Mercurial > hg > xemacs-beta
view src/coding-system-slots.h @ 5090:0ca81354c4c7
Further frame-geometry cleanups
-------------------- ChangeLog entries follow: --------------------
man/ChangeLog addition:
2010-03-03 Ben Wing <ben@xemacs.org>
* internals/internals.texi (Intro to Window and Frame Geometry):
* internals/internals.texi (The Paned Area):
* internals/internals.texi (The Displayable Area):
Update to make note of e.g. the fact that the bottom gutter is
actually above the minibuffer.
src/ChangeLog addition:
2010-03-03 Ben Wing <ben@xemacs.org>
* emacs.c:
* emacs.c (assert_equal_failed):
* lisp.h:
* lisp.h (assert_equal):
New fun assert_equal, asserting that two values == each other, and
printing out both values upon failure.
* frame-gtk.c (gtk_initialize_frame_size):
* frame-impl.h:
* frame-impl.h (FRAME_TOP_INTERNAL_BORDER_START):
* frame-impl.h (FRAME_BOTTOM_INTERNAL_BORDER_START):
* frame-impl.h (FRAME_LEFT_INTERNAL_BORDER_START):
* frame-impl.h (FRAME_PANED_TOP_EDGE):
* frame-impl.h (FRAME_NONPANED_SIZE):
* frame-x.c (x_initialize_frame_size):
* frame.c:
* gutter.c (get_gutter_coords):
* gutter.c (calculate_gutter_size):
* gutter.h:
* gutter.h (WINDOW_REAL_TOP_GUTTER_BOUNDS):
* gutter.h (FRAME_TOP_GUTTER_BOUNDS):
* input-method-xlib.c:
* input-method-xlib.c (XIM_SetGeometry):
* redisplay-output.c (clear_left_border):
* redisplay-output.c (clear_right_border):
* redisplay-output.c (redisplay_output_pixmap):
* redisplay-output.c (redisplay_clear_region):
* redisplay-output.c (redisplay_clear_top_of_window):
* redisplay-output.c (redisplay_clear_to_window_end):
* redisplay-xlike-inc.c (XLIKE_clear_frame):
* redisplay.c:
* redisplay.c (UPDATE_CACHE_RETURN):
* redisplay.c (pixel_to_glyph_translation):
* toolbar.c (update_frame_toolbars_geometry):
* window.c (Fwindow_pixel_edges):
Get rid of some redundant macros. Consistently use the
FRAME_TOP_*_START, FRAME_RIGHT_*_END, etc. format. Rename
FRAME_*_BORDER_* to FRAME_*_INTERNAL_BORDER_*. Comment out
FRAME_BOTTOM_* for gutters and the paned area due to the
uncertainty over where the paned area actually begins. (Eventually
we should probably move the gutters outside the minibuffer so that
the paned area is contiguous.) Use FRAME_PANED_* more often in the
code to make things clearer.
Update the diagram to show that the bottom gutter is inside the
minibuffer (!) and that there are "junk boxes" when you have left
and/or right gutters (dead boxes that are mistakenly left uncleared,
unlike the corresponding scrollbar dead boxes). Update the text
appropriately to cover the bottom gutter position, etc.
Rewrite gutter-geometry code to use the FRAME_*_GUTTER_* in place of
equivalent expressions referencing other frame elements, to make the
code more portable in case we move around the gutter location.
Cleanup FRAME_*_GUTTER_BOUNDS() in gutter.h.
Add some #### GEOM! comments where I think code is incorrect --
typically, it wasn't fixed up properly when the gutter was added.
Some cosmetic changes.
author | Ben Wing <ben@xemacs.org> |
---|---|
date | Wed, 03 Mar 2010 05:07:47 -0600 |
parents | 1d74a1d115ee |
children | 308d34e9f07d |
line wrap: on
line source
/* Definitions of marked slots in coding systems Copyright (C) 1991, 1995 Free Software Foundation, Inc. Copyright (C) 1995 Sun Microsystems, Inc. Copyright (C) 2000, 2001, 2002 Ben Wing. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: ????. Split out of file-coding.h. */ /* We define the Lisp_Objects in the coding system structure in a separate file because there are numerous places we want to iterate over them, such as when defining them in the structure, initializing them, or marking them. To use, define MARKED_SLOT before including this file. In the structure definition, you also need to define CODING_SYSTEM_SLOT_DECLARATION. No need to undefine either value; that happens automatically. */ #ifndef MARKED_SLOT_ARRAY #ifdef CODING_SYSTEM_SLOT_DECLARATION #define MARKED_SLOT_ARRAY(slot, size) MARKED_SLOT(slot[size]) #else #define MARKED_SLOT_ARRAY(slot, size) do { \ int mslotidx; \ for (mslotidx = 0; mslotidx < size; mslotidx++) \ { \ MARKED_SLOT (slot[mslotidx]) \ } \ } while (0); #endif #endif /* not MARKED_SLOT_ARRAY */ /* Name and description of this coding system. The description should be suitable for a menu entry. */ MARKED_SLOT (name) MARKED_SLOT (description) /* Mnemonic string displayed in the modeline when this coding system is active for a particular buffer. */ MARKED_SLOT (mnemonic) /* Long documentation on the coding system. */ MARKED_SLOT (documentation) /* Functions to handle additional conversion after reading or before writing. #### This mechanism should be replaced by the ability to simply create new coding system types. */ MARKED_SLOT (post_read_conversion) MARKED_SLOT (pre_write_conversion) /* If this coding system is not of the correct type for text file conversion (i.e. decodes byte->char), we wrap it with appropriate char<->byte converters. This is created dynamically, when it's needed, and cached here. */ MARKED_SLOT (text_file_wrapper) /* ------------------------ junk to handle EOL ------------------------- I had hoped that we could handle this without lots of special-case code, but it appears not to be the case if we want to maintain compatibility with the existing way. However, at least with the way we do things now, we avoid EOL junk in most of the coding system methods themselves, or in the decode/encode functions. The EOL special-case code is limited to coding-system creation and to the convert-eol and undecided coding system types. */ /* If this coding system wants autodetection of the EOL type, then at the appropriate time we wrap this coding system with convert-eol-autodetect. (We do NOT do this at creation time because then we end up with multiple convert-eols wrapped into the final result -- esp. with autodetection using `undecided' -- leading to a big mess.) We cache the wrapped coding system here. */ MARKED_SLOT (auto_eol_wrapper) /* Subsidiary coding systems that specify a particular type of EOL marking, rather than autodetecting it. These will only be non-nil if (eol_type == EOL_AUTODETECT). These are chains. */ MARKED_SLOT_ARRAY (eol, 3) /* If this coding system is a subsidiary, this element points back to its parent. */ MARKED_SLOT (subsidiary_parent) /* At decoding or encoding time, we use the following coding system, if it exists, in place of the coding system object. This is how we handle coding systems with EOL types of CRLF or CR. Formerly, we did the canonicalization at creation time, returning a chain in place of the original coding system; but that interferes with `coding-system-property' and causes other complications. CANONICAL is used when determining the end types of a coding system. canonicalize-after-coding also consults CANONICAL (it has to, because the data in the lstream is based on CANONICAL, not on the original coding system). */ MARKED_SLOT (canonical) MARKED_SLOT (safe_charsets) MARKED_SLOT (safe_chars) #undef MARKED_SLOT #undef MARKED_SLOT_ARRAY #undef CODING_SYSTEM_SLOT_DECLARATION