Mercurial > hg > xemacs-beta
view src/floatfns.c @ 4539:061e030e3270
Fix some bugs in load-history construction, built-in symbol file names.
lib-src/ChangeLog addition:
2008-12-27 Aidan Kehoe <kehoea@parhasard.net>
* make-docfile.c (main): Allow more than one -d argument, followed
by a directory to change to.
(put_filename): Don't strip directory information; with previous
change, allows retrieval of Lisp function and variable origin
files from #'built-in-symbol-file relative to lisp-directory.
(scan_lisp_file): Don't add an extraneous newline after the file
name, put_filename has added the newline already.
lisp/ChangeLog addition:
2008-12-27 Aidan Kehoe <kehoea@parhasard.net>
* loadup.el (load-history):
Add the contents of current-load-list to load-history before
clearing it. Move the variable declarations earlier in the file to
a format understood by make-docfile.c.
* custom.el (custom-declare-variable): Add the variable's symbol
to the current file's load history entry correctly, don't use a
cons. Eliminate a comment that we don't need to worry about, we
don't need to check the `initialized' C variable in Lisp.
* bytecomp.el (byte-compile-output-file-form):
Merge Andreas Schwab's pre-GPLv3 GNU change of 19970831 here;
treat #'custom-declare-variable correctly, generating the
docstrings in a format understood by make-docfile.c.
* loadhist.el (symbol-file): Correct behaviour for checking
autoloaded macros and functions when supplied with a TYPE
argument. Accept fully-qualified paths from
#'built-in-symbol-file; if a path is not fully-qualified, return
it relative to lisp-directory if the filename corresponds to a
Lisp file, and relative to (concat source-directory "/src/")
otherwise.
* make-docfile.el (preloaded-file-list):
Rationalise some let bindings a little. Use the "-d" argument to
make-docfile.c to supply Lisp paths relative to lisp-directory,
not absolutely. Add in loadup.el explicitly to the list of files
to be processed by make-docfile.c--it doesn't make sense to add it
to preloaded-file-list, since that is used for purposes of
byte-compilation too.
src/ChangeLog addition:
2008-12-27 Aidan Kehoe <kehoea@parhasard.net>
* doc.c (Fbuilt_in_symbol_file):
Return a subr's filename immediately if we've found it. Check for
compiled function and compiled macro docstrings in DOC too, and
return them if they exist.
The branch of the if statement focused on functions may have
executed, but we may still want to check variable bindings; an
else clause isn't appropriate.
author | Aidan Kehoe <kehoea@parhasard.net> |
---|---|
date | Sat, 27 Dec 2008 14:05:50 +0000 |
parents | 04bc9d2f42c7 |
children | b5e1d4f6b66f 3742ea8250b5 |
line wrap: on
line source
/* Primitive operations on floating point for XEmacs Lisp interpreter. Copyright (C) 1988, 1993, 1994 Free Software Foundation, Inc. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: FSF 19.30. */ /* ANSI C requires only these float functions: acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod, frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh. Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh. Define HAVE_CBRT if you have cbrt(). Define HAVE_RINT if you have rint(). If you don't define these, then the appropriate routines will be simulated. Define HAVE_MATHERR if on a system supporting the SysV matherr() callback. (This should happen automatically.) Define FLOAT_CHECK_ERRNO if the float library routines set errno. This has no effect if HAVE_MATHERR is defined. Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL. (What systems actually do this? Let me know. -jwz) Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by either setting errno, or signalling SIGFPE/SIGILL. Otherwise, domain and range checking will happen before calling the float routines. This has no effect if HAVE_MATHERR is defined (since matherr will be called when a domain error occurs). */ #include <config.h> #include "lisp.h" #include "syssignal.h" #include "sysfloat.h" /* The code uses emacs_rint, so that it works to undefine HAVE_RINT if `rint' exists but does not work right. */ #ifdef HAVE_RINT #define emacs_rint rint #else static double emacs_rint (double x) { double r = floor (x + 0.5); double diff = fabs (r - x); /* Round to even and correct for any roundoff errors. */ if (diff >= 0.5 && (diff > 0.5 || r != 2.0 * floor (r / 2.0))) r += r < x ? 