b, !NILP (nil_means_not_present), 1, 1, 0) ? Qnil : Qt); } /* Return the value associated with key PROPERTY in property list PLIST. Return nil if key not found. This function is used for internal property lists that cannot be directly manipulated by the user. */ Lisp_Object internal_plist_get (Lisp_Object plist, Lisp_Object property) { Lisp_Object tail; for (tail = plist; !NILP (tail); tail = XCDR (XCDR (tail))) { if (EQ (XCAR (tail), property)) return XCAR (XCDR (tail)); } return Qunbound; } /* Set PLIST's value for PROPERTY to VALUE. Analogous to internal_plist_get(). */ void internal_plist_put (Lisp_Object *plist, Lisp_Object property, Lisp_Object value) { Lisp_Object tail; for (tail = *plist; !NILP (tail); tail = XCDR (XCDR (tail))) { if (EQ (XCAR (tail), property)) { XCAR (XCDR (tail)) = value; return; } } *plist = Fcons (property, Fcons (value, *plist)); } int internal_remprop (Lisp_Object *plist, Lisp_Object property) { Lisp_Object tail, prev; for (tail = *plist, prev = Qnil; !NILP (tail); tail = XCDR (XCDR (tail))) { if (EQ (XCAR (tail), property)) { if (NILP (prev)) *plist = XCDR (XCDR (tail)); else XCDR (XCDR (prev)) = XCDR (XCDR (tail)); return 1; } else prev = tail; } return 0; } /* Called on a malformed property list. BADPLACE should be some place where truncating will form a good list -- i.e. we shouldn't result in a list with an odd length. */ static Lisp_Object bad_bad_bunny (Lisp_Object *plist, Lisp_Object *badplace, Error_Behavior errb) { if (ERRB_EQ (errb, ERROR_ME)) return Fsignal (Qmalformed_property_list, list2 (*plist, *badplace)); else { if (ERRB_EQ (errb, ERROR_ME_WARN)) { warn_when_safe_lispobj (Qlist, Qwarning, list2 (build_msg_string ("Malformed property list -- list has been truncated"), *plist)); /* #### WARNING: This is more dangerous than it seems; perhaps not a good idea. It also violates the principle of least surprise -- passing in ERROR_ME_WARN causes truncation, but ERROR_ME and ERROR_ME_NOT don't. */ *badplace = Qnil; } return Qunbound; } } /* Called on a circular property list. BADPLACE should be some place where truncating will result in an even-length list, as above. If doesn't particularly matter where we truncate -- anywhere we truncate along the entire list will break the circularity, because it will create a terminus and the list currently doesn't have one. */ static Lisp_Object bad_bad_turtle (Lisp_Object *plist, Lisp_Object *badplace, Error_Behavior errb) { if (ERRB_EQ (errb, ERROR_ME)) return Fsignal (Qcircular_property_list, list1 (*plist)); else { if (ERRB_EQ (errb, ERROR_ME_WARN)) { warn_when_safe_lispobj (Qlist, Qwarning, list2 (build_msg_string ("Circular property list -- list has been truncated"), *plist)); /* #### WARNING: This is more dangerous than it seems; perhaps not a good idea. It also violates the principle of least surprise -- passing in ERROR_ME_WARN causes truncation, but ERROR_ME and ERROR_ME_NOT don't. */ *badplace = Qnil; } return Qunbound; } } /* Advance the tortoise pointer by two (one iteration of a property-list loop) and the hare pointer by four and verify that no malformations or circularities exist. If so, return zero and store a value into RETVAL that should be returned by the calling function. Otherwise, return 1. See external_plist_get(). */ static int advance_plist_pointers (Lisp_Object *plist, Lisp_Object **tortoise, Lisp_Object **hare, Error_Behavior errb, Lisp_Object *retval) { int i; Lisp_Object *tortsave = *tortoise; /* Note that our "fixing" may be more brutal than necessary, but it's the user's own problem, not ours, if they went in and manually fucked up a plist. */ for (i = 0; i < 2; i++) { /* This is a standard iteration of a defensive-loop-checking loop. We just do it twice because we want to advance past both the property and its value. If the pointer indirection is confusing you, remember that one level of indirection on the hare and tortoise pointers is only due to pass-by-reference for this function. The other level is so that the plist can be fixed in place. */ /* When we reach the end of a well-formed plist, **HARE is nil. In that case, we don't do anything at all except advance TORTOISE by one. Otherwise, we advance HARE by two (making sure it's OK to do so), then advance TORTOISE by one (it will always be OK to do so because the HARE is always ahead of the TORTOISE and will have already verified the path), then make sure TORTOISE and HARE don't contain the same non-nil object -- if the TORTOISE and the HARE ever meet, then obviously we're in a circularity, and if we're in a circularity, then the TORTOISE and the HARE can't cross paths without meeting, since the HARE only gains one step over the TORTOISE per iteration. */ if (!NILP (**hare)) { Lisp_Object *haresave = *hare; if (!CONSP (**hare)) { *retval = bad_bad_bunny (plist, haresave, errb); return 0; } *hare = &XCDR (**hare); /* In a non-plist, we'd check here for a nil value for **HARE, which is OK (it just means the list has an odd number of elements). In a plist, it's not OK for the list to have an odd number of elements. */ if (!CONSP (**hare)) { *retval = bad_bad_bunny (plist, haresave, errb); return 0; } *hare = &XCDR (**hare); } *tortoise = &XCDR (**tortoise); if (!NILP (**hare) && EQ (**tortoise, **hare)) { *retval = bad_bad_turtle (plist, tortsave, errb); return 0; } } return 1; } /* Return the value of PROPERTY from PLIST, or Qunbound if property is not on the list. PLIST is a Lisp-accessible property list, meaning that it has to be checked for malformations and circularities. If ERRB is ERROR_ME, an error will be signalled. Otherwise, the function will never signal an error; and if ERRB is ERROR_ME_WARN, on finding a malformation or a circularity, it issues a warning and attempts to silently fix the problem. A pointer to PLIST is passed in so that PLIST can be successfully "fixed" even if the error is at the beginning of the plist. */ Lisp_Object external_plist_get (Lisp_Object *plist, Lisp_Object property, int laxp, Error_Behavior errb) { Lisp_Object *tortoise = plist; Lisp_Object *hare = plist; while (!NILP (*tortoise)) { Lisp_Object *tortsave = tortoise; Lisp_Object retval; /* We do the standard tortoise/hare march. We isolate the grungy stuff to do this in advance_plist_pointers(), though. To us, all this function does is advance the tortoise pointer by two and the hare pointer by four and make sure everything's OK. We first advance the pointers and then check if a property matched; this ensures that our check for a matching property is safe. */ if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval)) return retval; if (!laxp ? EQ (XCAR (*tortsave), property) : internal_equal (XCAR (*tortsave), property, 0)) return XCAR (XCDR (*tortsave)); } return Qunbound; } /* Set PLIST's value for PROPERTY to VALUE, given a possibly malformed or circular plist. Analogous to external_plist_get(). */ void external_plist_put (Lisp_Object *plist, Lisp_Object property, Lisp_Object value, int laxp, Error_Behavior errb) { Lisp_Object *tortoise = plist; Lisp_Object *hare = plist; while (!NILP (*tortoise)) { Lisp_Object *tortsave = tortoise; Lisp_Object retval; /* See above */ if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval)) return; if (!laxp ? EQ (XCAR (*tortsave), property) : internal_equal (XCAR (*tortsave), property, 0)) { XCAR (XCDR (*tortsave)) = value; return; } } *plist = Fcons (property, Fcons (value, *plist)); } int external_remprop (Lisp_Object *plist, Lisp_Object property, int laxp, Error_Behavior errb) { Lisp_Object *tortoise = plist; Lisp_Object *hare = plist; while (!NILP (*tortoise)) { Lisp_Object *tortsave = tortoise; Lisp_Object retval; /* See above */ if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval)) return 0; if (!laxp ? EQ (XCAR (*tortsave), property) : internal_equal (XCAR (*tortsave), property, 0)) { /* Now you see why it's so convenient to have that level of indirection. */ *tortsave = XCDR (XCDR (*tortsave)); return 1; } } return 0; } DEFUN ("plist-get", Fplist_get, 2, 3, 0, /* Extract a value from a property list. PLIST is a property list, which is a list of the form \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...). PROPERTY is usually a symbol. This function returns the value corresponding to the PROPERTY, or DEFAULT if PROPERTY is not one of the properties on the list. */ (plist, property, default_)) { Lisp_Object value = external_plist_get (&plist, property, 0, ERROR_ME); return UNBOUNDP (value) ? default_ : value; } DEFUN ("plist-put", Fplist_put, 3, 3, 0, /* Change value in PLIST of PROPERTY to VALUE. PLIST is a property list, which is a list of the form \(PROPERTY1 VALUE1 PROPERTY2 VALUE2 ...). PROPERTY is usually a symbol and VALUE is any object. If PROPERTY is already a property on the list, its value is set to VALUE, otherwise the new PROPERTY VALUE pair is added. The new plist is returned; use `(setq x (plist-put x property value))' to be sure to use the new value. PLIST is modified by side effect. */ (plist, property, value)) { external_plist_put (&plist, property, value, 0, ERROR_ME); return plist; } DEFUN ("plist-remprop", Fplist_remprop, 2, 2, 0, /* Remove from PLIST the property PROPERTY and its value. PLIST is a property list, which is a list of the form \(PROPERTY1 VALUE1 PROPERTY2 VALUE2 ...). PROPERTY is usually a symbol. The new plist is returned; use `(setq x (plist-remprop x property))' to be sure to use the new value. PLIST is modified by side effect. */ (plist, property)) { external_remprop (&plist, property, 0, ERROR_ME); return plist; } DEFUN ("plist-member", Fplist_member, 2, 2, 0, /* Return t if PROPERTY has a value specified in PLIST. */ (plist, property)) { Lisp_Object value = Fplist_get (plist, property, Qunbound); return UNBOUNDP (value) ? Qnil : Qt; } DEFUN ("check-valid-plist", Fcheck_valid_plist, 1, 1, 0, /* Given a plist, signal an error if there is anything wrong with it. This means that it's a malformed or circular plist. */ (plist)) { Lisp_Object *tortoise; Lisp_Object *hare; start_over: tortoise = &plist; hare = &plist; while (!NILP (*tortoise)) { Lisp_Object retval; /* See above */ if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME, &retval)) goto start_over; } return Qnil; } DEFUN ("valid-plist-p", Fvalid_plist_p, 1, 1, 0, /* Given a plist, return non-nil if its format is correct. If it returns nil, `check-valid-plist' will signal an error when given the plist; that means it's a malformed or circular plist. */ (plist)) { Lisp_Object *tortoise; Lisp_Object *hare; tortoise = &plist; hare = &plist; while (!NILP (*tortoise)) { Lisp_Object retval; /* See above */ if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME_NOT, &retval)) return Qnil; } return Qt; } DEFUN ("canonicalize-plist", Fcanonicalize_plist, 1, 2, 0, /* Destructively remove any duplicate entries from a plist. In such cases, the first entry applies. If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with a nil value is removed. This feature is a virus that has infected old Lisp implementations, but should not be used except for backward compatibility. The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the return value may not be EQ to the passed-in value, so make sure to `setq' the value back into where it came from. */ (plist, nil_means_not_present)) { Lisp_Object head = plist; Fcheck_valid_plist (plist); while (!NILP (plist)) { Lisp_Object prop = Fcar (plist); Lisp_Object next = Fcdr (plist); CHECK_CONS (next); /* just make doubly sure we catch any errors */ if (!NILP (nil_means_not_present) && NILP (Fcar (next))) { if (EQ (head, plist)) head = Fcdr (next); plist = Fcdr (next); continue; } /* external_remprop returns 1 if it removed any property. We have to loop till it didn't remove anything, in case the property occurs many times. */ while (external_remprop (&XCDR (next), prop, 0, ERROR_ME)) DO_NOTHING; plist = Fcdr (next); } return head; } DEFUN ("lax-plist-get", Flax_plist_get, 2, 3, 0, /* Extract a value from a lax property list. LAX-PLIST is a lax property list, which is a list of the form \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between properties is done using `equal' instead of `eq'. PROPERTY is usually a symbol. This function returns the value corresponding to PROPERTY, or DEFAULT if PROPERTY is not one of the properties on the list. */ (lax_plist, property, default_)) { Lisp_Object value = external_plist_get (&lax_plist, property, 1, ERROR_ME); return UNBOUNDP (value) ? default_ : value; } DEFUN ("lax-plist-put", Flax_plist_put, 3, 3, 0, /* Change value in LAX-PLIST of PROPERTY to VALUE. LAX-PLIST is a lax property list, which is a list of the form \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between properties is done using `equal' instead of `eq'. PROPERTY is usually a symbol and VALUE is any object. If PROPERTY is already a property on the list, its value is set to VALUE, otherwise the new PROPERTY VALUE pair is added. The new plist is returned; use `(setq x (lax-plist-put x property value))' to be sure to use the new value. LAX-PLIST is modified by side effect. */ (lax_plist, property, value)) { external_plist_put (&lax_plist, property, value, 1, ERROR_ME); return lax_plist; } DEFUN ("lax-plist-remprop", Flax_plist_remprop, 2, 2, 0, /* Remove from LAX-PLIST the property PROPERTY and its value. LAX-PLIST is a lax property list, which is a list of the form \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between properties is done using `equal' instead of `eq'. PROPERTY is usually a symbol. The new plist is returned; use `(setq x (lax-plist-remprop x property))' to be sure to use the new value. LAX-PLIST is modified by side effect. */ (lax_plist, property)) { external_remprop (&lax_plist, property, 1, ERROR_ME); return lax_plist; } DEFUN ("lax-plist-member", Flax_plist_member, 2, 2, 0, /* Return t if PROPERTY has a value specified in LAX-PLIST. LAX-PLIST is a lax property list, which is a list of the form \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between properties is done using `equal' instead of `eq'. */ (lax_plist, property)) { return UNBOUNDP (Flax_plist_get (lax_plist, property, Qunbound)) ? Qnil : Qt; } DEFUN ("canonicalize-lax-plist", Fcanonicalize_lax_plist, 1, 2, 0, /* Destructively remove any duplicate entries from a lax plist. In such cases, the first entry applies. If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with a nil value is removed. This feature is a virus that has infected old Lisp implementations, but should not be used except for backward compatibility. The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the return value may not be EQ to the passed-in value, so make sure to `setq' the value back into where it came from. */ (lax_plist, nil_means_not_present)) { Lisp_Object head = lax_plist; Fcheck_valid_plist (lax_plist); while (!NILP (lax_plist)) { Lisp_Object prop = Fcar (lax_plist); Lisp_Object next = Fcdr (lax_plist); CHECK_CONS (next); /* just make doubly sure we catch any errors */ if (!NILP (nil_means_not_present) && NILP (Fcar (next))) { if (EQ (head, lax_plist)) head = Fcdr (next); lax_plist = Fcdr (next); continue; } /* external_remprop returns 1 if it removed any property. We have to loop till it didn't remove anything, in case the property occurs many times. */ while (external_remprop (&XCDR (next), prop, 1, ERROR_ME)) DO_NOTHING; lax_plist = Fcdr (next); } return head; } /* In C because the frame props stuff uses it */ DEFUN ("destructive-alist-to-plist", Fdestructive_alist_to_plist, 1, 1, 0, /* Convert association list ALIST into the equivalent property-list form. The plist is returned. This converts from \((a . 1) (b . 2) (c . 3)) into \(a 1 b 2 c 3) The original alist is destroyed in the process of constructing the plist. See also `alist-to-plist'. */ (alist)) { Lisp_Object head = alist; while (!NILP (alist)) { /* remember the alist element. */ Lisp_Object el = Fcar (alist); Fsetcar (alist, Fcar (el)); Fsetcar (el, Fcdr (el)); Fsetcdr (el, Fcdr (alist)); Fsetcdr (alist, el); alist = Fcdr (Fcdr (alist)); } return head; } DEFUN ("get", Fget, 2, 3, 0, /* Return the value of OBJECT's PROPERTY property. This is the last VALUE stored with `(put OBJECT PROPERTY VALUE)'. If there is no such property, return optional third arg DEFAULT \(which defaults to `nil'). OBJECT can be a symbol, string, extent, face, glyph, or process. See also `put', `remprop', `object-plist', and `object-setplist'. */ (object, property, default_)) { /* Various places in emacs call Fget() and expect it not to quit, so don't quit. */ Lisp_Object val; if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->getprop) val = XRECORD_LHEADER_IMPLEMENTATION (object)->getprop (object, property); else invalid_operation ("Object type has no properties", object); return UNBOUNDP (val) ? default_ : val; } DEFUN ("put", Fput, 3, 3, 0, /* Set OBJECT's PROPERTY to VALUE. It can be subsequently retrieved with `(get OBJECT PROPERTY)'. OBJECT can be a symbol, face, extent, or string. For a string, no properties currently have predefined meanings. For the predefined properties for extents, see `set-extent-property'. For the predefined properties for faces, see `set-face-property'. See also `get', `remprop', and `object-plist'. */ (object, property, value)) { /* This function cannot GC */ CHECK_LISP_WRITEABLE (object); if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->putprop) { if (! XRECORD_LHEADER_IMPLEMENTATION (object)->putprop (object, property, value)) invalid_change ("Can't set property on object", property); } else invalid_change ("Object type has no settable properties", object); return value; } DEFUN ("remprop", Fremprop, 2, 2, 0, /* Remove, from OBJECT's property list, PROPERTY and its corresponding value. OBJECT can be a symbol, string, extent, face, glyph, or process. Return non-nil if the property list was actually modified (i.e. if PROPERTY was present in the property list). See also `get', `put', `object-plist', and `object-setplist'. */ (object, property)) { int ret = 0; CHECK_LISP_WRITEABLE (object); if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->remprop) { ret = XRECORD_LHEADER_IMPLEMENTATION (object)->remprop (object, property); if (ret == -1) invalid_change ("Can't remove property from object", property); } else invalid_change ("Object type has no removable properties", object); return ret ? Qt : Qnil; } DEFUN ("object-plist", Fobject_plist, 1, 1, 0, /* Return a property list of OBJECT's properties. For a symbol, this is equivalent to `symbol-plist'. OBJECT can be a symbol, string, extent, face, or glyph. Do not modify the returned property list directly; this may or may not have the desired effects. Use `put' instead. */ (object)) { if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->plist) return XRECORD_LHEADER_IMPLEMENTATION (object)->plist (object); else invalid_operation ("Object