1.0 : -1.0; return r; } #endif /* Nonzero while executing in floating point. This tells float_error what to do. */ static int in_float; /* If an argument is out of range for a mathematical function, here is the actual argument value to use in the error message. */ static Lisp_Object float_error_arg, float_error_arg2; static const char *float_error_fn_name; /* Evaluate the floating point expression D, recording NUM as the original argument for error messages. D is normally an assignment expression. Handle errors which may result in signals or may set errno. Note that float_error may be declared to return void, so you can't just cast the zero after the colon to (SIGTYPE) to make the types check properly. */ #ifdef FLOAT_CHECK_ERRNO #define IN_FLOAT(d, name, num) \ do { \ float_error_arg = num; \ float_error_fn_name = name; \ in_float = 1; errno = 0; (d); in_float = 0; \ if (errno != 0) in_float_error (); \ } while (0) #define IN_FLOAT2(d, name, num, num2) \ do { \ float_error_arg = num; \ float_error_arg2 = num2; \ float_error_fn_name = name; \ in_float = 2; errno = 0; (d); in_float = 0; \ if (errno != 0) in_float_error (); \ } while (0) #else #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0) #define IN_FLOAT2(d, name, num, num2) (in_float = 2, (d), in_float = 0) #endif #define arith_error(op,arg) \ Fsignal (Qarith_error, list2 (build_msg_string (op), arg)) #define range_error(op,arg) \ Fsignal (Qrange_error, list2 (build_msg_string (op), arg)) #define range_error2(op,a1,a2) \ Fsignal (Qrange_error, list3 (build_msg_string (op), a1, a2)) #define domain_error(op,arg) \ Fsignal (Qdomain_error, list2 (build_msg_string (op), arg)) #define domain_error2(op,a1,a2) \ Fsignal (Qdomain_error, list3 (build_msg_string (op), a1, a2)) /* Convert float to Lisp Integer if it fits, else signal a range error using the given arguments. If bignums are available, range errors are never signaled. */ static Lisp_Object float_to_int (double x, #ifdef HAVE_BIGNUM const char *UNUSED (name), Lisp_Object UNUSED (num), Lisp_Object UNUSED (num2) #else const char *name, Lisp_Object num, Lisp_Object num2 #endif ) { #ifdef HAVE_BIGNUM bignum_set_double (scratch_bignum, x); return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); #else REGISTER EMACS_INT result = (EMACS_INT) x; if (result > EMACS_INT_MAX || result < EMACS_INT_MIN) { if (!UNBOUNDP (num2)) range_error2 (name, num, num2); else range_error (name, num); } return make_int (result); #endif /* HAVE_BIGNUM */ } static void in_float_error (void) { switch (errno) { case 0: break; case EDOM: if (in_float == 2) domain_error2 (float_error_fn_name, float_error_arg, float_error_arg2); else domain_error (float_error_fn_name, float_error_arg); break; case ERANGE: range_error (float_error_fn_name, float_error_arg); break; default: arith_error (float_error_fn_name, float_error_arg); break; } } static Lisp_Object mark_float (Lisp_Object UNUSED (obj)) { return Qnil; } static int float_equal (Lisp_Object obj1, Lisp_Object obj2, int UNUSED (depth)) { return (extract_float (obj1) == extract_float (obj2)); } static Hashcode float_hash (Lisp_Object obj, int UNUSED (depth)) { /* mod the value down to 32-bit range */ /* #### change for 64-bit machines */ return (unsigned long) fmod (extract_float (obj), 4e9); } static const struct memory_description float_description[] = { { XD_END } }; DEFINE_BASIC_LRECORD_IMPLEMENTATION ("float", float, 1, /*dumpable-flag*/ mark_float, print_float, 0, float_equal, float_hash, float_description, Lisp_Float); /* Extract a Lisp number as a `double', or signal an error. */ double extract_float (Lisp_Object num) { if (FLOATP (num)) return XFLOAT_DATA (num); if (INTP (num)) return (double) XINT (num); #ifdef HAVE_BIGNUM if (BIGNUMP (num)) return bignum_to_double (XBIGNUM_DATA (num)); #endif #ifdef HAVE_RATIO if (RATIOP (num)) return ratio_to_double (XRATIO_DATA (num)); #endif #ifdef HAVE_BIGFLOAT if (BIGFLOATP (num)) return bigfloat_to_double (XBIGFLOAT_DATA (num)); #endif return extract_float (wrong_type_argument (Qnumberp, num)); } /* Trig functions. */ DEFUN ("acos", Facos, 1, 1, 0, /* Return the inverse cosine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 1.0 || d < -1.0) domain_error ("acos", number); #endif IN_FLOAT (d = acos (d), "acos", number); return make_float (d); } DEFUN ("asin", Fasin, 1, 1, 0, /* Return the inverse sine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 1.0 || d < -1.0) domain_error ("asin", number); #endif IN_FLOAT (d = asin (d), "asin", number); return make_float (d); } DEFUN ("atan", Fatan, 1, 2, 0, /* Return the inverse tangent of NUMBER. If optional second argument NUMBER2 is provided, return atan2 (NUMBER, NUMBER2). */ (number, number2)) { double d = extract_float (number); if (NILP (number2)) IN_FLOAT (d = atan (d), "atan", number); else { double d2 = extract_float (number2); #ifdef FLOAT_CHECK_DOMAIN if (d == 0.0 && d2 == 0.0) domain_error2 ("atan", number, number2); #endif IN_FLOAT2 (d = atan2 (d, d2), "atan", number, number2); } return make_float (d); } DEFUN ("cos", Fcos, 1, 1, 0, /* Return the cosine of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = cos (d), "cos", number); return make_float (d); } DEFUN ("sin", Fsin, 1, 1, 0, /* Return the sine of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = sin (d), "sin", number); return make_float (d); } DEFUN ("tan", Ftan, 1, 1, 0, /* Return the tangent of NUMBER. */ (number)) { double d = extract_float (number); double c = cos (d); #ifdef FLOAT_CHECK_DOMAIN if (c == 0.0) domain_error ("tan", number); #endif IN_FLOAT (d = (sin (d) / c), "tan", number); return make_float (d); } /* Bessel functions */ #if 0 /* Leave these out unless we find there's a reason for them. */ DEFUN ("bessel-j0", Fbessel_j0, 1, 1, 0, /* Return the bessel function j0 of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = j0 (d), "bessel-j0", number); return make_float (d); } DEFUN ("bessel-j1", Fbessel_j1, 1, 1, 0, /* Return the bessel function j1 of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = j1 (d), "bessel-j1", number); return make_float (d); } DEFUN ("bessel-jn", Fbessel_jn, 2, 2, 0, /* Return the order N bessel function output jn of NUMBER. The first number (the order) is truncated to an integer. */ (number1, number2)) { int i1 = extract_float (number1); double f2 = extract_float (number2); IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", number1); return make_float (f2); } DEFUN ("bessel-y0", Fbessel_y0, 1, 1, 0, /* Return the bessel function y0 of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = y0 (d), "bessel-y0", number); return make_float (d); } DEFUN ("bessel-y1", Fbessel_y1, 1, 1, 0, /* Return the bessel function y1 of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = y1 (d), "bessel-y0", number); return make_float (d); } DEFUN ("bessel-yn", Fbessel_yn, 2, 2, 0, /* Return the order N bessel function output yn of NUMBER. The first number (the order) is truncated to an integer. */ (number1, number2)) { int i1 = extract_float (number1); double f2 = extract_float (number2); IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", number1); return make_float (f2); } #endif /* 0 (bessel functions) */ /* Error functions. */ #if 0 /* Leave these out unless we see they are worth having. */ DEFUN ("erf", Ferf, 1, 1, 0, /* Return the mathematical error function of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = erf (d), "erf", number); return make_float (d); } DEFUN ("erfc", Ferfc, 1, 1, 0, /* Return the