type has no properties", object); return Qnil; } DEFUN ("object-setplist", Fobject_setplist, 2, 2, 0, /* Set OBJECT's property list to NEWPLIST, and return NEWPLIST. For a symbol, this is equivalent to `setplist'. OBJECT can be a symbol or a process, other objects with visible plists do not allow their modification with `object-setplist'. */ (object, newplist)) { if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->setplist) { return XRECORD_LHEADER_IMPLEMENTATION (object)->setplist (object, newplist); } invalid_operation ("Not possible to set object's plist", object); return Qnil; } static Lisp_Object tweaked_internal_equal (Lisp_Object obj1, Lisp_Object obj2, Lisp_Object depth) { return make_int (internal_equal (obj1, obj2, XINT (depth))); } int internal_equal_trapping_problems (Lisp_Object warning_class, const Ascbyte *warning_string, int flags, struct call_trapping_problems_result *p, int retval, Lisp_Object obj1, Lisp_Object obj2, int depth) { Lisp_Object glorp = va_call_trapping_problems (warning_class, warning_string, flags, p, (lisp_fn_t) tweaked_internal_equal, 3, obj1, obj2, make_int (depth)); if (UNBOUNDP (glorp)) return retval; else return XINT (glorp); } int internal_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) { if (depth + lisp_eval_depth > max_lisp_eval_depth) stack_overflow ("Stack overflow in equal", Qunbound); QUIT; if (EQ_WITH_EBOLA_NOTICE (obj1, obj2)) return 1; /* Note that (equal 20 20.0) should be nil */ if (XTYPE (obj1) != XTYPE (obj2)) return 0; if (LRECORDP (obj1)) { const struct lrecord_implementation *imp1 = XRECORD_LHEADER_IMPLEMENTATION (obj1), *imp2 = XRECORD_LHEADER_IMPLEMENTATION (obj2); return (imp1 == imp2) && /* EQ-ness of the objects was noticed above */ (imp1->equal && (imp1->equal) (obj1, obj2, depth, 0)); } return 0; } enum array_type { ARRAY_NONE = 0, ARRAY_STRING, ARRAY_VECTOR, ARRAY_BIT_VECTOR }; static enum array_type array_type (Lisp_Object obj) { if (STRINGP (obj)) return ARRAY_STRING; if (VECTORP (obj)) return ARRAY_VECTOR; if (BIT_VECTORP (obj)) return ARRAY_BIT_VECTOR; return ARRAY_NONE; } int internal_equalp (Lisp_Object obj1, Lisp_Object obj2, int depth) { if (depth + lisp_eval_depth > max_lisp_eval_depth) stack_overflow ("Stack overflow in equalp", Qunbound); QUIT; /* 1. Objects that are `eq' are equal. This will catch the common case of two equal fixnums or the same object seen twice. */ if (EQ_WITH_EBOLA_NOTICE (obj1, obj2)) return 1; /* 2. If both numbers, compare with `='. */ if (NUMBERP (obj1) && NUMBERP (obj2)) { return (0 == bytecode_arithcompare (obj1, obj2)); } /* 3. If characters, compare case-insensitively. */ if (CHARP (obj1) && CHARP (obj2)) return CANONCASE (0, XCHAR (obj1)) == CANONCASE (0, XCHAR (obj2)); /* 4. If arrays of different types, compare their lengths, and then compare element-by-element. */ { enum array_type artype1, artype2; artype1 = array_type (obj1); artype2 = array_type (obj2); if (artype1 != artype2 && artype1 && artype2) { EMACS_INT i; EMACS_INT l1 = XINT (Flength (obj1)); EMACS_INT l2 = XINT (Flength (obj2)); /* Both arrays, but of different lengths */ if (l1 != l2) return 0; for (i = 0; i < l1; i++) if (!internal_equalp (Faref (obj1, make_int (i)), Faref (obj2, make_int (i)), depth + 1)) return 0; return 1; } } /* 5. Else, they must be the same type. If so, call the equal() method, telling it to fold case. For objects that care about case-folding their contents, the equal() method will call internal_equal_0(). */ if (XTYPE (obj1) != XTYPE (obj2)) return 0; if (LRECORDP (obj1)) { const struct lrecord_implementation *imp1 = XRECORD_LHEADER_IMPLEMENTATION (obj1), *imp2 = XRECORD_LHEADER_IMPLEMENTATION (obj2); return (imp1 == imp2) && /* EQ-ness of the objects was noticed above */ (imp1->equal && (imp1->equal) (obj1, obj2, depth, 1)); } return 0; } int internal_equal_0 (Lisp_Object obj1, Lisp_Object obj2, int depth, int foldcase) { if (foldcase) return internal_equalp (obj1, obj2, depth); else return internal_equal (obj1, obj2, depth); } /* Note that we may be calling sub-objects that will use internal_equal() (instead of internal_old_equal()). Oh well. We will get an Ebola note if there's any possibility of confusion, but that seems unlikely. */ static int internal_old_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) { if (depth + lisp_eval_depth > max_lisp_eval_depth) stack_overflow ("Stack overflow in equal", Qunbound); QUIT; if (HACKEQ_UNSAFE (obj1, obj2)) return 1; /* Note that (equal 20 20.0) should be nil */ if (XTYPE (obj1) != XTYPE (obj2)) return 0; return internal_equal (obj1, obj2, depth); } DEFUN ("equal", Fequal, 2, 2, 0, /* Return t if two Lisp objects have similar structure and contents. They must have the same data type. Conses are compared by comparing the cars and the cdrs. Vectors and strings are compared element by element. Numbers are compared by value. Symbols must match exactly. */ (object1, object2)) { return internal_equal (object1, object2, 0) ? Qt : Qnil; } DEFUN ("equalp", Fequalp, 2, 2, 0, /* Return t if two Lisp objects have similar structure and contents. This is like `equal', except that it accepts numerically equal numbers of different types (float, integer, bignum, bigfloat), and also compares strings and characters case-insensitively. Type objects that are arrays (that is, strings, bit-vectors, and vectors) of the same length and with contents that are `equalp' are themselves `equalp', regardless of whether the two objects have the same type. Other objects whose primary purpose is as containers of other objects are `equalp' if they would otherwise be equal (same length, type, etc.) and their contents are `equalp'. This goes for conses, weak lists, weak boxes, ephemerons, specifiers, hash tables, char tables and range tables. However, objects that happen to contain other objects but are not primarily designed for this purpose (e.g. compiled functions, events or display-related objects such as glyphs, faces or extents) are currently compared using `equalp' the same way as using `equal'. More specifically, two hash tables are `equalp' if they have the same test (see `hash-table-test'), the same number of entries, and the same value for `hash-table-weakness', and if, for each entry in one hash table, its key is equivalent to a key in the other hash table using the hash table test, and its value is `equalp' to the other hash table's value for that key. */ (object1, object2)) { return internal_equalp (object1, object2, 0) ? Qt : Qnil; } DEFUN ("old-equal", Fold_equal, 2, 2, 0, /* Return t if two Lisp objects have similar structure and contents. They must have the same data type. \(Note, however, that an exception is made for characters and integers; this is known as the "char-int confoundance disease." See `eq' and `old-eq'.) This function is provided only for byte-code compatibility with v19. Do not use it. */ (object1, object2)) { return internal_old_equal (object1, object2, 0) ? Qt : Qnil; } static Lisp_Object replace_string_range_1 (Lisp_Object dest, Lisp_Object start, Lisp_Object end, const Ibyte *source, const Ibyte *source_limit, Lisp_Object item); /* Fill the substring of DEST beginning at START and ending before END with the character ITEM. If DEST does not have sufficient space for END - START characters at START, write as many as is possible without changing the character length of DEST. Update the string modification flag and do any sledgehammer checks we have turned on. START must be a Lisp integer. END can be nil, indicating the length of the string, or a Lisp integer. The condition (<= 0 START END (length DEST)) must hold, or fill_string_range() will signal an error. */ static Lisp_Object fill_string_range (Lisp_Object dest, Lisp_Object item, Lisp_Object start, Lisp_Object end) { return replace_string_range_1 (dest, start, end, NULL, NULL, item); } DEFUN ("fill", Ffill, 2, MANY, 0, /* Destructively modify SEQUENCE by replacing each element with ITEM. SEQUENCE is a list, vector, bit vector, or string. Optional keyword START is the index of the first element of SEQUENCE to be modified, and defaults to zero. Optional keyword END is the exclusive upper bound on the elements of SEQUENCE to be modified, and defaults to the length of SEQUENCE. arguments: (SEQUENCE ITEM &key (START 0) (END (length SEQUENCE))) */ (int nargs, Lisp_Object *args)) { Lisp_Object sequence = args[0]; Lisp_Object item = args[1]; Elemcount starting, ending = EMACS_INT_MAX + 1, ii, len; PARSE_KEYWORDS (Ffill, nargs, args, 2, (start, end), (start = Qzero)); CHECK_NATNUM (start); starting = BIGNUMP (start) ? EMACS_INT_MAX + 1 : XINT (start); if (!NILP (end)) { CHECK_NATNUM (end); ending = BIGNUMP (end) ? EMACS_INT_MAX + 1 : XINT (end); } retry: if (STRINGP (sequence)) { CHECK_CHAR_COERCE_INT (item); CHECK_LISP_WRITEABLE (sequence); fill_string_range (sequence, item, start, end); } else if (VECTORP (sequence)) { Lisp_Object *p = XVECTOR_DATA (sequence); CHECK_LISP_WRITEABLE (sequence); len = XVECTOR_LENGTH (sequence); check_sequence_range (sequence, start, end, make_int (len)); ending = min (ending, len); for (ii = starting; ii < ending; ++ii) { p[ii] = item; } } else if (BIT_VECTORP (sequence)) { Lisp_Bit_Vector *v = XBIT_VECTOR (sequence); int bit; CHECK_BIT (item); bit = XINT (item); CHECK_LISP_WRITEABLE (sequence); len = bit_vector_length (v); check_sequence_range (sequence, start, end, make_int (len)); ending = min (ending, len); for (ii = starting; ii < ending; ++ii) { set_bit_vector_bit (v, ii, bit); } } else if (LISTP (sequence)) { Elemcount counting = 0; { EXTERNAL_LIST_LOOP_3 (elt, sequence, tail) { if (counting >= starting) { if (counting < ending) { XSETCAR (tail, item); } else if (counting == ending) { break; } } ++counting; } } if (counting < starting || (counting != ending && !NILP (end))) { check_sequence_range (args[0], start, end, Flength (args[0])); } } else { sequence = wrong_type_argument (Qsequencep, sequence); goto retry; } return sequence; } Lisp_Object nconc2 (Lisp_Object arg1, Lisp_Object arg2) { Lisp_Object args[2]; struct gcpro gcpro1; args[0] = arg1; args[1] = arg2; GCPRO1 (args[0]); gcpro1.nvars = 2; RETURN_UNGCPRO (bytecode_nconc2 (args)); } Lisp_Object bytecode_nconc2 (Lisp_Object *args) { retry: if (CONSP (args[0])) { /* (setcdr (last args[0]) args[1]) */ Lisp_Object tortoise, hare; Elemcount count; for (hare = tortoise = args[0], count = 0; CONSP (XCDR (hare)); hare = XCDR (hare), count++) { if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue; if (count & 1) tortoise = XCDR (tortoise); if (EQ (hare, tortoise)) signal_circular_list_error (args[0]); } XCDR (hare) = args[1]; return args[0]; } else if (NILP (args[0])) { return args[1]; } else { args[0] = wrong_type_argument (args[0], Qlistp); goto retry; } } DEFUN ("nconc", Fnconc, 0, MANY, 0, /* Concatenate any number of lists by altering them. Only the last argument is not altered, and need not be a list. Also see: `append'. If the first argument is nil, there is no way to modify it by side effect; therefore, write `(setq foo (nconc foo list))' to be sure of changing the value of `foo'. arguments: (&rest ARGS) */ (int nargs, Lisp_Object *args)) { int argnum = 0; struct gcpro gcpro1; /* The modus operandi in Emacs is "caller gc-protects args". However, nconc (particularly nconc2 ()) is called many times in Emacs on freshly created stuff (e.g. you see the idiom nconc2 (Fcopy_sequence (foo), bar) a lot). So we help those callers out by protecting the args ourselves to save them a lot of temporary-variable grief. */ GCPRO1 (args[0]); gcpro1.nvars = nargs; while (argnum < nargs) { Lisp_Object val; retry: val = args[argnum]; if (CONSP (val)) { /* `val' is the first cons, which will be our return value. */ /* `last_cons' will be the cons cell to mutate. */ Lisp_Object last_cons = val; Lisp_Object tortoise = val; for (argnum++; argnum < nargs; argnum++) { Lisp_Object next = args[argnum]; retry_next: if (CONSP (next) || argnum == nargs -1) { /* (setcdr (last val) next) */ Elemcount count; for (count = 0; CONSP (XCDR (last_cons)); last_cons = XCDR (last_cons), count++) { if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue; if (count & 1) tortoise = XCDR (tortoise); if (EQ (last_cons, tortoise)) signal_circular_list_error (args[argnum-1]); } XCDR (last_cons) = next; } else if (NILP (next)) { continue; } else { next = wrong_type_argument (Qlistp, next); goto retry_next; } } RETURN_UNGCPRO (val); } else if (NILP (val)) argnum++; else if (argnum == nargs - 1) /* last arg? */ RETURN_UNGCPRO (val); else { args[argnum] = wrong_type_argument (Qlistp, val); goto retry; } } RETURN_UNGCPRO (Qnil); /* No non-nil args provided. */ } /* Replace the substring of DEST beginning at START and ending before END with the text at SOURCE, which is END - START characters long and SOURCE_LIMIT - SOURCE octets long. If DEST does not have sufficient space for END - START characters at START, write as many as is possible without changing the length of DEST. Update the string modification flag and do any sledgehammer checks we have turned on in this build. START must be a Lisp integer. END can be nil, indicating the length of the string, or a Lisp integer. The condition (<= 0 START END (length DEST)) must hold, or replace_string_range() will signal an error. */ static Lisp_Object replace_string_range (Lisp_Object dest, Lisp_Object start, Lisp_Object end, const Ibyte *source, const Ibyte *source_limit) { return replace_string_range_1 (dest, start, end, source, source_limit, Qnil); } /* This is the guts of several mapping functions. Call FUNCTION CALL_COUNT times, with NSEQUENCES arguments each time, taking the elements from SEQUENCES. If VALS is non-NULL, store the results into VALS, a C array of Lisp_Objects; else, if LISP_VALS is non-nil, store the results into LISP_VALS, a sequence with sufficient room for CALL_COUNT results (but see the documentation of SOME_OR_EVERY.) Else, do not accumulate any result. If VALS is non-NULL, NSEQUENCES is one, and SEQUENCES[0] is a cons, mapcarX will store the elements of SEQUENCES[0] in stack and GCPRO them, so FUNCTION cannot insert a non-cons into SEQUENCES[0] and throw off mapcarX. Otherwise, mapcarX signals an invalid state error (see mapping_interaction_error(), above) if it encounters a non-cons, non-array when traversing SEQUENCES. Common Lisp specifies in MAPPING-DESTRUCTIVE-INTERACTION that it is an error when FUNCTION destructively modifies SEQUENCES in a way that might affect the ongoing traversal operation. CALLER is a symbol describing the Lisp-visible function that was called, and any errors thrown because SEQUENCES was modified will reflect it. If CALLER is Qsome, return the (possibly multiple) values given by FUNCTION the first time it is non-nil, and abandon the iterations. LISP_VALS must be the result of calling STORE_VOID_IN_LISP on the address of a Lisp object, and the return value will be stored at that address. If CALLER is Qevery, LISP_VALS must also reflect a pointer to a Lisp object, and Qnil will be stored at that address if FUNCTION gives nil; otherwise it will be left alone. */ static void mapcarX (Elemcount call_count, Lisp_Object *vals, Lisp_Object lisp_vals, Lisp_Object function, int nsequences, Lisp_Object *sequences, Lisp_Object caller) { Lisp_Object called, *args; struct gcpro gcpro1, gcpro2; Ibyte *lisp_vals_staging = NULL, *cursor = NULL; int i, j; assert ((EQ (caller, Qsome) || EQ (caller, Qevery)) ? vals == NULL : 1); args = alloca_array (Lisp_Object, nsequences + 1); args[0] = function; for (i = 1; i <= nsequences; ++i) { args[i] = Qnil; } if (vals != NULL) { GCPRO2 (args[0], vals[0]); gcpro1.nvars = nsequences + 1; gcpro2.nvars = 0; } else { GCPRO1 (args[0]); gcpro1.nvars = nsequences + 1; } /* Be extra nice in the event that we've been handed one list and one only; make it possible for FUNCTION to set cdrs not yet processed to non-cons, non-nil objects without ill-effect, if we have been handed the stack space to do that. */ if (vals != NULL && 1 == nsequences && CONSP (sequences[0])) { Lisp_Object lst = sequences[0]; Lisp_Object *val = vals; for (i = 0; i < call_count; ++i) { *val++ = XCAR (lst); lst = XCDR (lst); } gcpro2.nvars = call_count; for (i = 0; i < call_count; ++i) { args[1] = vals[i]; vals[i] = IGNORE_MULTIPLE_VALUES (Ffuncall (nsequences + 1, args)); } } else { enum lrecord_type lisp_vals_type = lrecord_type_symbol; Binbyte *sequence_types = alloca_array (Binbyte, nsequences); for (j = 0; j < nsequences; ++j) { sequence_types[j] = XRECORD_LHEADER (sequences[j])->type; } if (!EQ (caller, Qsome) && !EQ (caller, Qevery)) { assert (LRECORDP (lisp_vals)); lisp_vals_type = (enum lrecord_type) XRECORD_LHEADER (lisp_vals)->type; if (lrecord_type_string == lisp_vals_type) { lisp_vals_staging = cursor = alloca_ibytes (call_count * MAX_ICHAR_LEN); } else if (ARRAYP (lisp_vals)) { CHECK_LISP_WRITEABLE (lisp_vals); } } for (i = 0; i < call_count; ++i) { for (j = 0; j < nsequences; ++j) { switch (sequence_types[j]) { case lrecord_type_cons: { if (!CONSP (sequences[j])) { /* This means FUNCTION has messed around with a cons in one of the sequences, since we checked the type (CHECK_SEQUENCE()) and the length and structure (with Flength()) correctly in our callers. */ mapping_interaction_error (caller, sequences[j]); } args[j + 1] = XCAR (sequences[j]); sequences[j] = XCDR (sequences[j]); break; } case lrecord_type_vector: { args[j + 1] = XVECTOR_DATA (sequences[j])[i]; break; } case lrecord_type_string: { args[j + 1] = make_char (string_ichar (sequences[j], i)); break; } case lrecord_type_bit_vector: { args[j + 1] = make_int (bit_vector_bit (XBIT_VECTOR (sequences[j]), i)); break; } default: ABORT(); } } called = Ffuncall (nsequences + 1, args); if (vals != NULL) { vals[i] = IGNORE_MULTIPLE_VALUES (called); gcpro2.nvars += 1; } else if (EQ (Qsome, caller)) { if (!NILP (IGNORE_MULTIPLE_VALUES (called))) { Lisp_Object *result = (Lisp_Object *) GET_VOID_FROM_LISP (lisp_vals); *result = called; UNGCPRO; return; } } else if (EQ (Qevery, caller)) { if (NILP (IGNORE_MULTIPLE_VALUES (called))) { Lisp_Object *result = (Lisp_Object *) GET_VOID_FROM_LISP (lisp_vals); *result = Qnil; UNGCPRO; return; } } else { called = IGNORE_MULTIPLE_VALUES (called); switch (lisp_vals_type) { case lrecord_type_symbol: /* Discard the result of funcall. */ break; case lrecord_type_cons: { if (!CONSP (lisp_vals)) { /* If FUNCTION has inserted a non-cons non-nil cdr into the list before we've processed the relevant part, error. */ mapping_interaction_error (caller, lisp_vals); } XSETCAR (lisp_vals, called); lisp_vals = XCDR (lisp_vals); break; } case lrecord_type_vector: { i < XVECTOR_LENGTH (lisp_vals) ? (XVECTOR_DATA (lisp_vals)[i] = called) : /* Let #'aset error. */ Faset (lisp_vals, make_int (i), called); break; } case lrecord_type_string: { CHECK_CHAR_COERCE_INT (called); cursor += set_itext_ichar (cursor, XCHAR (called)); break; } case lrecord_type_bit_vector: { (BITP (called) && i < bit_vector_length (XBIT_VECTOR (lisp_vals))) ? set_bit_vector_bit (XBIT_VECTOR (lisp_vals), i, XINT (called)) : (void) Faset (lisp_vals, make_int (i), called); break; } default: { ABORT(); break; } } } } if (lisp_vals_staging != NULL) { CHECK_LISP_WRITEABLE (lisp_vals); replace_string_range (lisp_vals, Qzero, make_int (call_count), lisp_vals_staging, cursor); } } UNGCPRO; } /* Given NSEQUENCES objects at the address pointed to by SEQUENCES, return the length of the shortest sequence. Error if all are circular, or if any one of them is not a sequence. */ static Elemcount shortest_length_among_sequences (int nsequences, Lisp_Object *sequences) { Elemcount len = 1 + EMACS_INT_MAX; Lisp_Object length = Qnil; int i; for (i = 0; i < nsequences; ++i) { if (CONSP (sequences[i])) { length = Flist_length (sequences[i]); if (!NILP (length)) { len = min (len, XINT (length)); } } else { CHECK_SEQUENCE (sequences[i]); length = Flength (sequences[i]); len = min (len, XINT (length)); } } if (len == 1 + EMACS_INT_MAX) { signal_circular_list_error (sequences[0]); } return len; } DEFUN ("mapconcat", Fmapconcat, 3, MANY, 0, /* Call FUNCTION on each element of SEQUENCE, and concat results to a string. Between each pair of results, insert SEPARATOR. Each result, and SEPARATOR, should be strings. Thus, using " " as SEPARATOR results in spaces between the values returned by FUNCTION. SEQUENCE itself may be a list, a vector, a bit vector, or a string. With optional SEQUENCES, call FUNCTION each time with as many arguments as there are SEQUENCES, plus one for the element from SEQUENCE. One element from each sequence will be used each time FUNCTION is called, and `mapconcat' will give up once the shortest sequence is exhausted. arguments: (FUNCTION SEQUENCE SEPARATOR &rest SEQUENCES) */ (int nargs, Lisp_Object *args)) { Lisp_Object function = args[0]; Lisp_Object sequence = args[1]; Lisp_Object separator = args[2]; Elemcount len = EMACS_INT_MAX; Lisp_Object *args0; EMACS_INT i, nargs0; args[2] = sequence; args[1] = separator; len = shortest_length_among_sequences (nargs - 2, args + 2); if (len == 0) return build_ascstring (""); nargs0 = len + len - 1; args0 = alloca_array (Lisp_Object, nargs0); /* Special-case this, it's very common and doesn't require any funcalls. Upside of doing it here, instead of cl-macs.el: no consing, apart from the final string, we allocate everything on the stack. */ if (EQ (function, Qidentity) && 3 == nargs && CONSP (sequence)) { for (i = 0; i < len; ++i) { args0[i] = XCAR (sequence); sequence = XCDR (sequence); } } else { mapcarX (len, args0, Qnil, function, nargs - 2, args + 2, Qmapconcat); } for (i = len - 1; i >= 0; i--) args0[i + i] = args0[i]; for (i = 1; i < nargs0; i += 2) args0[i] = separator; return Fconcat (nargs0, args0); } DEFUN ("mapcar*", FmapcarX, 2, MANY, 0, /* Call FUNCTION on each element of SEQUENCE; return a list of the results. The result is a list of the same length as SEQUENCE. SEQUENCE may be a list, a vector, a bit vector, or a string. With optional SEQUENCES, call FUNCTION each time with as many arguments as there are SEQUENCES, plus one for the element from SEQUENCE. One element from each sequence will be used each time FUNCTION is called, and `mapcar' stops calling FUNCTION once the shortest sequence is exhausted. arguments: (FUNCTION SEQUENCE &rest SEQUENCES) */ (int nargs, Lisp_Object *args)) { Lisp_Object function = args[0]; Elemcount len = shortest_length_among_sequences (nargs - 1, args + 1); Lisp_Object *args0; args0 = alloca_array (Lisp_Object, len); mapcarX (len, args0, Qnil, function, nargs - 1, args + 1, QmapcarX); return Flist ((int) len, args0); } DEFUN ("mapvector", Fmapvector, 2, MANY, 0, /* Call FUNCTION on each element of SEQUENCE; return a vector of the results. The result is a vector of the same length as SEQUENCE. SEQUENCE may be a list, a vector, a bit vector, or a string. With optional SEQUENCES, call FUNCTION each time with as many arguments as there are SEQUENCES, plus one for the element from SEQUENCE. One element from each sequence will be used each time FUNCTION is called, and `mapvector' stops calling FUNCTION once the shortest sequence is exhausted. arguments: (FUNCTION SEQUENCE &rest SEQUENCES) */ (int nargs, Lisp_Object *args)) { Lisp_Object function = args[0]; Elemcount len = shortest_length_among_sequences (nargs - 1, args + 1); Lisp_Object result = make_vector (len, Qnil); struct gcpro gcpro1; GCPRO1 (result); /* Don't pass result as the lisp_object argument, we want mapcarX to protect a single list argument's elements from being garbage-collected. */ mapcarX (len, XVECTOR_DATA (result), Qnil, function, nargs - 1, args +1, Qmapvector); RETURN_UNGCPRO (result); } DEFUN ("mapcan", Fmapcan, 2, MANY, 0, /* Call FUNCTION on each element of SEQUENCE; chain the results together. FUNCTION must normally return a list; the results will be concatenated together using `nconc'. With optional SEQUENCES, call FUNCTION each time with as many arguments as there are SEQUENCES, plus one for the element from SEQUENCE. One element from each sequence will be used each time FUNCTION is called, and `mapcan' stops calling FUNCTION once the shortest sequence is exhausted. arguments: (FUNCTION SEQUENCE &rest SEQUENCES) */ (int nargs, Lisp_Object *args)) { Elemcount len = shortest_length_among_sequences (nargs - 1, args + 1); Lisp_Object function = args[0], *result = alloca_array (Lisp_Object, len); mapcarX (len, result, Qnil, function, nargs - 1, args + 1, Qmapcan); /* #'nconc GCPROs its args in case of signals and error. */ return Fnconc (len, result); } DEFUN ("mapc", Fmapc, 2, MANY, 0, /* Call FUNCTION on each element of SEQUENCE. SEQUENCE may be a list, a vector, a bit vector, or a string. This function is like `mapcar' but does not accumulate the results, which is more efficient if you do not use the results. With optional SEQUENCES, call FUNCTION each time with as many arguments as there are SEQUENCES, plus one for the elements from SEQUENCE. One element from each sequence will be used each time FUNCTION is called, and `mapc' stops calling FUNCTION once the shortest sequence is exhausted. Return SEQUENCE. arguments: (FUNCTION SEQUENCE &rest SEQUENCES) */ (int nargs, Lisp_Object *args)) { Elemcount len = shortest_length_among_sequences (nargs - 1, args + 1); Lisp_Object sequence = args[1]; struct gcpro gcpro1; /* We need to GCPRO sequence, because mapcarX will modify the elements of the args array handed to it, and this may involve elements of sequence getting garbage collected. */ GCPRO1 (sequence); mapcarX (len, NULL, Qnil, args[0], nargs - 1, args + 1, Qmapc); RETURN_UNGCPRO (sequence); } DEFUN ("map", Fmap, 3, MANY, 0, /* Map FUNCTION across one or more sequences, returning a sequence. TYPE is the sequence type to return, FUNCTION is the function, SEQUENCE is the first argument sequence, SEQUENCES are the other argument sequences. FUNCTION will be called with (1+ (length SEQUENCES)) arguments, and must be capable of accepting this number of arguments. Certain TYPEs are recognised internally by `map', but others are not, and `coerce' may throw an error on an attempt to convert to a TYPE it does not understand. A null TYPE means do not accumulate any values. arguments: (TYPE FUNCTION SEQUENCE &rest SEQUENCES) */ (int nargs, Lisp_Object *args)) { Lisp_Object type = args[0]; Lisp_Object function = args[1]; Lisp_Object result = Qnil; Lisp_Object *args0 = NULL; Elemcount len = shortest_length_among_sequences (nargs - 2, args + 2); struct gcpro gcpro1; if (!NILP (type)) { args0 = alloca_array (Lisp_Object, len); } mapcarX (len, args0, Qnil, function, nargs - 2, args + 2, Qmap); if (EQ (type, Qnil)) { return result; } if (EQ (type, Qvector) || EQ (type, Qarray)) { result = Fvector (len, args0); } else if (EQ (type, Qstring)) { result = Fstring (len, args0); } else if (EQ (type, Qlist)) { result = Flist (len, args0); } else if (EQ (type, Qbit_vector)) { result = Fbit_vector (len, args0); } else { result = Flist (len, args0); GCPRO1 (result); result = call2 (Qcoerce, result, type); UNGCPRO; } return result; } DEFUN ("map-into", Fmap_into, 2, MANY, 0, /* Modify RESULT-SEQUENCE using the return values of FUNCTION on SEQUENCES. RESULT-SEQUENCE and SEQUENCES can be lists or arrays. FUNCTION must accept at least as many arguments as there are SEQUENCES \(possibly zero). If RESULT-SEQUENCE and the elements of SEQUENCES are not the same length, stop when the shortest is exhausted; any elements of RESULT-SEQUENCE beyond that are unmodified. Return RESULT-SEQUENCE. arguments: (RESULT-SEQUENCE FUNCTION &rest SEQUENCES) */ (int nargs, Lisp_Object *args)) { Elemcount len; Lisp_Object result_sequence = args[0]; Lisp_Object function = args[1]; args[0] = function; args[1] = result_sequence; len = shortest_length_among_sequences (nargs - 1, args + 1); mapcarX (len, NULL, result_sequence, function, nargs - 2, args + 2, Qmap_into); return result_sequence; } DEFUN ("some", Fsome, 2, MANY, 0, /* Return true if PREDICATE gives non-nil for an element of SEQUENCE. If so, return the value (possibly multiple) given by PREDICATE. With optional SEQUENCES, call PREDICATE each time with as many arguments as there are SEQUENCES (plus one for the element from SEQUENCE). See also `find-if', which returns the corresponding element of SEQUENCE, rather than the value given by PREDICATE, and accepts bounding index keywords. arguments: (PREDICATE SEQUENCE &rest SEQUENCES) */ (int nargs, Lisp_Object *args)) { Lisp_Object result = Qnil, result_ptr = STORE_VOID_IN_LISP ((void *) &result); Elemcount len = shortest_length_among_sequences (nargs - 1, args + 1); mapcarX (len, NULL, result_ptr, args[0], nargs - 1, args +1, Qsome); return result; } DEFUN ("every", Fevery, 2, MANY, 0, /* Return true if PREDICATE is true of every element of SEQUENCE. With optional SEQUENCES, call PREDICATE each time with as many arguments as there are SEQUENCES (plus one for the element from SEQUENCE). In contrast to `some', `every' never returns multiple values. arguments: (PREDICATE SEQUENCE &rest SEQUENCES) */ (int nargs, Lisp_Object *args)) { Lisp_Object result = Qt, result_ptr = STORE_VOID_IN_LISP ((void *) &result); Elemcount len = shortest_length_among_sequences (nargs - 1, args + 1); mapcarX (len, NULL, result_ptr, args[0], nargs - 1, args +1, Qevery); return result; } /* Call FUNCTION with NLISTS arguments repeatedly, each Nth argument corresponding to the result of calling (nthcdr ITERATION-COUNT LISTS[N]), until that #'nthcdr expression gives nil for some element of LISTS. CALLER is a symbol reflecting the Lisp-visible function that was called, and any errors thrown because SEQUENCES was modified will reflect it. If CALLER is Qmapl, return LISTS[0]. Otherwise, return a list of the return values from FUNCTION; if caller is Qmapcan, nconc them together. In contrast to mapcarX, we don't require our callers to check LISTS for well-formedness, we signal wrong-type-argument if it's not a list, or circular-list if it's circular. */ static Lisp_Object maplist (Lisp_Object function, int nlists, Lisp_Object *lists, Lisp_Object caller) { Lisp_Object nconcing[2], accum = Qnil, *args, *tortoises, funcalled; Lisp_Object result = EQ (caller, Qmapl) ? lists[0] : Qnil; struct gcpro gcpro1, gcpro2, gcpro3, gcpro4; int i, j, continuing = (nlists > 0), called_count = 0; args = alloca_array (Lisp_Object, nlists + 1); args[0] = function; for (i = 1; i <= nlists; ++i) { args[i] = Qnil; } tortoises = alloca_array (Lisp_Object, nlists); memcpy (tortoises, lists, nlists * sizeof (Lisp_Object)); if (EQ (caller, Qmapcon)) { nconcing[0] = Qnil; nconcing[1] = Qnil; GCPRO4 (args[0], nconcing[0], tortoises[0], result); gcpro1.nvars = 1; gcpro2.nvars = 2; gcpro3.nvars = nlists; } else { GCPRO3 (args[0], tortoises[0], result); gcpro1.nvars = 1; gcpro2.nvars = nlists; } while (continuing) { for (j = 0; j < nlists; ++j) { if (CONSP (lists[j])) { args[j + 1] = lists[j]; lists[j] = XCDR (lists[j]); } else if (NILP (lists[j])) { continuing = 0; break; } else { lists[j] = wrong_type_argument (Qlistp, lists[j]); } } if (!continuing) break; funcalled = IGNORE_MULTIPLE_VALUES (Ffuncall (nlists + 1, args)); if (EQ (caller, Qmapl)) { DO_NOTHING; } else if (EQ (caller, Qmapcon)) { nconcing[1] = funcalled; accum = bytecode_nconc2 (nconcing); if (NILP (result)) { result = accum; } /* Only check a given stretch of result for well-formedness once: */ nconcing[0] = funcalled; } else if (NILP (accum)) { accum = result = Fcons (funcalled, Qnil); } else { /* Add to the end, avoiding the need to call nreverse once we're done: */ XSETCDR (accum, Fcons (funcalled, Qnil)); accum = XCDR (accum); } if (++called_count > CIRCULAR_LIST_SUSPICION_LENGTH) { if (called_count & 1) { for (j = 0; j < nlists; ++j) { tortoises[j] = XCDR (tortoises[j]); if (EQ (lists[j], tortoises[j])) { signal_circular_list_error (lists[j]); } } } else { for (j = 0; j < nlists; ++j) { if (EQ (lists[j], tortoises[j])) { signal_circular_list_error (lists[j]); } } } } } RETURN_UNGCPRO (result); } DEFUN ("maplist", Fmaplist, 2, MANY, 0, /* Call FUNCTION on each sublist of LIST and LISTS. Like `mapcar', except applies to lists and their cdr's rather than to the elements themselves." arguments: (FUNCTION LIST &rest LISTS) */ (int nargs, Lisp_Object *args)) { return maplist (args[0], nargs - 1, args + 1, Qmaplist); } DEFUN ("mapl", Fmapl, 2, MANY, 0, /* Like `maplist', but do not accumulate values returned by the function. arguments: (FUNCTION LIST &rest LISTS) */ (int nargs, Lisp_Object *args)) { return maplist (args[0], nargs - 1, args + 1, Qmapl); } DEFUN ("mapcon", Fmapcon, 2, MANY, 0, /* Like `maplist', but chains together the values returned by FUNCTION. FUNCTION must return a list (unless it happens to be the last iteration); the results will be concatenated together using `nconc'. arguments: (FUNCTION LIST &rest LISTS) */ (int nargs, Lisp_Object *args)) { return maplist (args[0], nargs - 1, args + 1, Qmapcon); } /* Extra random functions */ DEFUN ("reduce", Freduce, 2, MANY, 0, /* Combine the elements of sequence using FUNCTION, a binary operation. For example, `(reduce #'+ SEQUENCE)' returns the sum of all elements in SEQUENCE, and `(reduce #'union SEQUENCE)' returns the union of all elements in SEQUENCE. Keywords supported: :start :end :from-end :initial-value :key See `remove*' for the meaning of :start, :end, :from-end and :key. :initial-value specifies an element (typically an identity element, such as 0) that is conceptually prepended to the sequence (or appended, when :from-end is given). If the sequence has one element, that element is returned directly. If the sequence has no elements, :initial-value is returned if given; otherwise, FUNCTION is called with no arguments, and its result returned. arguments: (FUNCTION SEQUENCE &key (START 0) (END (length SEQUENCE)) FROM-END INITIAL-VALUE (KEY #'identity)) */ (int nargs, Lisp_Object *args)) { Lisp_Object function = args[0], sequence = args[1], accum = Qunbound; Elemcount starting, ending = EMACS_INT_MAX + 1, ii = 0; PARSE_KEYWORDS (Freduce, nargs, args, 5, (start, end, from_end, initial_value, key), (start = Qzero, initial_value = Qunbound)); CHECK_SEQUENCE (sequence); CHECK_NATNUM (start); starting = BIGNUMP (start) ? EMACS_INT_MAX + 1 : XINT (start); CHECK_KEY_ARGUMENT (key); #define KEY(key, item) (EQ (Qidentity, key) ? item : \ IGNORE_MULTIPLE_VALUES (call1 (key, item))) #define CALL2(function, accum, item) \ IGNORE_MULTIPLE_VALUES (call2 (function, accum, item)) if (!NILP (end)) { CHECK_NATNUM (end); ending = BIGNUMP (end) ? EMACS_INT_MAX + 1 : XINT (end); } if (VECTORP (sequence)) { Lisp_Vector *vv = XVECTOR (sequence); struct gcpro gcpro1; check_sequence_range (sequence, start, end, make_int (vv->size)); ending = min (ending, vv->size); GCPRO1 (accum); if (!UNBOUNDP (initial_value)) { accum = initial_value; } else if (ending - starting) { if (NILP (from_end)) { accum = KEY (key, vv->contents[starting]); starting++; } else { accum = KEY (key, vv->contents[ending - 1]); ending--; } } if (NILP (from_end)) { for (ii = starting; ii < ending; ++ii) { accum = CALL2 (function, accum, KEY (key, vv->contents[ii])); } } else { for (ii = ending - 1; ii >= starting; --ii) { accum = CALL2 (function, KEY (key, vv->contents[ii]), accum); } } UNGCPRO; } else if (BIT_VECTORP (sequence)) { Lisp_Bit_Vector *bv = XBIT_VECTOR (sequence); struct gcpro gcpro1; check_sequence_range (sequence, start, end, make_int (bv->size)); ending = min (ending, bv->size); GCPRO1 (accum); if (!UNBOUNDP (initial_value)) { accum = initial_value; } else if (ending - starting) { if (NILP (from_end)) { accum = KEY (key, make_int (bit_vector_bit (bv, starting))); starting++; } else { accum = KEY (key, make_int (bit_vector_bit (bv, ending - 1))); ending--; } } if (NILP (from_end)) { for (ii = starting; ii < ending; ++ii) { accum = CALL2 (function, accum, KEY (key, make_int (bit_vector_bit (bv, ii)))); } } else { for (ii = ending - 1; ii >= starting; --ii) { accum = CALL2 (function, KEY (key, make_int (bit_vector_bit (bv, ii))), accum); } } UNGCPRO; } else if (STRINGP (sequence)) { struct gcpro gcpro1; GCPRO1 (accum); if (NILP (from_end)) { Bytecount byte_len = XSTRING_LENGTH (sequence); Bytecount cursor_offset = 0; const Ibyte *startp = XSTRING_DATA (sequence); const Ibyte *cursor = startp; for (ii = 0; ii != starting && cursor_offset < byte_len; ++ii) { INC_IBYTEPTR (cursor); cursor_offset = cursor - startp; } if (!UNBOUNDP (initial_value)) { accum = initial_value; } else if (ending - starting && cursor_offset < byte_len) { accum = KEY (key, make_char (itext_ichar (cursor))); starting++; startp = XSTRING_DATA (sequence); cursor = startp + cursor_offset; if (byte_len != XSTRING_LENGTH (sequence) || !valid_ibyteptr_p (cursor)) { mapping_interaction_error (Qreduce, sequence); } INC_IBYTEPTR (cursor); cursor_offset = cursor - startp; ii++; } while (cursor_offset < byte_len && ii < ending) { accum = CALL2 (function, accum, KEY (key, make_char (itext_ichar (cursor)))); startp = XSTRING_DATA (sequence); cursor = startp + cursor_offset; if (byte_len != XSTRING_LENGTH (sequence) || !valid_ibyteptr_p (cursor)) { mapping_interaction_error (Qreduce, sequence); } INC_IBYTEPTR (cursor); cursor_offset = cursor - startp; ++ii; } if (ii < starting || (ii < ending && !NILP (end))) { check_sequence_range (sequence, start, end, Flength (sequence)); } } else { Elemcount len = string_char_length (sequence); Bytecount cursor_offset, byte_len = XSTRING_LENGTH (sequence); const Ibyte *cursor; check_sequence_range (sequence, start, end, make_int (len)); ending = min (ending, len); starting = XINT (start); cursor = string_char_addr (sequence, ending - 1); cursor_offset = cursor - XSTRING_DATA (sequence); if (!UNBOUNDP (initial_value)) { accum = initial_value; } else if (ending - starting) { accum = KEY (key, make_char (itext_ichar (cursor))); ending--; if (ending > 0) { cursor = XSTRING_DATA (sequence) + cursor_offset; if (!valid_ibyteptr_p (cursor)) { mapping_interaction_error (Qreduce, sequence); } DEC_IBYTEPTR (cursor); cursor_offset = cursor - XSTRING_DATA (sequence); } } for (ii = ending - 1; ii >= starting; --ii) { accum = CALL2 (function, KEY (key, make_char (itext_ichar (cursor))), accum); if (ii > 0) { cursor = XSTRING_DATA (sequence) + cursor_offset; if (byte_len != XSTRING_LENGTH (sequence) || !valid_ibyteptr_p (cursor)) { mapping_interaction_error (Qreduce, sequence); } DEC_IBYTEPTR (cursor); cursor_offset = cursor - XSTRING_DATA (sequence); } } } UNGCPRO; } else if (LISTP (sequence)) { if (NILP (from_end)) { struct gcpro gcpro1, gcpro2; Lisp_Object tailed = Qnil; GCPRO2 (tailed, accum); if (!UNBOUNDP (initial_value)) { accum = initial_value; } else if (ending - starting) { EXTERNAL_LIST_LOOP_3 (elt, sequence, tail) { /* KEY may amputate the list behind us; make sure what remains to be processed is still reachable. */ tailed = tail; if (ii == starting) { accum = KEY (key, elt); starting++; break; } ++ii; } } ii = 0; if (ending - starting) { EXTERNAL_LIST_LOOP_3 (elt, sequence, tail) { /* KEY or FUNCTION may amputate the list behind us; make sure what remains to be processed is still reachable. */ tailed = tail; if (ii >= starting) { if (ii < ending) { accum = CALL2 (function, accum, KEY (key, elt)); } else if (ii == ending) { break; } } ++ii; } } UNGCPRO; if (ii < starting || (ii < ending && !NILP (end))) { check_sequence_range (sequence, start, end, Flength (sequence)); } } else { Boolint need_accum = 0; Lisp_Object *subsequence = NULL; Elemcount counting = 0, len = 0; struct gcpro gcpro1; len = XINT (Flength (sequence)); check_sequence_range (sequence, start, end, make_int (len)); ending = min (ending, len); /* :from-end with a list; make an alloca copy of the relevant list data, attempting to go backwards isn't worth the trouble. */ if (!UNBOUNDP (initial_value)) { accum = initial_value; if (ending - starting && starting < ending) { subsequence = alloca_array (Lisp_Object, ending - starting); } } else if (ending - starting && starting < ending) { subsequence = alloca_array (Lisp_Object, ending - starting); need_accum = 1; } if (ending - starting && starting < ending) { EXTERNAL_LIST_LOOP_3 (elt, sequence, tail) { if (counting >= starting) { if (counting < ending) { subsequence[ii++] = elt; } else if (counting == ending) { break; } } ++counting; } } if (subsequence != NULL) { len = ending - starting; /* If we could be sure that neither FUNCTION nor KEY modify SEQUENCE, this wouldn't be necessary, since all the elements of SUBSEQUENCE would definitely always be reachable via SEQUENCE. */ GCPRO1 (subsequence[0]); gcpro1.nvars = len; } if (need_accum) { accum = KEY (key, subsequence[len - 1]); --len; } for (ii = len; ii != 0;) { --ii; accum = CALL2 (function, KEY (key, subsequence[ii]), accum); } if (subsequence != NULL) { UNGCPRO; } } } /* At this point, if ACCUM is unbound, SEQUENCE has no elements; we need to return the result of calling FUNCTION with zero arguments. */ if (UNBOUNDP (accum)) { accum = IGNORE_MULTIPLE_VALUES (call0 (function)); } return accum; } DEFUN ("replace-list", Freplace_list, 2, 2, 0, /* Destructively replace the list OLD with NEW. This is like (copy-sequence NEW) except that it reuses the conses in OLD as much as possible. If OLD and NEW are the same length, no consing will take place. */ (old, new_)) { Lisp_Object oldtail = old, prevoldtail = Qnil; EXTERNAL_LIST_LOOP_2 (elt, new_) { if (!NILP (oldtail)) { CHECK_CONS (oldtail); XCAR (oldtail) = elt; } else if (!NILP (prevoldtail)) { XCDR (prevoldtail) = Fcons (elt, Qnil); prevoldtail = XCDR (prevoldtail); } else old = oldtail = Fcons (elt, Qnil); if (!NILP (oldtail)) { prevoldtail = oldtail; oldtail = XCDR (oldtail); } } if (!NILP (prevoldtail)) XCDR (prevoldtail) = Qnil; else old = Qnil; return old; } /* This function is the implementation of fill_string_range() and replace_string_range(); see the comments for those functions. */ static Lisp_Object replace_string_range_1 (Lisp_Object dest, Lisp_Object start, Lisp_Object end, const Ibyte *source, const Ibyte *source_limit, Lisp_Object item) { Ibyte *destp = XSTRING_DATA (dest), *p = destp, *pend = p + XSTRING_LENGTH (dest), *pcursor, item_buf[MAX_ICHAR_LEN]; Bytecount prefix_bytecount, source_len = source_limit - source; Charcount ii = 0, ending, len; Charcount starting = BIGNUMP (start) ? EMACS_INT_MAX + 1 : XINT (start); Elemcount delta; while (ii < starting && p < pend) { INC_IBYTEPTR (p); ii++; } pcursor = p; if (NILP (end)) { while (pcursor < pend) { INC_IBYTEPTR (pcursor); ii++; } ending = len = ii; } else { ending = BIGNUMP (end) ? EMACS_INT_MAX + 1 : XINT (end); while (ii < ending && pcursor < pend) { INC_IBYTEPTR (pcursor); ii++; } } if (pcursor == pend) { /* We have the length, check it for our callers. */ check_sequence_range (dest, start, end, make_int (ii)); } if (!(p == pend || p == pcursor)) { prefix_bytecount = p - destp; if (!NILP (item)) { assert (source == NULL && source_limit == NULL); source_len = set_itext_ichar (item_buf, XCHAR (item)); delta = (source_len * (ending - starting)) - (pcursor - p); } else { assert (source != NULL && source_limit != NULL); delta = source_len - (pcursor - p); } if (delta) { resize_string (dest, prefix_bytecount, delta); destp = XSTRING_DATA (dest); pcursor = destp + prefix_bytecount + (pcursor - p); p = destp + prefix_bytecount; } if (CHARP (item)) { while (starting < ending) { memcpy (p, item_buf, source_len); p += source_len; starting++; } } else { while (starting < ending && source < source_limit) { source_len = itext_copy_ichar (source, p); p += source_len, source += source_len; } } init_string_ascii_begin (dest); bump_string_modiff (dest); sledgehammer_check_ascii_begin (dest); } return dest; } DEFUN ("replace", Freplace, 2, MANY, 0, /* Replace the elements of SEQUENCE-ONE with the elements of SEQUENCE-TWO. SEQUENCE-ONE is destructively modified, and returned. Its length is not changed. Keywords :start1 and :end1 specify a subsequence of SEQUENCE-ONE, and :start2 and :end2 a subsequence of SEQUENCE-TWO. See `search' for more information. arguments: (SEQUENCE-ONE SEQUENCE-TWO &key (START1 0) (END1 (length SEQUENCE-ONE)) (START2 0) (END2 (length SEQUENCE-TWO))) */ (int nargs, Lisp_Object *args)) { Lisp_Object sequence1 = args[0], sequence2 = args[1], result = sequence1; Elemcount starting1, ending1 = EMACS_INT_MAX + 1, starting2; Elemcount ending2 = EMACS_INT_MAX + 1, counting = 0, startcounting; Boolint sequence1_listp, sequence2_listp, overwriting = EQ (sequence1, sequence2); PARSE_KEYWORDS (Freplace, nargs, args, 4, (start1, end1, start2, end2), (start1 = start2 = Qzero)); CHECK_SEQUENCE (sequence1); CHECK_LISP_WRITEABLE (sequence1); CHECK_SEQUENCE (sequence2); CHECK_NATNUM (start1); starting1 = BIGNUMP (start1) ? EMACS_INT_MAX + 1 : XINT (start1); CHECK_NATNUM (start2); starting2 = BIGNUMP (start2) ? EMACS_INT_MAX + 1 : XINT (start2); if (!NILP (end1)) { CHECK_NATNUM (end1); ending1 = BIGNUMP (end1) ? EMACS_INT_MAX + 1 : XINT (end1); } if (!NILP (end2)) { CHECK_NATNUM (end2); ending2 = BIGNUMP (end2) ? EMACS_INT_MAX + 1 : XINT (end2); } sequence1_listp = LISTP (sequence1); sequence2_listp = LISTP (sequence2); overwriting = overwriting && starting2 <= starting1; if (sequence1_listp && !ZEROP (start1)) { sequence1 = Fnthcdr (start1, sequence1); if (NILP (sequence1)) { check_sequence_range (args[0], start1, end1, Flength (args[0])); /* Give up early here. */ return result; } ending1 -= starting1; starting1 = 0; } if (sequence2_listp && !ZEROP (start2)) { sequence2 = Fnthcdr (start2, sequence2); if (NILP (sequence2)) { check_sequence_range (args[1], start1, end1, Flength (args[1])); /* Nothing available to replace sequence1's contents. */ return result; } ending2 -= starting2; starting2 = 0; } if (overwriting) { if (EQ (start1, start2)) { return result; } /* Our ranges may overlap. Save the data that might be overwritten. */ if (CONSP (sequence2)) { Elemcount len = XINT (Flength (sequence2)); Lisp_Object *subsequence = alloca_array (Lisp_Object, min (ending2, len)); Elemcount ii = 0; LIST_LOOP_2 (elt, sequence2) { if (counting == ending2) { break; } subsequence[ii++] = elt; counting++; } check_sequence_range (sequence1, start1, end1, /* The XINT (start2) is intentional here; we called #'length after doing (nthcdr start2 sequence2). */ make_int (XINT (start2) + len)); check_sequence_range (sequence2, start2, end2, make_int (XINT (start2) + len)); while (starting1 < ending1 && starting2 < ending2 && !NILP (sequence1)) { XSETCAR (sequence1, subsequence[starting2]); sequence1 = XCDR (sequence1); starting1++; starting2++; } } else if (STRINGP (sequence2)) { Ibyte *p = XSTRING_DATA (sequence2), *pend = p + XSTRING_LENGTH (sequence2), *pcursor, *staging; Bytecount ii = 0; while (ii < starting2 && p < pend) { INC_IBYTEPTR (p); ii++; } pcursor = p; while (ii < ending2 && starting1 < ending1 && pcursor < pend) { INC_IBYTEPTR (pcursor); starting1++; ii++; } if (pcursor == pend) { check_sequence_range (sequence1, start1, end1, make_int (ii)); check_sequence_range (sequence2, start2, end2, make_int (ii)); } else { assert ((pcursor - p) > 0); staging = alloca_ibytes (pcursor - p); memcpy (staging, p, pcursor - p); replace_string_range (result, start1, make_int (starting1), staging, staging + (pcursor - p)); } } else { Elemcount seq_len = XINT (Flength (sequence2)), ii = 0, subseq_len = min (min (ending1 - starting1, seq_len - starting1), min (ending2 - starting2, seq_len - starting2)); Lisp_Object *subsequence = alloca_array (Lisp_Object, subseq_len); check_sequence_range (sequence1, start1, end1, make_int (seq_len)); check_sequence_range (sequence2, start2, end2, make_int (seq_len)); while (starting2 < ending2 && ii < seq_len) { subsequence[ii] = Faref (sequence2, make_int (starting2)); ii++, starting2++; } ii = 0; while (starting1 < ending1 && ii < seq_len) { Faset (sequence1, make_int (starting1), subsequence[ii]); ii++, starting1++; } } } else if (sequence1_listp && sequence2_listp) { Lisp_Object sequence1_tortoise = sequence1, sequence2_tortoise = sequence2; Elemcount shortest_len = 0; counting = startcounting = min (ending1, ending2); while (counting-- > 0 && !NILP (sequence1) && !NILP (sequence2)) { XSETCAR (sequence1, CONSP (sequence2) ? XCAR (sequence2) : Fcar (sequence2)); sequence1 = CONSP (sequence1) ? XCDR (sequence1) : Fcdr (sequence1); sequence2 = CONSP (sequence2) ? XCDR (sequence2) : Fcdr (sequence2); shortest_len++; if (startcounting - counting > CIRCULAR_LIST_SUSPICION_LENGTH) { if (counting & 1) { sequence1_tortoise = XCDR (sequence1_tortoise); sequence2_tortoise = XCDR (sequence2_tortoise); } if (EQ (sequence1, sequence1_tortoise)) { signal_circular_list_error (sequence1); } if (EQ (sequence2, sequence2_tortoise)) { signal_circular_list_error (sequence2); } } } if (NILP (sequence1)) { check_sequence_range (args[0], start1, end1, make_int (XINT (start1) + shortest_len)); } else if (NILP (sequence2)) { check_sequence_range (args[1], start2, end2, make_int (XINT (start2) + shortest_len)); } } else if (sequence1_listp) { if (STRINGP (sequence2)) { Ibyte *s2_data = XSTRING_DATA (sequence2), *s2_end = s2_data + XSTRING_LENGTH (sequence2); Elemcount char_count = 0; Lisp_Object character; while (char_count < starting2 && s2_data < s2_end) { INC_IBYTEPTR (s2_data); char_count++; } while (starting1 < ending1 && starting2 < ending2 && s2_data < s2_end && !NILP (sequence1)) { character = make_char (itext_ichar (s2_data)); CONSP (sequence1) ? XSETCAR (sequence1, character) : Fsetcar (sequence1, character); sequence1 = XCDR (sequence1); starting1++; starting2++; char_count++; INC_IBYTEPTR (s2_data); } if (NILP (sequence1)) { check_sequence_range (sequence1, start1, end1, make_int (XINT (start1) + starting1)); } if (s2_data == s2_end) { check_sequence_range (sequence2, start2, end2, make_int (char_count)); } } else { Elemcount len2 = XINT (Flength (sequence2)); check_sequence_range (sequence2, start2, end2, make_int (len2)); ending2 = min (ending2, len2); while (starting2 < ending2 && starting1 < ending1 && !NILP (sequence1)) { CHECK_CONS (sequence1); XSETCAR (sequence1, Faref (sequence2, make_int (starting2))); sequence1 = XCDR (sequence1); starting1++; starting2++; } if (NILP (sequence1)) { check_sequence_range (args[0], start1, end1, make_int (XINT (start1) + starting1)); } } } else if (sequence2_listp) { if (STRINGP (sequence1)) { Elemcount ii = 0, count, len = string_char_length (sequence1); Ibyte *staging, *cursor; Lisp_Object obj; check_sequence_range (sequence1, start1, end1, make_int (len)); ending1 = min (ending1, len); count = ending1 - starting1; staging = cursor = alloca_ibytes (count * MAX_ICHAR_LEN); while (ii < count && !NILP (sequence2)) { obj = CONSP (sequence2) ? XCAR (sequence2) : Fcar (sequence2); CHECK_CHAR_COERCE_INT (obj); cursor += set_itext_ichar (cursor, XCHAR (obj)); ii++; sequence2 = XCDR (sequence2); } if (NILP (sequence2)) { check_sequence_range (sequence2, start2, end2, make_int (XINT (start2) + ii)); } replace_string_range (result, start1, make_int (XINT (start1) + ii), staging, cursor); } else { Elemcount len = XINT (Flength (sequence1)); check_sequence_range (sequence1, start2, end1, make_int (len)); ending1 = min (ending2, min (ending1, len)); while (starting1 < ending1 && !NILP (sequence2)) { Faset (sequence1, make_int (starting1), CONSP (sequence2) ? XCAR (sequence2) : Fcar (sequence2)); sequence2 = XCDR (sequence2); starting1++; starting2++; } if (NILP (sequence2)) { check_sequence_range (args[1], start2, end2, make_int (XINT (start2) + starting2)); } } } else { if (STRINGP (sequence1) && STRINGP (sequence2)) { Ibyte *p2 = XSTRING_DATA (sequence2), *p2end = p2 + XSTRING_LENGTH (sequence2), *p2cursor; Charcount ii = 0, len1 = string_char_length (sequence1); check_sequence_range (sequence1, start1, end1, make_int (len1)); while (ii < starting2 && p2 < p2end) { INC_IBYTEPTR (p2); ii++; } p2cursor = p2; ending1 = min (ending1, len1); while (ii < ending2 && starting1 < ending1 && p2cursor < p2end) { INC_IBYTEPTR (p2cursor); ii++; starting1++; } if (p2cursor == p2end) { check_sequence_range (sequence2, start2, end2, make_int (ii)); } /* This isn't great; any error message won't necessarily reflect the END1 that was supplied to #'replace. */ replace_string_range (result, start1, make_int (starting1), p2, p2cursor); } else if (STRINGP (sequence1)) { Ibyte *staging, *cursor; Elemcount count, len1 = string_char_length (sequence1); Elemcount len2 = XINT (Flength (sequence2)), ii = 0; Lisp_Object obj; check_sequence_range (sequence1, start1, end1, make_int (len1)); check_sequence_range (sequence2, start2, end2, make_int (len2)); ending1 = min (ending1, len1); ending2 = min (ending2, len2); count = min (ending1 - starting1, ending2 - starting2); staging = cursor = alloca_ibytes (count * MAX_ICHAR_LEN); ii = 0; while (ii < count) { obj = Faref (sequence2, make_int (starting2)); CHECK_CHAR_COERCE_INT (obj); cursor += set_itext_ichar (cursor, XCHAR (obj)); starting2++, ii++; } replace_string_range (result, start1, make_int (XINT (start1) + count), staging, cursor); } else if (STRINGP (sequence2)) { Ibyte *p2 = XSTRING_DATA (sequence2), *p2end = p2 + XSTRING_LENGTH (sequence2); Elemcount len1 = XINT (Flength (sequence1)), ii = 0; check_sequence_range (sequence1, start1, end1, make_int (len1)); ending1 = min (ending1, len1); while (ii < starting2 && p2 < p2end) { INC_IBYTEPTR (p2); ii++; } while (p2 < p2end && starting1 < ending1 && starting2 < ending2) { Faset (sequence1, make_int (starting1), make_char (itext_ichar (p2))); INC_IBYTEPTR (p2); starting1++; starting2++; ii++; } if (p2 == p2end) { check_sequence_range (sequence2, start2, end2, make_int (ii)); } } else { Elemcount len1 = XINT (Flength (sequence1)), len2 = XINT (Flength (sequence2)); check_sequence_range (sequence1, start1, end1, make_int (len1)); check_sequence_range (sequence2, start2, end2, make_int (len2)); ending1 = min (ending1, len1); ending2 = min (ending2, len2); while (starting1 < ending1 && starting2 < ending2) { Faset (sequence1, make_int (starting1), Faref (sequence2, make_int (starting2))); starting1++; starting2++; } } } return result; } DEFUN ("nsubstitute", Fnsubstitute, 3, MANY, 0, /* Substitute NEW for OLD in SEQUENCE. This is a destructive function; it reuses the storage of SEQUENCE whenever possible. See `remove*' for the meaning of the keywords. arguments: (NEW OLD SEQUENCE &key (TEST #'eql) (KEY #'identity) (START 0) (END (length SEQUENCE)) FROM-END COUNT) */ (int nargs, Lisp_Object *args)) { Lisp_Object new_ = args[0], item = args[1], sequence = args[2], tail = Qnil; Lisp_Object object_, position0; Elemcount starting = 0, ending = EMACS_INT_MAX, encountered = 0; Elemcount len, ii = 0, counting = EMACS_INT_MAX, presenting = 0; Boolint test_not_unboundp = 1; check_test_func_t check_test = NULL; struct gcpro gcpro1; PARSE_KEYWORDS (Fnsubstitute, nargs, args, 9, (test, if_, if_not, test_not, key, start, end, count, from_end), (start = Qzero)); CHECK_SEQUENCE (sequence); CHECK_NATNUM (start); starting = BIGNUMP (start) ? 1 + EMACS_INT_MAX : XINT (start); if (!NILP (end)) { CHECK_NATNUM (end); ending = BIGNUMP (end) ? 1 + EMACS_INT_MAX : XINT (end); } if (!NILP (count)) { CHECK_INTEGER (count); if (INTP (count)) { counting = XINT (count); } #ifdef HAVE_BIGNUM else { counting = bignum_sign (XBIGNUM_DATA (count)) > 0 ? 1 + EMACS_INT_MAX : -1 + EMACS_INT_MIN; } #endif if (counting <= 0) { return sequence; } } check_test = get_check_test_function (item, &test, test_not, if_, if_not, key, &test_not_unboundp); if (CONSP (sequence)) { Lisp_Object elt; if (!NILP (count) && !NILP (from_end)) { Lisp_Object present = count_with_tail (&elt, nargs - 1, args + 1, Qnsubstitute); if (ZEROP (present)) { return sequence; } presenting = XINT (present); presenting = presenting <= counting ? 0 : presenting - counting; } GCPRO1 (tail); { EXTERNAL_LIST_LOOP_4_NO_DECLARE (elt, sequence, tail, len) { if (!