complementary error function of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = erfc (d), "erfc", number); return make_float (d); } DEFUN ("log-gamma", Flog_gamma, 1, 1, 0, /* Return the log gamma of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = lgamma (d), "log-gamma", number); return make_float (d); } #endif /* 0 (error functions) */ /* Root and Log functions. */ DEFUN ("exp", Fexp, 1, 1, 0, /* Return the exponential base e of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 709.7827) /* Assume IEEE doubles here */ range_error ("exp", number); else if (d < -709.0) return make_float (0.0); else #endif IN_FLOAT (d = exp (d), "exp", number); return make_float (d); } DEFUN ("expt", Fexpt, 2, 2, 0, /* Return the exponential NUMBER1 ** NUMBER2. */ (number1, number2)) { #ifdef HAVE_BIGNUM if (INTEGERP (number1) && INTP (number2)) { if (INTP (number1)) { bignum_set_long (scratch_bignum2, XREALINT (number1)); bignum_pow (scratch_bignum, scratch_bignum2, XREALINT (number2)); } else bignum_pow (scratch_bignum, XBIGNUM_DATA (number1), XREALINT (number2)); return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); } #endif if (INTP (number1) && /* common lisp spec */ INTP (number2)) /* don't promote, if both are ints */ { EMACS_INT retval; EMACS_INT x = XINT (number1); EMACS_INT y = XINT (number2); if (y < 0) { if (x == 1) retval = 1; else if (x == -1) retval = (y & 1) ? -1 : 1; else retval = 0; } else { retval = 1; while (y > 0) { if (y & 1) retval *= x; x *= x; y = (EMACS_UINT) y >> 1; } } return make_int (retval); } #if defined(HAVE_BIGFLOAT) && defined(bigfloat_pow) if (BIGFLOATP (number1) && INTEGERP (number2)) { unsigned long exponent; #ifdef HAVE_BIGNUM if (BIGNUMP (number2)) exponent = bignum_to_ulong (XBIGNUM_DATA (number2)); else #endif exponent = XUINT (number2); bigfloat_set_prec (scratch_bigfloat, XBIGFLOAT_GET_PREC (number1)); bigfloat_pow (scratch_bigfloat, XBIGFLOAT_DATA (number1), exponent); return make_bigfloat_bf (scratch_bigfloat); } #endif { double f1 = extract_float (number1); double f2 = extract_float (number2); /* Really should check for overflow, too */ if (f1 == 0.0 && f2 == 0.0) f1 = 1.0; # ifdef FLOAT_CHECK_DOMAIN else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2))) domain_error2 ("expt", number1, number2); # endif /* FLOAT_CHECK_DOMAIN */ IN_FLOAT2 (f1 = pow (f1, f2), "expt", number1, number2); return make_float (f1); } } DEFUN ("log", Flog, 1, 2, 0, /* Return the natural logarithm of NUMBER. If second optional argument BASE is given, return the logarithm of NUMBER using that base. */ (number, base)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d <= 0.0) domain_error2 ("log", number, base); #endif if (NILP (base)) IN_FLOAT (d = log (d), "log", number); else { double b = extract_float (base); #ifdef FLOAT_CHECK_DOMAIN if (b <= 0.0 || b == 1.0) domain_error2 ("log", number, base); #endif if (b == 10.0) IN_FLOAT2 (d = log10 (d), "log", number, base); else IN_FLOAT2 (d = (log (d) / log (b)), "log", number, base); } return make_float (d); } DEFUN ("log10", Flog10, 1, 1, 0, /* Return the logarithm base 10 of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d <= 0.0) domain_error ("log10", number); #endif IN_FLOAT (d = log10 (d), "log10", number); return make_float (d); } DEFUN ("sqrt", Fsqrt, 1, 1, 0, /* Return the square root of NUMBER. */ (number)) { double d; #if defined(HAVE_BIGFLOAT) && defined(bigfloat_sqrt) if (BIGFLOATP (number)) { bigfloat_set_prec (scratch_bigfloat, XBIGFLOAT_GET_PREC (number)); bigfloat_sqrt (scratch_bigfloat, XBIGFLOAT_DATA (number)); return make_bigfloat_bf (scratch_bigfloat); } #endif /* HAVE_BIGFLOAT */ d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d < 0.0) domain_error ("sqrt", number); #endif IN_FLOAT (d = sqrt (d), "sqrt", number); return make_float (d); } DEFUN ("cube-root", Fcube_root, 1, 1, 0, /* Return the cube root of NUMBER. */ (number)) { double d = extract_float (number); #ifdef HAVE_CBRT