(ii < ending)) { break; } if (starting <= ii && check_test (test, key, item, elt) == test_not_unboundp && (presenting ? encountered++ >= presenting : encountered++ < counting)) { CHECK_LISP_WRITEABLE (tail); XSETCAR (tail, new_); } else if (!presenting && encountered >= counting) { break; } ii++; } } UNGCPRO; if ((ii < starting || (ii < ending && !NILP (end))) && encountered < counting) { check_sequence_range (args[0], start, end, Flength (args[0])); } } else if (STRINGP (sequence)) { Ibyte *staging, new_bytes[MAX_ICHAR_LEN], *staging_cursor; Ibyte *startp = XSTRING_DATA (sequence), *cursor = startp; Bytecount cursor_offset = 0, byte_len = XSTRING_LENGTH (sequence); Bytecount new_len; Lisp_Object character; CHECK_CHAR_COERCE_INT (new_); new_len = set_itext_ichar (new_bytes, XCHAR (new_)); /* Worst case scenario; new char is four octets long, all the old ones were one octet long, all the old ones match. */ staging = alloca_ibytes (XSTRING_LENGTH (sequence) * new_len); staging_cursor = staging; if (!NILP (count) && !NILP (from_end)) { Lisp_Object present = count_with_tail (&character, nargs - 1, args + 1, Qnsubstitute); if (ZEROP (present)) { return sequence; } presenting = XINT (present); /* If there are fewer items in the string than we have permission to change, we don't need to differentiate between the :from-end nil and :from-end t cases. Otherwise, presenting is the number of matching items we need to ignore before we start to change. */ presenting = presenting <= counting ? 0 : presenting - counting; } ii = 0; while (cursor_offset < byte_len && ii < ending) { if (ii >= starting) { character = make_char (itext_ichar (cursor)); if ((check_test (test, key, item, character) == test_not_unboundp) && (presenting ? encountered++ >= presenting : encountered++ < counting)) { staging_cursor += itext_copy_ichar (new_bytes, staging_cursor); } else { staging_cursor += itext_copy_ichar (cursor, staging_cursor); } startp = XSTRING_DATA (sequence); cursor = startp + cursor_offset; if (byte_len != XSTRING_LENGTH (sequence) || !valid_ibyteptr_p (cursor)) { mapping_interaction_error (Qnsubstitute, sequence); } } else { staging_cursor += itext_copy_ichar (cursor, staging_cursor); } INC_IBYTEPTR (cursor); cursor_offset = cursor - startp; ii++; } if (ii < starting || (ii < ending && !NILP (end))) { check_sequence_range (sequence, start, end, Flength (sequence)); } if (0 != encountered) { CHECK_LISP_WRITEABLE (sequence); replace_string_range (sequence, Qzero, make_int (ii), staging, staging_cursor); } } else { Elemcount positioning; Lisp_Object object = Qnil; len = XINT (Flength (sequence)); check_sequence_range (sequence, start, end, make_int (len)); position0 = position (&object, item, sequence, check_test, test_not_unboundp, test, key, start, end, from_end, Qnil, Qnsubstitute); if (NILP (position0)) { return sequence; } positioning = XINT (position0); ending = min (len, ending); Faset (sequence, position0, new_); encountered = 1; if (NILP (from_end)) { for (ii = positioning + 1; ii < ending; ii++) { object_ = Faref (sequence, make_int (ii)); if (check_test (test, key, item, object_) == test_not_unboundp && encountered++ < counting) { Faset (sequence, make_int (ii), new_); } else if (encountered == counting) { break; } } } else { for (ii = positioning - 1; ii >= starting; ii--) { object_ = Faref (sequence, make_int (ii)); if (check_test (test, key, item, object_) == test_not_unboundp && encountered++ < counting) { Faset (sequence, make_int (ii), new_); } else if (encountered == counting) { break; } } } } return sequence; } DEFUN ("substitute", Fsubstitute, 3, MANY, 0, /* Substitute NEW for OLD in SEQUENCE. This is a non-destructive function; it makes a copy of SEQUENCE if necessary to avoid corrupting the original SEQUENCE. See `remove*' for the meaning of the keywords. arguments: (NEW OLD SEQUENCE &key (TEST #'eql) (KEY #'identity) (START 0) (END (length SEQUENCE)) COUNT) */ (int nargs, Lisp_Object *args)) { Lisp_Object new_ = args[0], item = args[1], sequence = args[2], tail = Qnil; Lisp_Object elt, tailing = Qnil, result = Qnil, result_tail = Qnil; Lisp_Object object, position0, matched_count; Elemcount starting = 0, ending = EMACS_INT_MAX, encountered = 0; Elemcount len, ii = 0, counting = EMACS_INT_MAX, presenting = 0; Boolint test_not_unboundp = 1; check_test_func_t check_test = NULL; struct gcpro gcpro1; PARSE_KEYWORDS (Fsubstitute, nargs, args, 9, (test, if_, if_not, test_not, key, start, end, count, from_end), (start = Qzero, count = Qunbound)); CHECK_SEQUENCE (sequence); CHECK_NATNUM (start); starting = BIGNUMP (start) ? 1 + EMACS_INT_MAX : XINT (start); if (!NILP (end)) { CHECK_NATNUM (end); ending = BIGNUMP (end) ? 1 + EMACS_INT_MAX : XINT (end); } check_test = get_check_test_function (item, &test, test_not, if_, if_not, key, &test_not_unboundp); if (!UNBOUNDP (count)) { if (!NILP (count)) { CHECK_INTEGER (count); if (INTP (count)) { counting = XINT (count); } #ifdef HAVE_BIGNUM else { counting = bignum_sign (XBIGNUM_DATA (count)) > 0 ? 1 + EMACS_INT_MAX : -1 + EMACS_INT_MIN; } #endif if (counting <= 0) { return sequence; } } } if (!CONSP (sequence)) { position0 = position (&object, item, sequence, check_test, test_not_unboundp, test, key, start, end, from_end, Qnil, Qsubstitute); if (NILP (position0)) { return sequence; } else { args[2] = Fcopy_sequence (sequence); return Fnsubstitute (nargs, args); } } matched_count = count_with_tail (&tail, nargs - 1, args + 1, Qsubstitute); if (ZEROP (matched_count)) { return sequence; } if (!NILP (count) && !NILP (from_end)) { presenting = XINT (matched_count); presenting = presenting <= counting ? 0 : presenting - counting; } GCPRO1 (tailing); { EXTERNAL_LIST_LOOP_4_NO_DECLARE (elt, sequence, tailing, len) { if (EQ (tail, tailing)) { if (NILP (result)) { RETURN_UNGCPRO (XCDR (tail)); } XSETCDR (result_tail, XCDR (tail)); RETURN_UNGCPRO (result); } else if (starting <= ii && ii < ending && (check_test (test, key, item, elt) == test_not_unboundp) && (presenting ? encountered++ >= presenting : encountered++ < counting)) { if (NILP (result)) { result = result_tail = Fcons (new_, Qnil); } else { XSETCDR (result_tail, Fcons (new_, Qnil)); result_tail = XCDR (result_tail); } } else if (NILP (result)) { result = result_tail = Fcons (elt, Qnil); } else { XSETCDR (result_tail, Fcons (elt, Qnil)); result_tail = XCDR (result_tail); } if (ii == ending) { break; } ii++; } } UNGCPRO; if (ii < starting || (ii < ending && !NILP (end))) { check_sequence_range (args[0], start, end, Flength (args[0])); } return result; } static Lisp_Object subst (Lisp_Object new_, Lisp_Object old, Lisp_Object tree, int depth) { if (depth + lisp_eval_depth > max_lisp_eval_depth) { stack_overflow ("Stack overflow in subst", tree); } if (EQ (tree, old)) { return new_; } else if (CONSP (tree)) { Lisp_Object aa = subst (new_, old, XCAR (tree), depth + 1); Lisp_Object dd = subst (new_, old, XCDR (tree), depth + 1); if (EQ (aa, XCAR (tree)) && EQ (dd, XCDR (tree))) { return tree; } else { return Fcons (aa, dd); } } else { return tree; } } static Lisp_Object sublis (Lisp_Object alist, Lisp_Object tree, check_test_func_t check_test, Boolint test_not_unboundp, Lisp_Object test, Lisp_Object key, int depth) { Lisp_Object keyed = KEY (key, tree), tailed = alist, aa, dd; struct gcpro gcpro1, gcpro2, gcpro3; if (depth + lisp_eval_depth > max_lisp_eval_depth) { stack_overflow ("Stack overflow in sublis", tree); } GCPRO3 (tailed, alist, tree); { EXTERNAL_ALIST_LOOP_5 (elt, elt_car, elt_cdr, alist, tail) { tailed = tail; if (check_test (test, key, elt_car, keyed) == test_not_unboundp) { /* Don't use elt_cdr, it is helpful to allow TEST or KEY to modify the alist while it executes. */ RETURN_UNGCPRO (XCDR (elt)); } } } if (!CONSP (tree)) { RETURN_UNGCPRO (tree); } aa = sublis (alist, XCAR (tree), check_test, test_not_unboundp, test, key, depth + 1); dd = sublis (alist, XCDR (tree), check_test, test_not_unboundp, test, key, depth + 1); if (EQ (aa, XCAR (tree)) && EQ (dd, XCDR (tree))) { RETURN_UNGCPRO (tree); } RETURN_UNGCPRO (Fcons (aa, dd)); } DEFUN ("sublis", Fsublis, 2, MANY, 0, /* Perform substitutions indicated by ALIST in TREE (non-destructively). Return a copy of TREE with all matching elements replaced. See `member*' for the meaning of :test, :test-not and :key. arguments: (ALIST TREE &key (TEST #'eql) (KEY #'identity) TEST-NOT) */ (int nargs, Lisp_Object *args)) { Lisp_Object alist = args[0], tree = args[1]; Boolint test_not_unboundp = 1; check_test_func_t check_test = NULL; PARSE_KEYWORDS (Fsublis, nargs, args, 5, (test, if_, test_not, if_not, key), (key = Qidentity)); if (NILP (key)) { key = Qidentity; } get_check_match_function (&test, test_not, if_, if_not, /* sublis() is going to apply the key, don't ask for a match function that will do it for us. */ Qidentity, &test_not_unboundp, &check_test); if (CONSP (alist) && NILP (XCDR (alist)) && CONSP (XCAR (alist)) && EQ (key, Qidentity) && 1 == test_not_unboundp && (check_eq_nokey == check_test || (check_eql_nokey == check_test && !NON_FIXNUM_NUMBER_P (XCAR (XCAR (alist)))))) { /* #'subst with #'eq is very cheap indeed; call it. */ return subst (XCDR (XCAR (alist)), XCAR (XCAR (alist)), tree, 0); } return sublis (alist, tree, check_test, test_not_unboundp, test, key, 0); } static Lisp_Object nsublis (Lisp_Object alist, Lisp_Object tree, check_test_func_t check_test, Boolint test_not_unboundp, Lisp_Object test, Lisp_Object key, int depth) { Lisp_Object tree_saved = tree, tailed = alist, tortoise = tree, keyed = Qnil; struct gcpro gcpro1, gcpro2, gcpro3, gcpro4; int count = 0; if (depth + lisp_eval_depth > max_lisp_eval_depth) { stack_overflow ("Stack overflow in nsublis", tree); } GCPRO4 (tailed, alist, tree_saved, keyed); while (CONSP (tree)) { Boolint replaced = 0; keyed = KEY (key, XCAR (tree)); { EXTERNAL_ALIST_LOOP_5 (elt, elt_car, elt_cdr, alist, tail) { tailed = tail; if (check_test (test, key, elt_car, keyed) == test_not_unboundp) { CHECK_LISP_WRITEABLE (tree); /* See comment in sublis() on using elt_cdr. */ XSETCAR (tree, XCDR (elt)); replaced = 1; break; } } } if (!replaced) { if (CONSP (XCAR (tree))) { nsublis (alist, XCAR (tree), check_test, test_not_unboundp, test, key, depth + 1); } } keyed = KEY (key, XCDR (tree)); replaced = 0; { EXTERNAL_ALIST_LOOP_5 (elt, elt_car, elt_cdr, alist, tail) { tailed = tail; if (check_test (test, key, elt_car, keyed) == test_not_unboundp) { CHECK_LISP_WRITEABLE (tree); /* See comment in sublis() on using elt_cdr. */ XSETCDR (tree, XCDR (elt)); tree = Qnil; break; } } } if (!NILP (tree)) { tree = XCDR (tree); } if (++count > CIRCULAR_LIST_SUSPICION_LENGTH) { if (count & 1) { tortoise = XCDR (tortoise); } if (EQ (tortoise, tree)) { signal_circular_list_error (tree); } } } RETURN_UNGCPRO (tree_saved); } DEFUN ("nsublis", Fnsublis, 2, MANY, 0, /* Perform substitutions indicated by ALIST in TREE (destructively). Any matching element of TREE is changed via a call to `setcar'. See `member*' for the meaning of :test, :test-not and :key. arguments: (ALIST TREE &key (TEST #'eql) (KEY #'identity) TEST-NOT) */ (int nargs, Lisp_Object *args)) { Lisp_Object alist = args[0], tree = args[1], tailed = Qnil, keyed = Qnil; Boolint test_not_unboundp = 1; check_test_func_t check_test = NULL; struct gcpro gcpro1, gcpro2; PARSE_KEYWORDS (Fnsublis, nargs, args, 5, (test, if_, test_not, if_not, key), (key = Qidentity)); if (NILP (key)) { key = Qidentity; } get_check_match_function (&test, test_not, if_, if_not, /* nsublis() is going to apply the key, don't ask for a match function that will do it for us. */ Qidentity, &test_not_unboundp, &check_test); GCPRO2 (tailed, keyed); keyed = KEY (key, tree); { /* nsublis() won't attempt to replace a cons handed to it, do that ourselves. */ EXTERNAL_ALIST_LOOP_5 (elt, elt_car, elt_cdr, alist, tail) { tailed = tail; if (check_test (test, key, elt_car, keyed) == test_not_unboundp) { /* See comment in sublis() on using elt_cdr. */ RETURN_UNGCPRO (XCDR (elt)); } } } UNGCPRO; return nsublis (alist, tree, check_test, test_not_unboundp, test, key, 0); } DEFUN ("subst", Fsubst, 3, MANY, 0, /* Substitute NEW for OLD everywhere in TREE (non-destructively). Return a copy of TREE with all elements `eql' to OLD replaced by NEW. See `member*' for the meaning of :test, :test-not and :key. arguments: (NEW OLD TREE &key (TEST #'eql) (KEY #'identity) TEST-NOT) */ (int nargs, Lisp_Object *args)) { Lisp_Object result, alist = noseeum_cons (noseeum_cons (args[1], args[0]), Qnil); args[1] = alist; result = Fsublis (nargs - 1, args + 1); free_cons (XCAR (alist)); free_cons (alist); return result; } DEFUN ("nsubst", Fnsubst, 3, MANY, 0, /* Substitute NEW for OLD everywhere in TREE (destructively). Any element of TREE which is `eql' to OLD is changed to NEW (via a call to `setcar'). See `member*' for the meaning of the keywords. arguments: (NEW OLD TREE &key (TEST #'eql) (KEY #'identity) TEST-NOT) */ (int nargs, Lisp_Object *args)) { Lisp_Object result, alist = noseeum_cons (noseeum_cons (args[1], args[0]), Qnil); args[1] = alist; result = Fnsublis (nargs - 1, args + 1); free_cons (XCAR (alist)); free_cons (alist); return result; } static Boolint tree_equal (Lisp_Object tree1, Lisp_Object tree2, check_test_func_t check_test, Boolint test_not_unboundp, Lisp_Object test, Lisp_Object key, int depth) { Lisp_Object tortoise1 = tree1, tortoise2 = tree2; struct gcpro gcpro1, gcpro2; int count = 0; Boolint result; if (depth + lisp_eval_depth > max_lisp_eval_depth) { stack_overflow ("Stack overflow in tree-equal", tree1); } GCPRO2 (tree1, tree2); while (CONSP (tree1) && CONSP (tree2) && tree_equal (XCAR (tree1), XCAR (tree2), check_test, test_not_unboundp, test, key, depth + 1)) { tree1 = XCDR (tree1); tree2 = XCDR (tree2); if (++count > CIRCULAR_LIST_SUSPICION_LENGTH) { if (count & 1) { tortoise1 = XCDR (tortoise1); tortoise2 = XCDR (tortoise2); } if (EQ (tortoise1, tree1)) { signal_circular_list_error (tree1); } if (EQ (tortoise2, tree2)) { signal_circular_list_error (tree2); } } } if (CONSP (tree1) || CONSP (tree2)) { UNGCPRO; return 0; } result = check_test (test, key, tree1, tree2) == test_not_unboundp; UNGCPRO; return result; } DEFUN ("tree-equal", Ftree_equal, 2, MANY, 0, /* Return t if TREE1 and TREE2 have `eql' leaves. Atoms are compared by `eql', unless another test is specified using :test; cons cells are compared recursively. See `union' for the meaning of :test, :test-not and :key. arguments: (TREE1 TREE2 &key (TEST #'eql) (KEY #'identity) TEST-NOT) */ (int nargs, Lisp_Object *args)) { Lisp_Object tree1 = args[0], tree2 = args[1]; Boolint test_not_unboundp = 1; check_test_func_t check_test = NULL; PARSE_KEYWORDS (Ftree_equal, nargs, args, 3, (test, key, test_not), (key = Qidentity)); get_check_match_function (&test, test_not, Qnil, Qnil, key, &test_not_unboundp, &check_test); return tree_equal (tree1, tree2, check_test, test_not_unboundp, test, key, 0) ? Qt : Qnil; } static Lisp_Object mismatch_from_end (Lisp_Object sequence1, Lisp_Object start1, Lisp_Object end1, Lisp_Object sequence2, Lisp_Object start2, Lisp_Object end2, check_test_func_t check_match, Boolint test_not_unboundp, Lisp_Object test, Lisp_Object key, Boolint UNUSED (return_sequence1_index)) { Elemcount sequence1_len = XINT (Flength (sequence1)); Elemcount sequence2_len = XINT (Flength (sequence2)), ii = 0; Elemcount starting1, ending1, starting2, ending2; Lisp_Object *sequence1_storage = NULL, *sequence2_storage = NULL; struct gcpro gcpro1, gcpro2; check_sequence_range (sequence1, start1, end1, make_int (sequence1_len)); starting1 = XINT (start1); ending1 = INTP (end1) ? XINT (end1) : 1 + EMACS_INT_MAX; ending1 = min (ending1, sequence1_len); check_sequence_range (sequence2, start2, end2, make_int (sequence2_len)); starting2 = XINT (start2); ending2 = INTP (end2) ? XINT (end2) : 1 + EMACS_INT_MAX; ending2 = min (ending2, sequence2_len); if (LISTP (sequence1)) { Lisp_Object *saving; sequence1_storage = saving = alloca_array (Lisp_Object, ending1 - starting1); { EXTERNAL_LIST_LOOP_2 (elt, sequence1) { if (starting1 <= ii && ii < ending1) { *saving++ = elt; } else if (ii == ending1) { break; } ++ii; } } } else if (STRINGP (sequence1)) { const Ibyte *cursor = string_char_addr (sequence1, starting1); STRING_DATA_TO_OBJECT_ARRAY (cursor, sequence1_storage, ii, ending1 - starting1); } else if (BIT_VECTORP (sequence1)) { Lisp_Bit_Vector *vv = XBIT_VECTOR (sequence1); sequence1_storage = alloca_array (Lisp_Object, ending1 - starting1); for (ii = starting1; ii < ending1; ++ii) { sequence1_storage[ii - starting1] = make_int (bit_vector_bit (vv, ii)); } } else { sequence1_storage = XVECTOR_DATA (sequence1) + starting1; } ii = 0; if (LISTP (sequence2)) { Lisp_Object *saving; sequence2_storage = saving = alloca_array (Lisp_Object, ending2 - starting2); { EXTERNAL_LIST_LOOP_2 (elt, sequence2) { if (starting2 <= ii && ii < ending2) { *saving++ = elt; } else if (ii == ending2) { break; } ++ii; } } } else if (STRINGP (sequence2)) { const Ibyte *cursor = string_char_addr (sequence2, starting2); STRING_DATA_TO_OBJECT_ARRAY (cursor, sequence2_storage, ii, ending2 - starting2); } else if (BIT_VECTORP (sequence2)) { Lisp_Bit_Vector *vv = XBIT_VECTOR (sequence2); sequence2_storage = alloca_array (Lisp_Object, ending2 - starting2); for (ii = starting2; ii < ending2; ++ii) { sequence2_storage[ii - starting2] = make_int (bit_vector_bit (vv, ii)); } } else { sequence2_storage = XVECTOR_DATA (sequence2) + starting2; } GCPRO2 (sequence1_storage[0], sequence2_storage[0]); gcpro1.nvars = ending1 - starting1; gcpro2.nvars = ending2 - starting2; while (ending1 > starting1 && ending2 > starting2) { --ending1; --ending2; if (check_match (test, key, sequence1_storage[ending1 - starting1], sequence2_storage[ending2 - starting2]) != test_not_unboundp) { UNGCPRO; return make_integer (ending1 + 1); } } UNGCPRO; if (ending1 > starting1 || ending2 > starting2) { return make_integer (ending1); } return Qnil; } static Lisp_Object mismatch_list_list (Lisp_Object sequence1, Lisp_Object start1, Lisp_Object end1, Lisp_Object sequence2, Lisp_Object start2, Lisp_Object end2, check_test_func_t check_match, Boolint test_not_unboundp, Lisp_Object test, Lisp_Object key, Boolint UNUSED (return_list_index)) { Lisp_Object sequence1_tortoise = sequence1, sequence2_tortoise = sequence2; Lisp_Object orig_sequence1 = sequence1, orig_sequence2 = sequence2; Elemcount ending1 = EMACS_INT_MAX, ending2 = EMACS_INT_MAX; Elemcount starting1, starting2, counting, startcounting; Elemcount shortest_len = 0; struct gcpro gcpro1, gcpro2, gcpro3, gcpro4; starting1 = INTP (start1) ? XINT (start1) : 1 + EMACS_INT_MAX; starting2 = INTP (start2) ? XINT (start2) : 1 + EMACS_INT_MAX; if (!NILP (end1)) { ending1 = INTP (end1) ? XINT (end1) : 1 + EMACS_INT_MAX; } if (!NILP (end2)) { ending2 = INTP (end2) ? XINT (end2) : 1 + EMACS_INT_MAX; } if (!ZEROP (start1)) { sequence1 = Fnthcdr (start1, sequence1); if (NILP (sequence1)) { check_sequence_range (sequence1_tortoise, start1, end1, Flength (sequence1_tortoise)); /* Give up early here. */ return Qnil; } ending1 -= starting1; starting1 = 0; sequence1_tortoise = sequence1; } if (!ZEROP (start2)) { sequence2 = Fnthcdr (start2, sequence2); if (NILP (sequence2)) { check_sequence_range (sequence2_tortoise, start2, end2, Flength (sequence2_tortoise)); return Qnil; } ending2 -= starting2; starting2 = 0; sequence2_tortoise = sequence2; } GCPRO4 (sequence1, sequence2, sequence1_tortoise, sequence2_tortoise); counting = startcounting = min (ending1, ending2); while (counting-- > 0 && !NILP (sequence1) && !NILP (sequence2)) { if (check_match (test, key, CONSP (sequence1) ? XCAR (sequence1) : Fcar (sequence1), CONSP (sequence2) ? XCAR (sequence2) : Fcar (sequence2) ) != test_not_unboundp) { UNGCPRO; return make_integer (XINT (start1) + shortest_len); } sequence1 = CONSP (sequence1) ? XCDR (sequence1) : Fcdr (sequence1); sequence2 = CONSP (sequence2) ? XCDR (sequence2) : Fcdr (sequence2); shortest_len++; if (startcounting - counting > CIRCULAR_LIST_SUSPICION_LENGTH) { if (counting & 1) { sequence1_tortoise = XCDR (sequence1_tortoise); sequence2_tortoise = XCDR (sequence2_tortoise); } if (EQ (sequence1, sequence1_tortoise)) { signal_circular_list_error (sequence1); } if (EQ (sequence2, sequence2_tortoise)) { signal_circular_list_error (sequence2); } } } UNGCPRO; if (NILP (sequence1)) { Lisp_Object args[] = { start1, make_int (shortest_len) }; check_sequence_range (orig_sequence1, start1, end1, Fplus (countof (args), args)); } if (NILP (sequence2)) { Lisp_Object args[] = { start2, make_int (shortest_len) }; check_sequence_range (orig_sequence2, start2, end2, Fplus (countof (args), args)); } if ((!NILP (end1) && shortest_len != ending1 - starting1) || (!NILP (end2) && shortest_len != ending2 - starting2)) { return make_integer (XINT (start1) + shortest_len); } if ((NILP (end1) && CONSP (sequence1)) || (NILP (end2) && CONSP (sequence2))) { return make_integer (XINT (start1) + shortest_len); } return Qnil; } static Lisp_Object mismatch_list_string (Lisp_Object list, Lisp_Object list_start, Lisp_Object list_end, Lisp_Object string, Lisp_Object string_start, Lisp_Object string_end, check_test_func_t check_match, Boolint test_not_unboundp, Lisp_Object test, Lisp_Object key, Boolint return_list_index) { Ibyte *string_data = XSTRING_DATA (string), *startp = string_data; Bytecount string_offset = 0, string_len = XSTRING_LENGTH (string); Elemcount char_count = 0, list_starting, list_ending; Elemcount string_starting, string_ending; Lisp_Object character, orig_list = list; struct gcpro gcpro1; list_ending = INTP (list_end) ? XINT (list_end) : 1 + EMACS_INT_MAX; list_starting = INTP (list_start) ? XINT (list_start) : 1 + EMACS_INT_MAX; string_ending = INTP (string_end) ? XINT (string_end) : 1 + EMACS_INT_MAX; string_starting = INTP (string_start) ? XINT (string_start) : 1 + EMACS_INT_MAX; while (char_count < string_starting && string_offset < string_len) { INC_IBYTEPTR (string_data); string_offset = string_data - startp; char_count++; } if (!ZEROP (list_start)) { list = Fnthcdr (list_start, list); if (NILP (list)) { check_sequence_range (orig_list, list_start, list_end, Flength (orig_list)); return Qnil; } list_ending -= list_starting; list_starting = 0; } GCPRO1 (list); while (list_starting < list_ending && string_starting < string_ending && string_offset < string_len && !NILP (list)) { character = make_char (itext_ichar (string_data)); if (return_list_index) { if (check_match (test, key, CONSP (list) ? XCAR (list) : Fcar (list), character) != test_not_unboundp) { UNGCPRO; return make_integer (XINT (list_start) + char_count); } } else { if (check_match (test, key, character, CONSP (list) ? XCAR (list) : Fcar (list)) != test_not_unboundp) { UNGCPRO; return make_integer (char_count); } } list = CONSP (list) ? XCDR (list) : Fcdr (list); startp = XSTRING_DATA (string); string_data = startp + string_offset; if (string_len != XSTRING_LENGTH (string) || !valid_ibyteptr_p (string_data)) { mapping_interaction_error (Qmismatch, string); } list_starting++; string_starting++; char_count++; INC_IBYTEPTR (string_data); string_offset = string_data - startp; } UNGCPRO; if (NILP (list)) { Lisp_Object args[] = { list_start, make_int (char_count) }; check_sequence_range (orig_list, list_start, list_end, Fplus (countof (args), args)); } if (string_data == XSTRING_DATA (string) + XSTRING_LENGTH (string)) { check_sequence_range (string, string_start, string_end, make_int (char_count)); } if ((NILP (string_end) ? string_offset < string_len : string_starting < string_ending) || (NILP (list_end) ? !NILP (list) : list_starting < list_ending)) { return make_integer (return_list_index ? XINT (list_start) + char_count : char_count); } return Qnil; } static Lisp_Object mismatch_list_array (Lisp_Object list, Lisp_Object list_start, Lisp_Object list_end, Lisp_Object array, Lisp_Object array_start, Lisp_Object array_end, check_test_func_t check_match, Boolint test_not_unboundp, Lisp_Object test, Lisp_Object key, Boolint return_list_index) { Elemcount ii = 0, list_starting, list_ending; Elemcount array_starting, array_ending, array_len; Lisp_Object orig_list = list; struct gcpro gcpro1; list_ending = INTP (list_end) ? XINT (list_end) : 1 + EMACS_INT_MAX; list_starting = INTP (list_start) ? XINT (list_start) : 1 + EMACS_INT_MAX; array_ending = INTP (array_end) ? XINT (array_end) : 1 + EMACS_INT_MAX; array_starting = INTP (array_start) ? XINT (array_start) : 1 + EMACS_INT_MAX; array_len = XINT (Flength (array)); array_ending = min (array_ending, array_len); check_sequence_range (array, array_start, array_end, make_int (array_len)); if (!ZEROP (list_start)) { list = Fnthcdr (list_start, list); if (NILP (list)) { check_sequence_range (orig_list, list_start, list_end, Flength (orig_list)); return Qnil; } list_ending -= list_starting; list_starting = 0; } GCPRO1 (list); while (list_starting < list_ending && array_starting < array_ending && !NILP (list)) { if (return_list_index) { if (check_match (test, key, CONSP (list) ? XCAR (list) : Fcar (list), Faref (array, make_int (array_starting))) != test_not_unboundp) { UNGCPRO; return make_integer (XINT (list_start) + ii); } } else { if (check_match (test, key, Faref (array, make_int (array_starting)), CONSP (list) ? XCAR (list) : Fcar (list)) != test_not_unboundp) { UNGCPRO; return make_integer (array_starting); } } list = CONSP (list) ? XCDR (list) : Fcdr (list); list_starting++; array_starting++; ii++; } UNGCPRO; if (NILP (list)) { Lisp_Object args[] = { list_start, make_int (ii) }; check_sequence_range (orig_list, list_start, list_end, Fplus (countof (args), args)); } if (array_starting < array_ending || (NILP (list_end) ? !NILP (list) : list_starting < list_ending)) { return make_integer (return_list_index ? XINT (list_start) + ii : array_starting); } return Qnil; } static Lisp_Object mismatch_string_array (Lisp_Object string, Lisp_Object string_start, Lisp_Object string_end, Lisp_Object array, Lisp_Object array_start, Lisp_Object array_end, check_test_func_t check_match, Boolint test_not_unboundp, Lisp_Object test, Lisp_Object key, Boolint return_string_index) { Ibyte *string_data = XSTRING_DATA (string), *startp = string_data; Bytecount string_offset = 0, string_len = XSTRING_LENGTH (string); Elemcount char_count = 0, array_starting, array_ending, array_length; Elemcount string_starting, string_ending; Lisp_Object character; array_starting = INTP (array_start) ? XINT (array_start) : 1 + EMACS_INT_MAX; array_ending = INTP (array_end) ? XINT (array_end) : 1 + EMACS_INT_MAX; array_length = XINT (Flength (array)); check_sequence_range (array, array_start, array_end, make_int (array_length)); array_ending = min (array_ending, array_length); string_ending = INTP (string_end) ? XINT (string_end) : 1 + EMACS_INT_MAX; string_starting = INTP (string_start) ? XINT (string_start) : 1 + EMACS_INT_MAX; while (char_count < string_starting && string_offset < string_len) { INC_IBYTEPTR (string_data); string_offset = string_data - startp; char_count++; } while (array_starting < array_ending && string_starting < string_ending && string_offset < string_len) { character = make_char (itext_ichar (string_data)); if (return_string_index) { if (check_match (test, key, character, Faref (array, make_int (array_starting))) != test_not_unboundp) { return make_integer (char_count); } } else { if (check_match (test, key, Faref (array, make_int (array_starting)), character) != test_not_unboundp) { return make_integer (XINT (array_start) + char_count); } } startp = XSTRING_DATA (string); string_data = startp + string_offset; if (string_len != XSTRING_LENGTH (string) || !valid_ibyteptr_p (string_data)) { mapping_interaction_error (Qmismatch, string); } array_starting++; string_starting++; char_count++; INC_IBYTEPTR (string_data); string_offset = string_data - startp; } if (string_data == XSTRING_DATA (string) + XSTRING_LENGTH (string)) { check_sequence_range (string, string_start, string_end, make_int (char_count)); } if ((NILP (string_end) ? string_offset < string_len : string_starting < string_ending) || (NILP (array_end) ? !NILP (array) : array_starting < array_ending)) { return make_integer (return_string_index ? char_count : XINT (array_start) + char_count); } return Qnil; } static Lisp_Object mismatch_string_string (Lisp_Object string1, Lisp_Object string1_start, Lisp_Object string1_end, Lisp_Object string2, Lisp_Object string2_start, Lisp_Object string2_end, check_test_func_t check_match, Boolint test_not_unboundp, Lisp_Object test, Lisp_Object key, Boolint UNUSED (return_string1_index)) { Ibyte *string1_data = XSTRING_DATA (string1), *startp1 = string1_data; Bytecount string1_offset = 0, string1_len = XSTRING_LENGTH (string1); Ibyte *string2_data = XSTRING_DATA (string2), *startp2 = string2_data; Bytecount string2_offset = 0, string2_len = XSTRING_LENGTH (string2); Elemcount char_count1 = 0, string1_starting, string1_ending; Elemcount char_count2 = 0, string2_starting, string2_ending; Lisp_Object character1, character2; string1_ending = INTP (string1_end) ? XINT (string1_end) : 1 + EMACS_INT_MAX; string1_starting = INTP (string1_start) ? XINT (string1_start) : 1 + EMACS_INT_MAX; string2_starting = INTP (string2_start) ? XINT (string2_start) : 1 + EMACS_INT_MAX; string2_ending = INTP (string2_end) ? XINT (string2_end) : 1 + EMACS_INT_MAX; while (char_count1 < string1_starting && string1_offset < string1_len) { INC_IBYTEPTR (string1_data); string1_offset = string1_data - startp1; char_count1++; } while (char_count2 < string2_starting && string2_offset < string2_len) { INC_IBYTEPTR (string2_data); string2_offset = string2_data - startp2; char_count2++; } while (string2_starting < string2_ending && string1_starting < string1_ending && string1_offset < string1_len && string2_offset < string2_len) { character1 = make_char (itext_ichar (string1_data)); character2 = make_char (itext_ichar (string2_data)); if (check_match (test, key, character1, character2) != test_not_unboundp) { return make_integer (char_count1); } startp1 = XSTRING_DATA (string1); string1_data = startp1 + string1_offset; if (string1_len != XSTRING_LENGTH (string1) || !valid_ibyteptr_p (string1_data)) { mapping_interaction_error (Qmismatch, string1); } startp2 = XSTRING_DATA (string2); string2_data = startp2 + string2_offset; if (string2_len != XSTRING_LENGTH (string2) || !valid_ibyteptr_p (string2_data)) { mapping_interaction_error (Qmismatch, string2); } string2_starting++; string1_starting++; char_count1++; char_count2++; INC_IBYTEPTR (string1_data); string1_offset = string1_data - startp1; INC_IBYTEPTR (string2_data); string2_offset = string2_data - startp2; } if (string1_data == XSTRING_DATA (string1) + XSTRING_LENGTH (string1)) { check_sequence_range (string1, string1_start, string1_end, make_int (char_count1)); } if (string2_data == XSTRING_DATA (string2) + XSTRING_LENGTH (string2)) { check_sequence_range (string2, string2_start, string2_end, make_int (char_count2)); } if ((!NILP (string1_end) && string1_starting < string1_ending) || (!NILP (string2_end) && string2_starting < string2_ending)) { return make_integer (char_count1); } if ((NILP (string1_end) && string1_data < (XSTRING_DATA (string1) + XSTRING_LENGTH (string1))) || (NILP (string2_end) && string2_data < (XSTRING_DATA (string2) + XSTRING_LENGTH (string2)))) { return make_integer (char_count1); } return Qnil; } static Lisp_Object mismatch_array_array (Lisp_Object array1, Lisp_Object start1, Lisp_Object end1, Lisp_Object array2, Lisp_Object start2, Lisp_Object end2, check_test_func_t check_match, Boolint test_not_unboundp, Lisp_Object test, Lisp_Object key, Boolint UNUSED (return_array1_index)) { Elemcount len1 = XINT (Flength (array1)), len2 = XINT (Flength (array2)); Elemcount ending1 = EMACS_INT_MAX, ending2 = EMACS_INT_MAX; Elemcount starting1, starting2; check_sequence_range (array1, start1, end1, make_int (len1)); check_sequence_range (array2, start2, end2, make_int (len2)); starting1 = INTP (start1) ? XINT (start1) : 1 + EMACS_INT_MAX; starting2 = INTP (start2) ? XINT (start2) : 1 + EMACS_INT_MAX; if (!NILP (end1)) { ending1 = INTP (end1) ? XINT (end1) : 1 + EMACS_INT_MAX; } if (!NILP (end2)) { ending2 = INTP (end2) ? XINT (end2) : 1 + EMACS_INT_MAX; } ending1 = min (ending1, len1); ending2 = min (ending2, len2); while (starting1 < ending1 && starting2 < ending2) { if (check_match (test, key, Faref (array1, make_int (starting1)), Faref (array2, make_int (starting2))) != test_not_unboundp) { return make_integer (starting1); } starting1++; starting2++; } if (starting1 < ending1 || starting2 < ending2) { return make_integer (starting1); } return Qnil; } typedef Lisp_Object (*mismatch_func_t) (Lisp_Object sequence1, Lisp_Object start1, Lisp_Object end1, Lisp_Object sequence2, Lisp_Object start2, Lisp_Object end2, check_test_func_t check_match, Boolint test_not_unboundp, Lisp_Object test, Lisp_Object key, Boolint return_list_index); static mismatch_func_t get_mismatch_func (Lisp_Object sequence1, Lisp_Object sequence2, Lisp_Object from_end, Boolint *return_sequence1_index_out) { CHECK_SEQUENCE (sequence1); CHECK_SEQUENCE (sequence2); if (!NILP (from_end)) { *return_sequence1_index_out = 1; return mismatch_from_end; } if (LISTP (sequence1)) { if (LISTP (sequence2)) { *return_sequence1_index_out = 1; return mismatch_list_list; } if (STRINGP (sequence2)) { *return_sequence1_index_out = 1; return mismatch_list_string; } *return_sequence1_index_out = 1; return mismatch_list_array; } if (STRINGP (sequence1)) { if (STRINGP (sequence2)) { *return_sequence1_index_out = 1; return mismatch_string_string; } if (LISTP (sequence2)) { *return_sequence1_index_out = 0; return mismatch_list_string; } *return_sequence1_index_out = 1; return mismatch_string_array; } if (ARRAYP (sequence1)) { if (STRINGP (sequence2)) { *return_sequence1_index_out = 0; return mismatch_string_array; } if (LISTP (sequence2)) { *return_sequence1_index_out = 0; return mismatch_list_array; } *return_sequence1_index_out = 1; return mismatch_array_array; } RETURN_NOT_REACHED (NULL); return NULL; } DEFUN ("mismatch", Fmismatch, 2, MANY, 0, /* Compare SEQUENCE1 with SEQUENCE2, return index of first mismatching element. Return nil if the sequences match. If one sequence is a prefix of the other, the return value indicates the end of the shorter sequence. A non-nil return value always reflects an index into SEQUENCE1. See `search' for the meaning of the keywords." arguments: (SEQUENCE1 SEQUENCE2 &key (TEST #'eql) (KEY #'identity) (START1 0) END1 (START2 0) END2 FROM-END TEST-NOT) */ (int nargs, Lisp_Object *args)) { Lisp_Object sequence1 = args[0], sequence2 = args[1]; Boolint test_not_unboundp = 1, return_first_index = 0; check_test_func_t check_match = NULL; mismatch_func_t mismatch = NULL; PARSE_KEYWORDS (Fmismatch, nargs, args, 8, (test, key, from_end, start1, end1, start2, end2, test_not), (start1 = start2 = Qzero)); CHECK_SEQUENCE (sequence1); CHECK_SEQUENCE (sequence2); CHECK_NATNUM (start1); CHECK_NATNUM (start2); if (!NILP (end1)) { CHECK_NATNUM (end1); } if (!NILP (end2)) { CHECK_NATNUM (end2); } check_match = get_check_match_function (&test, test_not, Qnil, Qnil, key, &test_not_unboundp, NULL); mismatch = get_mismatch_func (sequence1, sequence2, from_end, &return_first_index); if (return_first_index) { return mismatch (sequence1, start1, end1, sequence2, start2, end2, check_match, test_not_unboundp, test, key, 1); } return mismatch (sequence2, start2, end2, sequence1, start1, end1, check_match, test_not_unboundp, test, key, 0); } DEFUN ("search", Fsearch, 2, MANY, 0, /* Search for SEQUENCE1 as a subsequence of SEQUENCE2. Return the index of the leftmost element of the first match found; return nil if there are no matches. In this function, :start1 and :end1 specify a subsequence of SEQUENCE1, and :start2 and :end2 specify a subsequence of SEQUENCE2. See `remove*' for details of the other keywords. arguments: (SEQUENCE1 SEQUENCE2 &key (TEST #'eql) (KEY #'identity) (START1 0) END1 (START2 0) END2 FROM-END TEST-NOT) */ (int nargs, Lisp_Object *args)) { Lisp_Object sequence1 = args[0], sequence2 = args[1], position0 = Qnil; Boolint test_not_unboundp = 1, return_first = 0; check_test_func_t check_test = NULL, check_match = NULL; mismatch_func_t mismatch = NULL; Elemcount starting1 = 0, ending1 = 1 + EMACS_INT_MAX, starting2 = 0; Elemcount ending2 = 1 + EMACS_INT_MAX, ii = 0; Elemcount length1; Lisp_Object object = Qnil; struct gcpro gcpro1, gcpro2; PARSE_KEYWORDS (Fsearch, nargs, args, 8, (test, key, from_end, start1, end1, start2, end2, test_not), (start1 = start2 = Qzero)); CHECK_SEQUENCE (sequence1); CHECK_SEQUENCE (sequence2); CHECK_KEY_ARGUMENT (key); CHECK_NATNUM (start1); starting1 = INTP (start1) ? XINT (start1) : 1 + EMACS_INT_MAX; CHECK_NATNUM (start2); starting2 = INTP (start2) ? XINT (start2) : 1 + EMACS_INT_MAX; if (!NILP (end1)) { Lisp_Object len1 = Flength (sequence1); CHECK_NATNUM (end1); check_sequence_range (sequence1, start1, end1, len1); ending1 = min (XINT (end1), XINT (len1)); } else { end1 = Flength (sequence1); check_sequence_range (sequence1, start1, end1, end1); ending1 = XINT (end1); } length1 = ending1 - starting1; if (!NILP (end2)) { Lisp_Object len2 = Flength (sequence2); CHECK_NATNUM (end2); check_sequence_range (sequence2, start2, end2, len2); ending2 = min (XINT (end2), XINT (len2)); } else { end2 = Flength (sequence2); check_sequence_range (sequence2, start2, end2, end2); ending2 = XINT (end2); } check_match = get_check_match_function (&test, test_not, Qnil, Qnil, key, &test_not_unboundp, &check_test); mismatch = get_mismatch_func (sequence1, sequence2, from_end, &return_first); if (bytecode_arithcompare (start1, make_integer (ending1)) >= 0) { if (NILP (from_end)) { return start2; } if (NILP (end2)) { return Flength (sequence2); } return end2; } if (NILP (from_end)) { Lisp_Object mismatch_start1 = Fadd1 (start1); Lisp_Object first = KEY (key, Felt (sequence1, start1)); GCPRO2 (first, mismatch_start1); ii = starting2; while (ii < ending2) { position0 = position (&object, first, sequence2, check_test, test_not_unboundp, test, key, make_int (ii), end2, Qnil, Qnil, Qsearch); if (NILP (position0)) { UNGCPRO; return Qnil; } if (length1 + XINT (position0) <= ending2 && (return_first ? NILP (mismatch (sequence1, mismatch_start1, end1, sequence2, make_int (1 + XINT (position0)), make_int (length1 + XINT (position0)), check_match, test_not_unboundp, test, key, 1)) : NILP (mismatch (sequence2, make_int (1 + XINT (position0)), make_int (length1 + XINT (position0)), sequence1, mismatch_start1, end1, check_match, test_not_unboundp, test, key, 0)))) { UNGCPRO; return position0; } ii = XINT (position0) + 1; } UNGCPRO; } else { Lisp_Object mismatch_end1 = make_integer (ending1 - 1); Lisp_Object last = KEY (key, Felt (sequence1, mismatch_end1)); GCPRO2 (last, mismatch_end1); ii = ending2; while (ii > starting2) { position0 = position (&object, last, sequence2, check_test, test_not_unboundp, test, key, start2, make_int (ii), Qt, Qnil, Qsearch); if (NILP (position0)) { UNGCPRO; return Qnil; } if (XINT (position0) - length1 + 1 >= starting2 && (return_first ? NILP (mismatch (sequence1, start1, mismatch_end1, sequence2, make_int (XINT (position0) - length1 + 1), make_int (XINT (position0)), check_match, test_not_unboundp, test, key, 1)) : NILP (mismatch (sequence2, make_int (XINT (position0) - length1 + 1), make_int (XINT (position0)), sequence1, start1, mismatch_end1, check_match, test_not_unboundp, test, key, 0)))) { UNGCPRO; return make_int (XINT (position0) - length1 + 1); } ii = XINT (position0); } UNGCPRO; } return Qnil; } /* These two functions do set operations, those that can be visualised with Venn diagrams. */ static Lisp_Object venn (Lisp_Object caller, int nargs, Lisp_Object *args, Boolint intersectionp) { Lisp_Object liszt1 = args[0], liszt2 = args[1], elt = Qnil, tail = Qnil; Lisp_Object result = EQ (caller, Qsubsetp) ? Qt : Qnil, result_tail = Qnil; Lisp_Object keyed = Qnil, ignore = Qnil; Elemcount len; Boolint test_not_unboundp = 1; check_test_func_t check_test = NULL; struct gcpro gcpro1, gcpro2, gcpro3; PARSE_KEYWORDS_8 (caller, nargs, args, 4, (test, key, test_not, stable), NULL, 2, 0); CHECK_LIST (liszt1); CHECK_LIST (liszt2); CHECK_KEY_ARGUMENT (key); if (NILP (liszt1) && intersectionp) { return Qnil; } if (NILP (liszt2)) { return intersectionp ? Qnil : liszt1; } get_check_match_function (&test, test_not, Qnil, Qnil, key, &test_not_unboundp, &check_test); GCPRO3 (tail, keyed, result); { EXTERNAL_LIST_LOOP_4_NO_DECLARE (elt, liszt1, tail, len) { keyed = KEY (key, elt); if (NILP (list_position_cons_before (&ignore, keyed, liszt2, check_test, test_not_unboundp, test, key, 0, Qzero, Qnil)) != intersectionp) { if (EQ (Qsubsetp, caller)) { result = Qnil; break; } else if (NILP (stable)) { result = Fcons (elt, result); } else if (NILP (result)) { result = result_tail = Fcons (elt, Qnil); } else { XSETCDR (result_tail, Fcons (elt, Qnil)); result_tail = XCDR (result_tail); } } } } UNGCPRO; return result; } static Lisp_Object nvenn (Lisp_Object caller, int nargs, Lisp_Object *args, Boolint intersectionp) { Lisp_Object liszt1 = args[0], liszt2 = args[1], tortoise_elt, ignore = Qnil; Lisp_Object elt = Qnil, tail = Qnil, keyed = Qnil, prev_tail = Qnil; Elemcount count; Boolint test_not_unboundp = 1; check_test_func_t check_test = NULL; struct gcpro gcpro1, gcpro2, gcpro3; PARSE_KEYWORDS_8 (caller, nargs, args, 3, (test, key, test_not), NULL, 2, 0); CHECK_LIST (liszt1); CHECK_LIST (liszt2); CHECK_KEY_ARGUMENT (key); if (NILP (liszt1) && intersectionp) { return Qnil; } if (NILP (liszt2)) { return intersectionp ? Qnil : liszt1; } get_check_match_function (&test, test_not, Qnil, Qnil, key, &test_not_unboundp, &check_test); GCPRO3 (tail, keyed, liszt1); tortoise_elt = tail = liszt1, count = 0; while (CONSP (tail) ? (elt = XCAR (tail), 1) : NILP (tail) ? 0 : (signal_malformed_list_error (liszt1), 0)) { keyed = KEY (key, elt); if (NILP (list_position_cons_before (&ignore, keyed, liszt2, check_test, test_not_unboundp, test, key, 0, Qzero, Qnil)) == intersectionp) { if (NILP (prev_tail)) { liszt1 = XCDR (tail); } else { XSETCDR (prev_tail, XCDR (tail)); } tail = XCDR (tail); /* List is definitely not circular now! */ count = 0; } else { prev_tail = tail; tail = XCDR (tail); } if (count++ < CIRCULAR_LIST_SUSPICION_LENGTH) continue; if (count & 1) { tortoise_elt = XCDR (tortoise_elt); } if (EQ (elt, tortoise_elt)) { signal_circular_list_error (liszt1); } } UNGCPRO; return liszt1; } DEFUN ("intersection", Fintersection, 2, MANY, 0, /* Combine LIST1 and LIST2 using a set-intersection operation. The result list contains all items that appear in both LIST1 and LIST2. This is a non-destructive function; it makes a copy of the data if necessary to avoid corrupting the original LIST1 and LIST2. A non-nil value for the :stable keyword, not specified by Common Lisp, means return the items in the order they appear in LIST1. See `union' for the meaning of :test, :test-not and :key." arguments: (LIST1 LIST2 &key (TEST #'eql) (KEY #'identity) TEST-NOT STABLE) */ (int nargs, Lisp_Object *args)) { return venn (Qintersection, nargs, args, 1); } DEFUN ("nintersection", Fnintersection, 2, MANY, 0, /* Combine LIST1 and LIST2 using a set-intersection operation. The result list contains all items that appear in both LIST1 and LIST2. This is a destructive function; it reuses the storage of LIST1 whenever possible. See `union' for the meaning of :test, :test-not and :key." arguments: (LIST1 LIST2 &key (TEST #'eql) (KEY #'identity) TEST-NOT) */ (int nargs, Lisp_Object *args)) { return nvenn (Qnintersection, nargs, args, 1); } DEFUN ("subsetp", Fsubsetp, 2, MANY, 0, /* Return non-nil if every element of LIST1 also appears in LIST2. See `union' for the meaning of the keyword arguments. arguments: (LIST1 LIST2 &key (TEST #'eql) (KEY #'identity) TEST-NOT) */ (int nargs, Lisp_Object *args)) { return venn (Qsubsetp, nargs, args, 0); } DEFUN ("set-difference", Fset_difference, 2, MANY, 0, /* Combine LIST1 and LIST2 using a set-difference operation. The result list contains all items that appear in LIST1 but not LIST2. This is a non-destructive function; it makes a copy of the data if necessary to avoid corrupting the original LIST1 and LIST2. See `union' for the meaning of :test, :test-not and :key. A non-nil value for the :stable keyword, not specified by Common Lisp, means return the items in the order they appear in LIST1. arguments: (LIST1 LIST2 &key (TEST #'eql) (KEY #'identity) TEST-NOT STABLE) */ (int nargs, Lisp_Object *args)) { return venn (Qset_difference, nargs, args, 0); } DEFUN ("nset-difference", Fnset_difference, 2, MANY, 0, /* Combine LIST1 and LIST2 using a set-difference operation. The result list contains all items that appear in LIST1 but not LIST2. This is a destructive function; it reuses the storage of LIST1 whenever possible. See `union' for the meaning of :test, :test-not and :key." arguments: (LIST1 LIST2 &key (TEST #'eql) (KEY #'identity) TEST-NOT) */ (int nargs, Lisp_Object *args)) { return nvenn (Qnset_difference, nargs, args, 0); } DEFUN ("nunion", Fnunion, 2, MANY, 0, /* Combine LIST1 and LIST2 using a set-union operation. The result list contains all items that appear in either LIST1 or LIST2. This is a destructive function, it reuses the storage of LIST1 whenever possible. See `union' for the meaning of :test, :test-not and :key. arguments: (LIST1 LIST2 &key (TEST #'eql) (KEY #'identity) TEST-NOT) */ (int nargs, Lisp_Object *args)) { args[0] = nvenn (Qnunion, nargs, args, 0); return bytecode_nconc2 (args); } DEFUN ("union", Funion, 2, MANY, 0, /* Combine LIST1 and LIST2 using a set-union operation. The result list contains all items that appear in either LIST1 or LIST2. This is a non-destructive function; it makes a copy of the data if necessary to avoid corrupting the original LIST1 and LIST2. The keywords :test and :test-not specify two-argument test and negated-test predicates, respectively; :test defaults to `eql'. See `member*' for more information. :key specifies a one-argument function that transforms elements of LIST1 and LIST2 into \"comparison keys\" before the test predicate is applied. For example, if :key is #'car, then the car of elements from LIST1 is compared with the car of elements from LIST2. The :key function, however, does not affect the elements in the returned list, which are taken directly from the elements in LIST1 and LIST2. A non-nil value for the :stable keyword, not specified by Common Lisp, means return the items of LIST1 in order, followed by the remaining items of LIST2 in the order they occur in LIST2. arguments: (LIST1 LIST2 &key (TEST #'eql) (KEY #'identity) TEST-NOT STABLE) */ (int nargs, Lisp_Object *args)) { Lisp_Object liszt1 = args[0], liszt2 = args[1], ignore = Qnil; Lisp_Object elt = Qnil, tail = Qnil, keyed = Qnil, result, result_tail; Elemcount len; Boolint test_not_unboundp = 1; check_test_func_t check_test = NULL, check_match = NULL; struct gcpro gcpro1, gcpro2, gcpro3; PARSE_KEYWORDS (Funion, nargs, args, 4, (test, key, test_not, stable), NULL); CHECK_LIST (liszt1); CHECK_LIST (liszt2); CHECK_KEY_ARGUMENT (key); if (NILP (liszt1)) { return liszt2; } if (NILP (liszt2)) { return liszt1; } check_match = get_check_match_function (&test, test_not, Qnil, Qnil, key, &test_not_unboundp, &check_test); GCPRO3 (tail, keyed, result); if (NILP (stable)) { result = liszt2; { EXTERNAL_LIST_LOOP_4_NO_DECLARE (elt, liszt1, tail, len) { keyed = KEY (key, elt); if (NILP (list_position_cons_before (&ignore, keyed, liszt2, check_test, test_not_unboundp, test, key, 0, Qzero, Qnil))) { /* The Lisp version of #'union used to check which list was longer, and use that as the tail of the constructed list. That fails when the order of arguments to TEST is specified, as is the case for these functions. We could pass the reverse_check argument to list_position_cons_before, but that means any key argument is called an awful lot more, so it's a space win but not a time win. */ result = Fcons (elt, result); } } } } else { result = result_tail = Qnil; /* The standard `union' doesn't produce a "stable" union -- it iterates over the second list instead of the first one, and returns the values in backwards order. According to the CLTL2 documentation, `union' is not required to preserve the ordering of elements in any fashion; providing the functionality for a stable union is an XEmacs extension. */ { EXTERNAL_LIST_LOOP_4_NO_DECLARE (elt, liszt2, tail, len) { if (NILP (list_position_cons_before (&ignore, elt, liszt1, check_match, test_not_unboundp, test, key, 1, Qzero, Qnil))) { if (NILP (result)) { result = result_tail = Fcons (elt, Qnil); } else { XSETCDR (result_tail, Fcons (elt, Qnil)); result_tail = XCDR (result_tail); } } } } result = NILP (result) ? liszt1 : nconc2 (Fcopy_list (liszt1), result); } UNGCPRO; return result; } DEFUN ("set-exclusive-or", Fset_exclusive_or, 2, MANY, 0, /* Combine LIST1 and LIST2 using a set-exclusive-or operation. The result list contains all items that appear in exactly one of LIST1, LIST2. This is a non-destructive function; it makes a copy of the data if necessary to avoid corrupting the original LIST1 and LIST2. See `union' for the meaning of :test, :test-not and :key. A non-nil value for the :stable keyword, not specified by Common Lisp, means return the items in the order they appear in LIST1, followed by the remaining items in the order they appear in LIST2. arguments: (LIST1 LIST2 &key (TEST #'eql) (KEY #'identity) TEST-NOT STABLE) */ (int nargs, Lisp_Object *args)) { Lisp_Object liszt1 = args[0], liszt2 = args[1], elt = Qnil, tail = Qnil; Lisp_Object result = Qnil, result_tail = Qnil, keyed = Qnil, ignore = Qnil; Elemcount len; Boolint test_not_unboundp = 1; check_test_func_t check_match = NULL, check_test = NULL; struct gcpro gcpro1, gcpro2, gcpro3; PARSE_KEYWORDS (Fset_exclusive_or, nargs, args, 4, (test, key, test_not, stable), NULL); CHECK_LIST (liszt1); CHECK_LIST (liszt2); CHECK_KEY_ARGUMENT (key); if (NILP (liszt2)) { return liszt1; } check_match = get_check_match_function (&test, test_not, Qnil, Qnil, key, &test_not_unboundp, &check_test); GCPRO3 (tail, keyed, result); { EXTERNAL_LIST_LOOP_4_NO_DECLARE (elt, liszt1, tail, len) { keyed = KEY (key, elt); if (NILP (list_position_cons_before (&ignore, keyed, liszt2, check_test, test_not_unboundp, test, key, 0, Qzero, Qnil))) { if (NILP (stable)) { result = Fcons (elt, result); } else if (NILP (result)) { result = result_tail = Fcons (elt, Qnil); } else { XSETCDR (result_tail, Fcons (elt, Qnil)); result_tail = XCDR (result_tail); } } } } { EXTERNAL_LIST_LOOP_4_NO_DECLARE (elt, liszt2, tail, len) { if (NILP (list_position_cons_before (&ignore, elt, liszt1, check_match, test_not_unboundp, test, key, 1, Qzero, Qnil))) { if (NILP (stable)) { result = Fcons (elt, result); } else if (NILP (result)) { result = result_tail = Fcons (elt, Qnil); } else { XSETCDR (result_tail, Fcons (elt, Qnil)); result_tail = XCDR (result_tail); } } } } UNGCPRO; return result; } DEFUN ("nset-exclusive-or", Fnset_exclusive_or, 2, MANY, 0, /* Combine LIST1 and LIST2 using a set-exclusive-or operation. The result list contains all items that appear in exactly one of LIST1 and LIST2. This is a destructive function; it reuses the storage of LIST1 and LIST2 whenever possible. See `union' for the meaning of :test, :test-not and :key. arguments: (LIST1 LIST2 &key (TEST #'eql) (KEY #'identity) TEST-NOT) */ (int nargs, Lisp_Object *args)) { Lisp_Object liszt1 = args[0], liszt2 = args[1], elt = Qnil, tail = Qnil; Lisp_Object result = Qnil, tortoise_elt = Qnil, keyed = Qnil, swap; Lisp_Object prev_tail = Qnil, ignore = Qnil; Elemcount count; Boolint test_not_unboundp = 1; check_test_func_t check_match = NULL, check_test = NULL; struct gcpro gcpro1, gcpro2, gcpro3; PARSE_KEYWORDS (Fnset_exclusive_or, nargs, args, 4, (test, key, test_not, stable), NULL); CHECK_LIST (liszt1); CHECK_LIST (liszt2); CHECK_KEY_ARGUMENT (key); if (NILP (liszt2)) { return liszt1; } check_match = get_check_match_function (&test, test_not, Qnil, Qnil, key, &test_not_unboundp, &check_test); GCPRO3 (tail, keyed, result); tortoise_elt = tail = liszt1, count = 0; while (CONSP (tail) ? (elt = XCAR (tail), 1) : NILP (tail) ? 0 : (signal_malformed_list_error (liszt1), 0)) { keyed = KEY (key, elt); if (NILP (list_position_cons_before (&ignore, keyed, liszt2, check_test, test_not_unboundp, test, key, 0, Qzero, Qnil))) { swap = XCDR (tail); if (NILP (prev_tail)) { liszt1 = XCDR (tail); } else { XSETCDR (prev_tail, swap); } XSETCDR (tail, result); result = tail; tail = swap; /* List is definitely not circular now! */ count = 0; } else { prev_tail = tail; tail = XCDR (tail); } if (count++ < CIRCULAR_LIST_SUSPICION_LENGTH) continue; if (count & 1) { tortoise_elt = XCDR (tortoise_elt); } if (EQ (elt, tortoise_elt)) { signal_circular_list_error (liszt1); } } tortoise_elt = tail = liszt2, count = 0; while (CONSP (tail) ? (elt = XCAR (tail), 1) : NILP (tail) ? 0 : (signal_malformed_list_error (liszt2), 0)) { /* Need to leave the key calculation to list_position_cons_before(). */ if (NILP (list_position_cons_before (&ignore, elt, liszt1, check_match, test_not_unboundp, test, key, 1, Qzero, Qnil))) { swap = XCDR (tail); XSETCDR (tail, result); result = tail; tail = swap; count = 0; } else { tail = XCDR (tail); } if (count++ < CIRCULAR_LIST_SUSPICION_LENGTH) continue; if (count & 1) { tortoise_elt = XCDR (tortoise_elt); } if (EQ (elt, tortoise_elt)) { signal_circular_list_error (liszt1); } } UNGCPRO; return result; } Lisp_Object add_suffix_to_symbol (Lisp_Object symbol, const Ascbyte *ascii_string) { return Fintern (concat2 (Fsymbol_name (symbol), build_ascstring (ascii_string)), Qnil); } Lisp_Object add_prefix_to_symbol (const Ascbyte *ascii_string, Lisp_Object symbol) { return Fintern (concat2 (build_ascstring (ascii_string), Fsymbol_name (symbol)), Qnil); } /* #### this function doesn't belong in this file! */ #ifdef HAVE_GETLOADAVG #ifdef HAVE_SYS_LOADAVG_H #include <sys/loadavg.h> #endif #else int getloadavg (double loadavg[], int nelem); /* Defined in getloadavg.c */ #endif DEFUN ("load-average", Fload_average, 0, 1, 0, /* Return list of 1 minute, 5 minute and 15 minute load averages. Each of the three load averages is multiplied by 100, then converted to integer. When USE-FLOATS is non-nil, floats will be used instead of integers. These floats are not multiplied by 100. If the 5-minute or 15-minute load averages are not available, return a shortened list, containing only those averages which are available. On some systems, this won't work due to permissions on /dev/kmem, in which case you can't use this. */ (use_floats)) { double load_ave[3]; int loads = getloadavg (load_ave, countof (load_ave)); Lisp_Object ret = Qnil; if (loads == -2) signal_error (Qunimplemented, "load-average not implemented for this operating system", Qunbound); else if (loads < 0) invalid_operation ("Could not get load-average", lisp_strerror (errno)); while (loads-- > 0) { Lisp_Object load = (NILP (use_floats) ? make_int ((int) (100.0 * load_ave[loads])) : make_float (load_ave[loads])); ret = Fcons (load, ret); } return ret; } Lisp_Object Vfeatures; DEFUN ("featurep", Ffeaturep, 1, 1, 0, /* Return non-nil if feature FEXP is present in this Emacs. Use this to conditionalize execution of lisp code based on the presence or absence of emacs or environment extensions. FEXP can be a symbol, a number, or a list. If it is a symbol, that symbol is looked up in the `features' variable, and non-nil will be returned if found. If it is a number, the function will return non-nil if this Emacs has an equal or greater version number than FEXP. If it is a list whose car is the symbol `and', it will return non-nil if all the features in its cdr are non-nil. If it is a list whose car is the symbol `or', it will return non-nil if any of the features in its cdr are non-nil. If it is a list whose car is the symbol `not', it will return non-nil if the feature is not present. Examples: (featurep 'xemacs) => ; Non-nil on XEmacs. (featurep '(and xemacs gnus)) => ; Non-nil on XEmacs with Gnus loaded. (featurep '(or tty-frames (and emacs 19.30))) => ; Non-nil if this Emacs supports TTY frames. (featurep '(or (and xemacs 19.15) (and emacs 19.34))) => ; Non-nil on XEmacs 19.15 and later, or FSF Emacs 19.34 and later. (featurep '(and xemacs 21.02)) => ; Non-nil on XEmacs 21.2 and later. NOTE: The advanced arguments of this function (anything other than a symbol) are not yet supported by FSF Emacs. If you feel they are useful for supporting multiple Emacs variants, lobby Richard Stallman at <bug-gnu-emacs@gnu.org>. */ (fexp)) { #ifndef FEATUREP_SYNTAX CHECK_SYMBOL (fexp); return NILP (Fmemq (fexp, Vfeatures)) ? Qnil : Qt; #else /* FEATUREP_SYNTAX */ static double featurep_emacs_version; /* Brute force translation from Erik Naggum's lisp function. */ if (SYMBOLP (fexp)) { /* Original definition */ return NILP (Fmemq (fexp, Vfeatures)) ? Qnil : Qt; } else if (INTP (fexp) || FLOATP (fexp)) { double d = extract_float (fexp); if (featurep_emacs_version == 0.0) { featurep_emacs_version = XINT (Vemacs_major_version) + (XINT (Vemacs_minor_version) / 100.0); } return featurep_emacs_version >= d ? Qt : Qnil; } else if (CONSP (fexp)) { Lisp_Object tem = XCAR (fexp); if (EQ (tem, Qnot)) { Lisp_Object negate; tem = XCDR (fexp); negate = Fcar (tem); if (!NILP (tem)) return NILP (call1 (Qfeaturep, negate)) ? Qt : Qnil; else return Fsignal (Qinvalid_read_syntax, list1 (tem)); } else if (EQ (tem, Qand)) { tem = XCDR (fexp); /* Use Fcar/Fcdr for error-checking. */ while (!NILP (tem) && !NILP (call1 (Qfeaturep, Fcar (tem)))) { tem = Fcdr (tem); } return NILP (tem) ? Qt : Qnil; } else if (EQ (tem, Qor)) { tem = XCDR (fexp); /* Use Fcar/Fcdr for error-checking. */ while (!NILP (tem) && NILP (call1 (Qfeaturep, Fcar (tem)))) { tem = Fcdr (tem); } return NILP (tem) ? Qnil : Qt; } else { return Fsignal (Qinvalid_read_syntax, list1 (XCDR (fexp))); } } else { return Fsignal (Qinvalid_read_syntax, list1 (fexp)); } } #endif /* FEATUREP_SYNTAX */ DEFUN ("provide", Fprovide, 1, 1, 0, /* Announce that FEATURE is a feature of the current Emacs. This function updates the value of the variable `features'. */ (feature)) { Lisp_Object tem; CHECK_SYMBOL (feature); if (!NILP (Vautoload_queue)) Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue); tem = Fmemq (feature, Vfeatures); if (NILP (tem)) Vfeatures = Fcons (feature, Vfeatures); LOADHIST_ATTACH (Fcons (Qprovide, feature)); return feature; } DEFUN ("require", Frequire, 1, 3, 0, /* Ensure that FEATURE is present in the Lisp environment. FEATURE is a symbol naming a collection of resources (functions, etc). Optional FILENAME is a library from which to load resources; it defaults to the print name of FEATURE. Optional NOERROR, if non-nil, causes require to return nil rather than signal `file-error' if loading the library fails. If feature FEATURE is present in `features', update `load-history' to reflect the require and return FEATURE. Otherwise, try to load it from a library. The normal messages at start and end of loading are suppressed. If the library is successfully loaded and it calls `(provide FEATURE)', add FEATURE to `features', update `load-history' and return FEATURE. If the load succeeds but FEATURE is not provided by the library, signal `invalid-state'. The byte-compiler treats top-level calls to `require' specially, by evaluating them at compile time (and then compiling them normally). Thus a library may request that definitions that should be inlined such as macros and defsubsts be loaded into its compilation environment. Achieving this in other contexts requires an explicit \(eval-and-compile ...