IN_FLOAT (d = cbrt (d), "cube-root", number); #else if (d >= 0.0) IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", number); else IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", number); #endif return make_float (d); } /* Inverse trig functions. */ DEFUN ("acosh", Facosh, 1, 1, 0, /* Return the inverse hyperbolic cosine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d < 1.0) domain_error ("acosh", number); #endif #ifdef HAVE_INVERSE_HYPERBOLIC IN_FLOAT (d = acosh (d), "acosh", number); #else IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", number); #endif return make_float (d); } DEFUN ("asinh", Fasinh, 1, 1, 0, /* Return the inverse hyperbolic sine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef HAVE_INVERSE_HYPERBOLIC IN_FLOAT (d = asinh (d), "asinh", number); #else IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", number); #endif return make_float (d); } DEFUN ("atanh", Fatanh, 1, 1, 0, /* Return the inverse hyperbolic tangent of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d >= 1.0 || d <= -1.0) domain_error ("atanh", number); #endif #ifdef HAVE_INVERSE_HYPERBOLIC IN_FLOAT (d = atanh (d), "atanh", number); #else IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", number); #endif return make_float (d); } DEFUN ("cosh", Fcosh, 1, 1, 0, /* Return the hyperbolic cosine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 710.0 || d < -710.0) range_error ("cosh", number); #endif IN_FLOAT (d = cosh (d), "cosh", number); return make_float (d); } DEFUN ("sinh", Fsinh, 1, 1, 0, /* Return the hyperbolic sine of NUMBER. */ (number)) { double d = extract_float (number); #ifdef FLOAT_CHECK_DOMAIN if (d > 710.0 || d < -710.0) range_error ("sinh", number); #endif IN_FLOAT (d = sinh (d), "sinh", number); return make_float (d); } DEFUN ("tanh", Ftanh, 1, 1, 0, /* Return the hyperbolic tangent of NUMBER. */ (number)) { double d = extract_float (number); IN_FLOAT (d = tanh (d), "tanh", number); return make_float (d); } /* Rounding functions */ DEFUN ("abs", Fabs, 1, 1, 0, /* Return the absolute value of NUMBER. */ (number)) { if (FLOATP (number)) { IN_FLOAT (number = make_float (fabs (XFLOAT_DATA (number))), "abs", number); return number; } if (INTP (number)) #ifdef HAVE_BIGNUM /* The most negative Lisp fixnum will overflow */ return (XINT (number) >= 0) ? number : make_integer (- XINT (number)); #else return (XINT (number) >= 0) ? number : make_int (- XINT (number)); #endif #ifdef HAVE_BIGNUM if (BIGNUMP (number)) { if (bignum_sign (XBIGNUM_DATA (number)) >= 0) return number; bignum_abs (scratch_bignum, XBIGNUM_DATA (number)); return make_bignum_bg (scratch_bignum); } #endif #ifdef HAVE_RATIO if (RATIOP (number)) { if (ratio_sign (XRATIO_DATA (number)) >= 0) return number; ratio_abs (scratch_ratio, XRATIO_DATA (number)); return make_ratio_rt (scratch_ratio); } #endif #ifdef HAVE_BIGFLOAT if (BIGFLOATP (number)) { if (bigfloat_sign (XBIGFLOAT_DATA (number)) >= 0) return number; bigfloat_set_prec (scratch_bigfloat, XBIGFLOAT_GET_PREC (number)); bigfloat_abs (scratch_bigfloat, XBIGFLOAT_DATA (number)); return make_bigfloat_bf (scratch_bigfloat); } #endif return Fabs (wrong_type_argument (Qnumberp, number)); } DEFUN ("float", Ffloat, 1, 1, 0, /* Return the floating point number numerically equal to NUMBER. */ (number)) { if (INTP (number)) return make_float ((double) XINT (number)); #ifdef HAVE_BIGNUM if (BIGFLOATP (number)) { #ifdef HAVE_BIGFLOAT if (ZEROP (Vdefault_float_precision)) #endif return make_float (bignum_to_double (XBIGNUM_DATA (number))); #ifdef HAVE_BIGFLOAT else { bigfloat_set_prec (scratch_bigfloat, bigfloat_get_default_prec ()); bigfloat_set_bignum (scratch_bigfloat, XBIGNUM_DATA (number)); return make_bigfloat_bf (scratch_bigfloat); } #endif /* HAVE_BIGFLOAT */ } #endif /* HAVE_BIGNUM */ #ifdef HAVE_RATIO if (RATIOP (number)) return make_float (ratio_to_double (XRATIO_DATA (number))); #endif if (FLOATP (number)) /* give 'em the same