\) block. */ (feature, filename, noerror)) { Lisp_Object tem; CHECK_SYMBOL (feature); tem = Fmemq (feature, Vfeatures); LOADHIST_ATTACH (Fcons (Qrequire, feature)); if (!NILP (tem)) return feature; else { int speccount = specpdl_depth (); /* Value saved here is to be restored into Vautoload_queue */ record_unwind_protect (un_autoload, Vautoload_queue); Vautoload_queue = Qt; tem = call4 (Qload, NILP (filename) ? Fsymbol_name (feature) : filename, noerror, Qrequire, Qnil); /* If load failed entirely, return nil. */ if (NILP (tem)) return unbind_to_1 (speccount, Qnil); tem = Fmemq (feature, Vfeatures); if (NILP (tem)) invalid_state ("Required feature was not provided", feature); /* Once loading finishes, don't undo it. */ Vautoload_queue = Qt; return unbind_to_1 (speccount, feature); } } /* base64 encode/decode functions. Originally based on code from GNU recode. Ported to FSF Emacs by Lars Magne Ingebrigtsen and Karl Heuer. Ported to XEmacs and subsequently heavily hacked by Hrvoje Niksic. */ #define MIME_LINE_LENGTH 72 #define IS_ASCII(Character) \ ((Character) < 128) #define IS_BASE64(Character) \ (IS_ASCII (Character) && base64_char_to_value[Character] >= 0) /* Table of characters coding the 64 values. */ static Ascbyte base64_value_to_char[64] = { 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */ 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */ 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */ 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */ 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */ 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */ '8', '9', '+', '/' /* 60-63 */ }; /* Table of base64 values for first 128 characters. */ static short base64_char_to_value[128] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */ -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */ 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */ -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */ 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */ 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */ 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */ 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */ 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */ }; /* The following diagram shows the logical steps by which three octets get transformed into four base64 characters. .--------. .--------. .--------. |aaaaaabb| |bbbbcccc| |ccdddddd| `--------' `--------' `--------' 6 2 4 4 2 6 .--------+--------+--------+--------. |00aaaaaa|00bbbbbb|00cccccc|00dddddd| `--------+--------+--------+--------' .--------+--------+--------+--------. |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD| `--------+--------+--------+--------' The octets are divided into 6 bit chunks, which are then encoded into base64 characters. */ static DECLARE_DOESNT_RETURN (base64_conversion_error (const Ascbyte *, Lisp_Object)); static DOESNT_RETURN base64_conversion_error (const Ascbyte *reason, Lisp_Object frob) { signal_error (Qbase64_conversion_error, reason, frob); } #define ADVANCE_INPUT(c, stream) \ ((ec = Lstream_get_ichar (stream)) == -1 ? 0 : \ ((ec > 255) ? \ (base64_conversion_error ("Non-ascii character in base64 input", \ make_char (ec)), 0) \ : (c = (Ibyte)ec), 1)) static Bytebpos base64_encode_1 (Lstream *istream, Ibyte *to, int line_break) { EMACS_INT counter = 0; Ibyte *e = to; Ichar ec; unsigned int value; while (1) { Ibyte c = 0; if (!ADVANCE_INPUT (c, istream)) break; /* Wrap line every 76 characters. */ if (line_break) { if (counter < MIME_LINE_LENGTH / 4) counter++; else { *e++ = '\n'; counter = 1; } } /* Process first byte of a triplet. */ *e++ = base64_value_to_char[0x3f & c >> 2]; value = (0x03 & c) << 4; /* Process second byte of a triplet. */ if (!ADVANCE_INPUT (c, istream)) { *e++ = base64_value_to_char[value]; *e++ = '='; *e++ = '='; break; } *e++ = base64_value_to_char[value | (0x0f & c >> 4)]; value = (0x0f & c) << 2; /* Process third byte of a triplet. */ if (!ADVANCE_INPUT (c, istream)) { *e++ = base64_value_to_char[value]; *e++ = '='; break; } *e++ = base64_value_to_char[value | (0x03 & c >> 6)]; *e++ = base64_value_to_char[0x3f & c]; } return e - to; } #undef ADVANCE_INPUT /* Get next character from the stream, except that non-base64 characters are ignored. This is in accordance with rfc2045. EC should be an Ichar, so that it can hold -1 as the value for EOF. */ #define ADVANCE_INPUT_IGNORE_NONBASE64(ec, stream, streampos) do { \ ec = Lstream_get_ichar (stream); \ ++streampos; \ /* IS_BASE64 may not be called with negative arguments so check for \ EOF first. */ \ if (ec < 0 || IS_BASE64 (ec) || ec == '=') \ break; \ } while (1) #define STORE_BYTE(pos, val, ccnt) do { \ pos += set_itext_ichar (pos, (Ichar)((Binbyte)(val))); \ ++ccnt; \ } while (0) static Bytebpos base64_decode_1 (Lstream *istream, Ibyte *to, Charcount *ccptr) { Charcount ccnt = 0; Ibyte *e = to; EMACS_INT streampos = 0; while (1) { Ichar ec; unsigned long value; /* Process first byte of a quadruplet. */ ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); if (ec < 0) break; if (ec == '=') base64_conversion_error ("Illegal `=' character while decoding base64", make_int (streampos)); value = base64_char_to_value[ec] << 18; /* Process second byte of a quadruplet. */ ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); if (ec < 0) base64_conversion_error ("Premature EOF while decoding base64", Qunbound); if (ec == '=') base64_conversion_error ("Illegal `=' character while decoding base64", make_int (streampos)); value |= base64_char_to_value[ec] << 12; STORE_BYTE (e, value >> 16, ccnt); /* Process third byte of a quadruplet. */ ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); if (ec < 0) base64_conversion_error ("Premature EOF while decoding base64", Qunbound); if (ec == '=') { ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); if (ec < 0) base64_conversion_error ("Premature EOF while decoding base64", Qunbound); if (ec != '=') base64_conversion_error ("Padding `=' expected but not found while decoding base64", make_int (streampos)); continue; } value |= base64_char_to_value[ec] << 6; STORE_BYTE (e, 0xff & value >> 8, ccnt); /* Process fourth byte of a quadruplet. */ ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); if (ec < 0) base64_conversion_error ("Premature EOF while decoding base64", Qunbound); if (ec == '=') continue; value |= base64_char_to_value[ec]; STORE_BYTE (e, 0xff & value, ccnt); } *ccptr = ccnt; return e - to; } #undef ADVANCE_INPUT #undef ADVANCE_INPUT_IGNORE_NONBASE64 #undef STORE_BYTE DEFUN ("base64-encode-region", Fbase64_encode_region, 2, 3, "r", /* Base64-encode the region between START and END. Return the length of the encoded text. Optional third argument NO-LINE-BREAK means do not break long lines into shorter lines. */ (start, end, no_line_break)) { Ibyte *encoded; Bytebpos encoded_length; Charcount allength, length; struct buffer *buf = current_buffer; Charbpos begv, zv, old_pt = BUF_PT (buf); Lisp_Object input; int speccount = specpdl_depth (); get_buffer_range_char (buf, start, end, &begv, &zv, 0); barf_if_buffer_read_only (buf, begv, zv); /* We need to allocate enough room for encoding the text. We need 33 1/3% more space, plus a newline every 76 characters, and then we round up. */ length = zv - begv; allength = length + length/3 + 1; allength += allength / MIME_LINE_LENGTH + 1 + 6; input = make_lisp_buffer_input_stream (buf, begv, zv, 0); /* We needn't multiply allength with MAX_ICHAR_LEN because all the base64 characters will be single-byte. */ encoded = (Ibyte *) MALLOC_OR_ALLOCA (allength); encoded_length = base64_encode_1 (XLSTREAM (input), encoded, NILP (no_line_break)); assert (encoded_length <= allength); Lstream_delete (XLSTREAM (input)); /* Now we have encoded the region, so we insert the new contents and delete the old. (Insert first in order to preserve markers.) */ buffer_insert_raw_string_1 (buf, begv, encoded, encoded_length, 0); unbind_to (speccount); buffer_delete_range (buf, begv + encoded_length, zv + encoded_length, 0); /* Simulate FSF Emacs implementation of this function: if point was in the region, place it at the beginning. */ if (old_pt >= begv && old_pt < zv) BUF_SET_PT (buf, begv); /* We return the length of the encoded text. */ return make_int (encoded_length); } DEFUN ("base64-encode-string", Fbase64_encode_string, 1, 2, 0, /* Base64 encode STRING and return the result. Optional argument NO-LINE-BREAK means do not break long lines into shorter lines. */ (string, no_line_break)) { Charcount allength, length; Bytebpos encoded_length; Ibyte *encoded; Lisp_Object input, result; int speccount = specpdl_depth(); CHECK_STRING (string); length = string_char_length (string); allength = length + length/3 + 1; allength += allength / MIME_LINE_LENGTH + 1 + 6; input = make_lisp_string_input_stream (string, 0, -1); encoded = (Ibyte *) MALLOC_OR_ALLOCA (allength); encoded_length = base64_encode_1 (XLSTREAM (input), encoded, NILP (no_line_break)); assert (encoded_length <= allength); Lstream_delete (XLSTREAM (input)); result = make_string (encoded, encoded_length); unbind_to (speccount); return result; } DEFUN ("base64-decode-region", Fbase64_decode_region, 2, 2, "r", /* Base64-decode the region between START and END. Return the length of the decoded text. If the region can't be decoded, return nil and don't modify the buffer. Characters out of the base64 alphabet are ignored. */ (start, end)) { struct buffer *buf = current_buffer; Charbpos begv, zv, old_pt = BUF_PT (buf); Ibyte *decoded; Bytebpos decoded_length; Charcount length, cc_decoded_length; Lisp_Object input; int speccount = specpdl_depth(); get_buffer_range_char (buf, start, end, &begv, &zv, 0); barf_if_buffer_read_only (buf, begv, zv); length = zv - begv; input = make_lisp_buffer_input_stream (buf, begv, zv, 0); /* We need to allocate enough room for decoding the text. */ decoded = (Ibyte *) MALLOC_OR_ALLOCA (length * MAX_ICHAR_LEN); decoded_length = base64_decode_1 (XLSTREAM (input), decoded, &cc_decoded_length); assert (decoded_length <= length * MAX_ICHAR_LEN); Lstream_delete (XLSTREAM (input)); /* Now we have decoded the region, so we insert the new contents and delete the old. (Insert first in order to preserve markers.) */ BUF_SET_PT (buf, begv); buffer_insert_raw_string_1 (buf, begv, decoded, decoded_length, 0); unbind_to (speccount); buffer_delete_range (buf, begv + cc_decoded_length, zv + cc_decoded_length, 0); /* Simulate FSF Emacs implementation of this function: if point was in the region, place it at the beginning. */ if (old_pt >= begv && old_pt < zv) BUF_SET_PT (buf, begv); return make_int (cc_decoded_length); } DEFUN ("base64-decode-string", Fbase64_decode_string, 1, 1, 0, /* Base64-decode STRING and return the result. Characters out of the base64 alphabet are ignored. */ (string)) { Ibyte *decoded; Bytebpos decoded_length; Charcount length, cc_decoded_length; Lisp_Object input, result; int speccount = specpdl_depth(); CHECK_STRING (string); length = string_char_length (string); /* We need to allocate enough room for decoding the text. */ decoded = (Ibyte *) MALLOC_OR_ALLOCA (length * MAX_ICHAR_LEN); input = make_lisp_string_input_stream (string, 0, -1); decoded_length = base64_decode_1 (XLSTREAM (input), decoded, &cc_decoded_length); assert (decoded_length <= length * MAX_ICHAR_LEN); Lstream_delete (XLSTREAM (input)); result = make_string (decoded, decoded_length); unbind_to (speccount); return result; } Lisp_Object Qyes_or_no_p; void syms_of_fns (void) { INIT_LISP_OBJECT (bit_vector); DEFSYMBOL (Qstring_lessp); DEFSYMBOL (Qmerge); DEFSYMBOL (Qfill); DEFSYMBOL (Qidentity); DEFSYMBOL (Qvector); DEFSYMBOL (Qarray); DEFSYMBOL (Qstring); DEFSYMBOL (Qlist); DEFSYMBOL (Qbit_vector); defsymbol (&QsortX, "sort*"); DEFSYMBOL (Qreduce); DEFSYMBOL (Qreplace); DEFSYMBOL (Qposition); DEFSYMBOL (Qfind); defsymbol (&QdeleteX, "delete*"); defsymbol (&QremoveX, "remove*"); DEFSYMBOL (Qmapconcat); defsymbol (&QmapcarX, "mapcar*"); DEFSYMBOL (Qmapvector); DEFSYMBOL (Qmapcan); DEFSYMBOL (Qmapc); DEFSYMBOL (Qmap); DEFSYMBOL (Qmap_into); DEFSYMBOL (Qsome); DEFSYMBOL (Qevery); DEFSYMBOL (Qmaplist); DEFSYMBOL (Qmapl); DEFSYMBOL (Qmapcon); DEFSYMBOL (Qnsubstitute); DEFSYMBOL (Qdelete_duplicates); DEFSYMBOL (Qsubstitute); DEFSYMBOL (Qmismatch); DEFSYMBOL (Qintersection); DEFSYMBOL (Qnintersection); DEFSYMBOL (Qsubsetp); DEFSYMBOL (Qcar_less_than_car); DEFSYMBOL (Qset_difference); DEFSYMBOL (Qnset_difference); DEFSYMBOL (Qnunion); DEFKEYWORD (Q_from_end); DEFKEYWORD (Q_initial_value); DEFKEYWORD (Q_start1); DEFKEYWORD (Q_start2); DEFKEYWORD (Q_end1); DEFKEYWORD (Q_end2); defkeyword (&Q_if_, ":if"); DEFKEYWORD (Q_if_not); DEFKEYWORD (Q_test_not); DEFKEYWORD (Q_count); DEFKEYWORD (Q_stable); DEFSYMBOL (Qyes_or_no_p); DEFERROR_STANDARD (Qbase64_conversion_error, Qconversion_error); DEFSUBR (Fidentity); DEFSUBR (Frandom); DEFSUBR (Flength); DEFSUBR (Fsafe_length); DEFSUBR (Flist_length); DEFSUBR (Fcount); DEFSUBR (Fstring_equal); DEFSUBR (Fcompare_strings); DEFSUBR (Fstring_lessp); DEFSUBR (Fstring_modified_tick); DEFSUBR (Fappend); DEFSUBR (Fconcat); DEFSUBR (Fvconcat); DEFSUBR (Fbvconcat); DEFSUBR (Fcopy_list); DEFSUBR (Fcopy_sequence); DEFSUBR (Fcopy_alist); DEFSUBR (Fcopy_tree); DEFSUBR (Fsubseq); DEFSUBR (Fnthcdr); DEFSUBR (Fnth); DEFSUBR (Felt); DEFSUBR (Flast); DEFSUBR (Fbutlast); DEFSUBR (Fnbutlast); DEFSUBR (Fmember); DEFSUBR (Fold_member); DEFSUBR (Fmemq); DEFSUBR (Fold_memq); DEFSUBR (FmemberX); DEFSUBR (Fadjoin); DEFSUBR (Fassoc); DEFSUBR (Fold_assoc); DEFSUBR (Fassq); DEFSUBR (Fold_assq); DEFSUBR (Frassoc); DEFSUBR (Fold_rassoc); DEFSUBR (Frassq); DEFSUBR (Fold_rassq); DEFSUBR (Fposition); DEFSUBR (Ffind); DEFSUBR (Fold_delete); DEFSUBR (Fold_delq); DEFSUBR (FdeleteX); DEFSUBR (FremoveX); DEFSUBR (Fremassoc); DEFSUBR (Fremassq); DEFSUBR (Fremrassoc); DEFSUBR (Fremrassq); DEFSUBR (Fdelete_duplicates); DEFSUBR (Fremove_duplicates); DEFSUBR (Fnreverse); DEFSUBR (Freverse); DEFSUBR (FsortX); DEFSUBR (Fmerge); DEFSUBR (Fplists_eq); DEFSUBR (Fplists_equal); DEFSUBR (Flax_plists_eq); DEFSUBR (Flax_plists_equal); DEFSUBR (Fplist_get); DEFSUBR (Fplist_put); DEFSUBR (Fplist_remprop); DEFSUBR (Fplist_member); DEFSUBR (Fcheck_valid_plist); DEFSUBR (Fvalid_plist_p); DEFSUBR (Fcanonicalize_plist); DEFSUBR (Flax_plist_get); DEFSUBR (Flax_plist_put); DEFSUBR (Flax_plist_remprop); DEFSUBR (Flax_plist_member); DEFSUBR (Fcanonicalize_lax_plist); DEFSUBR (Fdestructive_alist_to_plist); DEFSUBR (Fget); DEFSUBR (Fput); DEFSUBR (Fremprop); DEFSUBR (Fobject_plist); DEFSUBR (Fobject_setplist); DEFSUBR (Fequal); DEFSUBR (Fequalp); DEFSUBR (Fold_equal); DEFSUBR (Ffill); DEFSUBR (FassocX); DEFSUBR (FrassocX); DEFSUBR (Fnconc); DEFSUBR (FmapcarX); DEFSUBR (Fmapvector); DEFSUBR (Fmapcan); DEFSUBR (Fmapc); DEFSUBR (Fmapconcat); DEFSUBR (Fmap); DEFSUBR (Fmap_into); DEFSUBR (Fsome); DEFSUBR (Fevery); Ffset (intern ("mapc-internal"), Qmapc); Ffset (intern ("mapcar"), QmapcarX); DEFSUBR (Fmaplist); DEFSUBR (Fmapl); DEFSUBR (Fmapcon); DEFSUBR (Freduce); DEFSUBR (Freplace_list); DEFSUBR (Freplace); DEFSUBR (Fsubsetp); DEFSUBR (Fnsubstitute); DEFSUBR (Fsubstitute); DEFSUBR (Fsublis); DEFSUBR (Fnsublis); DEFSUBR (Fsubst); DEFSUBR (Fnsubst); DEFSUBR (Ftree_equal); DEFSUBR (Fmismatch); DEFSUBR (Fsearch); DEFSUBR (Funion); DEFSUBR (Fnunion); DEFSUBR (Fintersection); DEFSUBR (Fnintersection); DEFSUBR (Fset_difference); DEFSUBR (Fnset_difference); DEFSUBR (Fset_exclusive_or); DEFSUBR (Fnset_exclusive_or); DEFSUBR (Fload_average); DEFSUBR (Ffeaturep); DEFSUBR (Frequire); DEFSUBR (Fprovide); DEFSUBR (Fbase64_encode_region); DEFSUBR (Fbase64_encode_string); DEFSUBR (Fbase64_decode_region); DEFSUBR (Fbase64_decode_string); DEFSUBR (Fsubstring_no_properties); DEFSUBR (Fsplit_string_by_char); DEFSUBR (Fsplit_path); /* #### */ } void vars_of_fns (void) { DEFVAR_LISP ("path-separator", &Vpath_separator /* The directory separator in search paths, as a string. */ ); { Ascbyte c = SEPCHAR; Vpath_separator = make_string ((Ibyte *) &c, 1); } } void init_provide_once (void) { DEFVAR_LISP ("features", &Vfeatures /* A list of symbols which are the features of the executing emacs. Used by `featurep' and `require', and altered by `provide'. */ ); Vfeatures = Qnil; Fprovide (intern ("base64")); }