float back */ return number; return Ffloat (wrong_type_argument (Qnumberp, number)); } DEFUN ("logb", Flogb, 1, 1, 0, /* Return largest integer <= the base 2 log of the magnitude of NUMBER. This is the same as the exponent of a float. */ (number)) { double f = extract_float (number); if (f == 0.0) return make_int (EMACS_INT_MIN); #ifdef HAVE_LOGB { Lisp_Object val; IN_FLOAT (val = make_int ((EMACS_INT) logb (f)), "logb", number); return val; } #else #ifdef HAVE_FREXP { int exqp; IN_FLOAT (frexp (f, &exqp), "logb", number); return make_int (exqp - 1); } #else { int i; double d; EMACS_INT val; if (f < 0.0) f = -f; val = -1; while (f < 0.5) { for (i = 1, d = 0.5; d * d >= f; i += i) d *= d; f /= d; val -= i; } while (f >= 1.0) { for (i = 1, d = 2.0; d * d <= f; i += i) d *= d; f /= d; val += i; } return make_int (val); } #endif /* ! HAVE_FREXP */ #endif /* ! HAVE_LOGB */ } DEFUN ("ceiling", Fceiling, 1, 1, 0, /* Return the smallest integer no less than NUMBER. (Round toward +inf.) */ (number)) { if (FLOATP (number)) { double d; IN_FLOAT ((d = ceil (XFLOAT_DATA (number))), "ceiling", number); return (float_to_int (d, "ceiling", number, Qunbound)); } #ifdef HAVE_BIGNUM if (INTEGERP (number)) #else if (INTP (number)) #endif return number; #ifdef HAVE_RATIO if (RATIOP (number)) { bignum_ceil (scratch_bignum, XRATIO_NUMERATOR (number), XRATIO_DENOMINATOR (number)); return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); } #endif #ifdef HAVE_BIGFLOAT if (BIGFLOATP (number)) { bigfloat_set_prec (scratch_bigfloat, XBIGFLOAT_GET_PREC (number)); bigfloat_ceil (scratch_bigfloat, XBIGFLOAT_DATA (number)); #ifdef HAVE_BIGNUM bignum_set_bigfloat (scratch_bignum, scratch_bigfloat); return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); #else return make_int ((EMACS_INT) bigfloat_to_long (scratch_bigfloat)); #endif /* HAVE_BIGNUM */ } #endif /* HAVE_BIGFLOAT */ return Fceiling (wrong_type_argument (Qnumberp, number)); } DEFUN ("floor", Ffloor, 1, 2, 0, /* Return the largest integer no greater than NUMBER. (Round towards -inf.) With optional second argument DIVISOR, return the largest integer no greater than NUMBER/DIVISOR. */ (number, divisor)) { #ifdef WITH_NUMBER_TYPES CHECK_REAL (number); if (NILP (divisor)) { if (FLOATP (number)) { double d; IN_FLOAT ((d = floor (XFLOAT_DATA (number))), "floor", number); return (float_to_int (d, "floor", number, Qunbound)); } #ifdef HAVE_RATIO else if (RATIOP (number)) { bignum_floor (scratch_bignum, XRATIO_NUMERATOR (number), XRATIO_DENOMINATOR (number)); return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); } #endif #ifdef HAVE_BIGFLOAT else if (BIGFLOATP (number)) { bigfloat_set_prec (scratch_bigfloat, XBIGFLOAT_GET_PREC (number)); bigfloat_floor (scratch_bigfloat, XBIGFLOAT_DATA (number)); return make_bigfloat_bf (scratch_bigfloat); } #endif return number; } else { CHECK_REAL (divisor); switch (promote_args (&number, &divisor)) { case FIXNUM_T: { EMACS_INT i1 = XREALINT (number); EMACS_INT i2 = XREALINT (divisor); if (i2 == 0) Fsignal (Qarith_error, Qnil); /* With C's /, the result is implementation-defined if either operand is negative, so use only nonnegative operands. */ i1 = (i2 < 0 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2)) : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2)); return make_int (i1); } #ifdef HAVE_BIGNUM case BIGNUM_T: if (bignum_sign (XBIGNUM_DATA (divisor)) == 0) Fsignal (Qarith_error, Qnil); bignum_floor (scratch_bignum, XBIGNUM_DATA (number), XBIGNUM_DATA (divisor)); return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); #endif #ifdef HAVE_RATIO case RATIO_T: if (ratio_sign (XRATIO_DATA (divisor)) == 0) Fsignal (Qarith_error, Qnil); ratio_div (scratch_ratio, XRATIO_DATA (number), XRATIO_DATA (divisor)); bignum_floor (scratch_bignum, ratio_numerator (scratch_ratio), ratio_denominator (scratch_ratio)); return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); #endif #ifdef HAVE_BIGFLOAT case BIGFLOAT_T: if (bigfloat_sign (XBIGFLOAT_DATA (divisor)) == 0) Fsignal (Qarith_error, Qnil); bigfloat_set_prec (scratch_bigfloat, max (XBIGFLOAT_GET_PREC (number), XBIGFLOAT_GET_PREC (divisor))); bigfloat_div (scratch_bigfloat, XBIGFLOAT_DATA (number), XBIGFLOAT_DATA (divisor)); bigfloat_floor (scratch_bigfloat, scratch_bigfloat); return make_bigfloat_bf (scratch_bigfloat); #endif default: /* FLOAT_T */ { double f1 = extract_float (number); double f2 = extract_float (divisor); if (f2 == 0.0) Fsignal (Qarith_error, Qnil); IN_FLOAT2 (f1 = floor (f1 / f2), "floor", number, divisor); return float_to_int (f1, "floor", number, divisor); } } } #else /* !WITH_NUMBER_TYPES */ CHECK_INT_OR_FLOAT (number); if (! NILP (divisor)) { EMACS_INT i1, i2; CHECK_INT_OR_FLOAT (divisor); if (FLOATP (number) || FLOATP (divisor)) { double f1 = extract_float (number); double f2 = extract_float (divisor); if (f2 == 0) Fsignal (Qarith_error, Qnil); IN_FLOAT2 (f1 = floor (f1 / f2), "floor", number, divisor); return float_to_int (f1, "floor", number, divisor); } i1 = XINT (number); i2 = XINT (divisor); if (i2 == 0) Fsignal (Qarith_error, Qnil); /* With C's /, the result is implementation-defined if either operand is negative, so use only nonnegative operands. */ i1 = (i2 < 0 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2)) : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2)); return (make_int (i1)); } if (FLOATP (number)) { double d; IN_FLOAT ((d = floor (XFLOAT_DATA (number))), "floor", number); return (float_to_int (d, "floor", number, Qunbound)); } return number; #endif /* WITH_NUMBER_TYPES */ } DEFUN ("round", Fround, 1, 1, 0, /* Return the nearest integer to NUMBER. */ (number)) { if (FLOATP (number)) { double d; /* Screw the prevailing rounding mode. */ IN_FLOAT ((d = emacs_rint (XFLOAT_DATA (number))), "round", number); return (float_to_int (d, "round", number, Qunbound)); } #ifdef HAVE_BIGNUM if (INTEGERP (number)) #else if (INTP (number)) #endif return number; #ifdef HAVE_RATIO if (RATIOP (number)) { if (bignum_divisible_p (XRATIO_NUMERATOR (number), XRATIO_DENOMINATOR (number))) { bignum_div (scratch_bignum, XRATIO_NUMERATOR (number), XRATIO_DENOMINATOR (number)); } else { bignum_add (scratch_bignum2, XRATIO_NUMERATOR (number), XRATIO_DENOMINATOR (number)); bignum_div (scratch_bignum, scratch_bignum2, XRATIO_DENOMINATOR (number)); } return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); } #endif #ifdef HAVE_BIGFLOAT if (BIGFLOATP (number)) { unsigned long prec = XBIGFLOAT_GET_PREC (number); bigfloat_set_prec (scratch_bigfloat, prec); bigfloat_set_prec (scratch_bigfloat2, prec); bigfloat_set_double (scratch_bigfloat2, bigfloat_sign (XBIGFLOAT_DATA (number)) * 0.5); bigfloat_floor (scratch_bigfloat, scratch_bigfloat2); #ifdef HAVE_BIGNUM bignum_set_bigfloat (scratch_bignum, scratch_bigfloat); return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); #else return make_int ((EMACS_INT) bigfloat_to_long (scratch_bigfloat)); #endif /* HAVE_BIGNUM */ } #endif /* HAVE_BIGFLOAT */ return Fround (wrong_type_argument (Qnumberp, number)); } DEFUN ("truncate", Ftruncate, 1, 1, 0, /* Truncate a floating point number to an integer. Rounds the value toward zero. */ (number)) { if (FLOATP (number)) return float_to_int (XFLOAT_DATA (number), "truncate", number, Qunbound); #ifdef HAVE_BIGNUM if (INTEGERP (number)) #else if (INTP (number)) #endif return number; #ifdef HAVE_RATIO if (RATIOP (number)) { bignum_div (scratch_bignum, XRATIO_NUMERATOR (number), XRATIO_DENOMINATOR (number)); return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); } #endif #ifdef HAVE_BIGFLOAT if (BIGFLOATP (number)) { bigfloat_set_prec (scratch_bigfloat, XBIGFLOAT_GET_PREC (number)); bigfloat_trunc (scratch_bigfloat, XBIGFLOAT_DATA (number)); #ifdef HAVE_BIGNUM bignum_set_bigfloat (scratch_bignum, scratch_bigfloat); return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); #else return make_int ((EMACS_INT) bigfloat_to_long (scratch_bigfloat)); #endif /* HAVE_BIGNUM */ } #endif /* HAVE_BIGFLOAT */ return Ftruncate (wrong_type_argument (Qnumberp, number)); } /* Float-rounding functions. */ DEFUN ("fceiling", Ffceiling, 1, 1, 0, /* Return the smallest integer no less than NUMBER, as a float. \(Round toward +inf.\) */ (number)) { double d = extract_float (number); IN_FLOAT (d = ceil (d), "fceiling", number); return make_float (d); } DEFUN ("ffloor", Fffloor, 1, 1, 0, /* Return the largest integer no greater than NUMBER, as a float. \(Round towards -inf.\) */ (number)) { double d = extract_float (number); IN_FLOAT (d = floor (d), "ffloor", number); return make_float (d); } DEFUN ("fround", Ffround, 1, 1, 0, /* Return the nearest integer to NUMBER, as a float. */ (number)) { double d = extract_float (number); IN_FLOAT (d = emacs_rint (d), "fround", number); return make_float (d); } DEFUN ("ftruncate", Fftruncate, 1, 1, 0, /* Truncate a floating point number to an integral float value. Rounds the value toward zero. */ (number)) { double d = extract_float (number); if (d >= 0.0) IN_FLOAT (d = floor (d), "ftruncate", number); else IN_FLOAT (d = ceil (d), "ftruncate", number); return make_float (d); } #ifdef FLOAT_CATCH_SIGILL static SIGTYPE float_error (int signo) { if (! in_float) fatal_error_signal (signo); EMACS_REESTABLISH_SIGNAL (signo, arith_error); EMACS_UNBLOCK_SIGNAL (signo); in_float = 0; /* Was Fsignal(), but it just doesn't make sense for an error occurring inside a signal handler to be restartable, considering that anything could happen when the error is signaled and trapped and considering the asynchronous nature of signal handlers. */ signal_error (Qarith_error, 0, float_error_arg); } /* Another idea was to replace the library function `infnan' where SIGILL is signaled. */ #endif /* FLOAT_CATCH_SIGILL */ /* In C++, it is impossible to determine what type matherr expects without some more configure magic. We shouldn't be using matherr anyways - it's a non-standard SYSVism. */ #if defined (HAVE_MATHERR) && !defined(__cplusplus) int matherr (struct exception *x) { Lisp_Object args; if (! in_float) /* Not called from emacs-lisp float routines; do the default thing. */ return 0; /* if (!strcmp (x->name, "pow")) x->name = "expt"; */ args = Fcons (build_string (x->name), Fcons (make_float (x->arg1), ((in_float == 2) ? Fcons (make_float (x->arg2), Qnil) : Qnil))); switch (x->type) { case DOMAIN: Fsignal (Qdomain_error, args); break; case SING: Fsignal (Qsingularity_error, args); break; case OVERFLOW: Fsignal (Qoverflow_error, args); break; case UNDERFLOW: Fsignal (Qunderflow_error, args); break; default: Fsignal (Qarith_error, args); break; } return 1; /* don't set errno or print a message */ } #endif /* HAVE_MATHERR */ void init_floatfns_very_early (void) { # ifdef FLOAT_CATCH_SIGILL EMACS_SIGNAL (SIGILL, float_error); # endif in_float = 0; } void syms_of_floatfns (void) { INIT_LRECORD_IMPLEMENTATION (float); /* Trig functions. */ DEFSUBR (Facos); DEFSUBR (Fasin); DEFSUBR (Fatan); DEFSUBR (Fcos); DEFSUBR (Fsin); DEFSUBR (Ftan); /* Bessel functions */ #if 0 DEFSUBR (Fbessel_y0); DEFSUBR (Fbessel_y1); DEFSUBR (Fbessel_yn); DEFSUBR (Fbessel_j0); DEFSUBR (Fbessel_j1); DEFSUBR (Fbessel_jn); #endif /* 0 */ /* Error functions. */ #if 0 DEFSUBR (Ferf); DEFSUBR (Ferfc); DEFSUBR (Flog_gamma); #endif /* 0 */ /* Root and Log functions. */ DEFSUBR (Fexp); DEFSUBR (Fexpt); DEFSUBR (Flog); DEFSUBR (Flog10); DEFSUBR (Fsqrt); DEFSUBR (Fcube_root); /* Inverse trig functions. */ DEFSUBR (Facosh); DEFSUBR (Fasinh); DEFSUBR (Fatanh); DEFSUBR (Fcosh); DEFSUBR (Fsinh); DEFSUBR (Ftanh); /* Rounding functions */ DEFSUBR (Fabs); DEFSUBR (Ffloat); DEFSUBR (Flogb); DEFSUBR (Fceiling); DEFSUBR (Ffloor); DEFSUBR (Fround); DEFSUBR (Ftruncate); /* Float-rounding functions. */ DEFSUBR (Ffceiling); DEFSUBR (Fffloor); DEFSUBR (Ffround); DEFSUBR (Fftruncate); } void vars_of_floatfns (void) { Fprovide (intern ("lisp-float-type")); }