Mercurial > hg > xemacs-beta
view src/alloca.c @ 844:047d37eb70d7
[xemacs-hg @ 2002-05-16 13:30:23 by ben]
ui fixes for things that were bothering me
bytecode.c, editfns.c, lisp.h, lread.c: Fix save-restriction to use markers rather than pseudo-markers
(integers representing the amount of text on either side of the
region). That way, all inserts are handled correctly, not just
those inside old restriction.
Add buffer argument to save_restriction_save().
process.c: Clean up very dirty and kludgy code that outputs into a buffer --
use proper unwind protects, etc.
font-lock.c: Do save-restriction/widen around the function -- otherwise, incorrect
results will ensue when a buffer has been narrowed before a call to
e.g. `buffer-syntactic-context' -- something that happens quite often.
fileio.c: Look for a handler for make-temp-name.
window.c, winslots.h: Try to solve this annoying problem: have two frames displaying the
buffer, in different places; in one, temporarily switch away to
another buffer and then back -- and you've lost your position;
it's reset to the other one in the other frame. My current
solution involves window-level caches of buffers and points (also
a cache for window-start); when set-window-buffer is called, it
looks to see if the buffer was previously visited in the window,
and if so, uses the most recent point at that time. (It's a
marker, so it handles changes.)
#### Note: It could be argued that doing it on the frame level
would be better -- e.g. if you visit a buffer temporarily through
a grep, and then go back to that buffer, you presumably want the
grep's position rather than some previous position provided
everything was in the same frame, even though the grep was in
another window in the frame. However, doing it on the frame level
fails when you have two windows on the same frame. Perhaps we
keep both a window and a frame cache, and use the frame cache if
there are no other windows on the frame showing the buffer, else
the window's cache? This is probably something to be configurable
using a specifier. Suggestions please please please?
window.c: Clean up a bit code that deals with the annoyance of window-point
vs. point.
dialog.el: Function to ask a
multiple-choice question, automatically choosing a dialog box or
minibuffer representation as necessary. Generalized version of
yes-or-no-p, y-or-n-p.
files.el: Use get-user-response to ask "yes/no/diff" question when recovering.
"diff" means that a diff is displayed between the current file and the
autosave. (Converts/deconverts escape-quoted as necessary. No more
complaints from you, Mr. Turnbull!) One known problem: when a dialog
is used, it's modal, so you can't scroll the diff. Will fix soon.
lisp-mode.el: If we're filling a string, don't treat semicolon as a comment,
which would give very unfriendly results.
Uses `buffer-syntactic-context'.
simple.el: all changes back to the beginning. (Useful if you've saved the file
in the middle of the changes.)
simple.el: Add option kill-word-into-kill-ring, which controls whether words
deleted with kill-word, backward-kill-word, etc. are "cut" into the
kill ring, or "cleared" into nothingness. (My preference is the
latter, by far. I'd almost go so far as suggesting we make it the
default, as you can always select a word and then cut it if you want
it cut.)
menubar-items.el: Add option corresponding to kill-word-into-kill-ring.
author | ben |
---|---|
date | Thu, 16 May 2002 13:30:58 +0000 |
parents | 3078fd1074e8 |
children | e7ee5f8bde58 |
line wrap: on
line source
/* alloca.c -- allocate automatically reclaimed memory (Mostly) portable public-domain implementation -- D A Gwyn This implementation of the PWB library alloca function, which is used to allocate space off the run-time stack so that it is automatically reclaimed upon procedure exit, was inspired by discussions with J. Q. Johnson of Cornell. J.Otto Tennant <jot@cray.com> contributed the Cray support. There are some preprocessor constants that can be defined when compiling for your specific system, for improved efficiency; however, the defaults should be okay. The general concept of this implementation is to keep track of all alloca-allocated blocks, and reclaim any that are found to be deeper in the stack than the current invocation. This heuristic does not reclaim storage as soon as it becomes invalid, but it will do so eventually. As a special case, alloca(0) reclaims storage without allocating any. It is a good idea to use alloca(0) in your main control loop, etc. to force garbage collection. */ /* Synched up with: FSF 19.30. */ /* Authorship: FSF: A long time ago. Very few changes for XEmacs. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif /* XEmacs: If compiling with GCC 2, this file is theoretically not needed. However, alloca() is broken under GCC 2 on many machines: you cannot put a call to alloca() as part of an argument to a function. */ /* If someone has defined alloca as a macro, there must be some other way alloca is supposed to work. */ /* XEmacs sometimes uses the C alloca even when a builtin alloca is available, because it's safer. */ #if defined (EMACS_WANTS_C_ALLOCA) || (!defined (alloca) && (!defined (__GNUC__) || __GNUC__ < 2)) #ifdef emacs #ifdef static /* actually, only want this if static is defined as "" -- this is for usg, in which emacs must undefine static in order to make unexec workable */ #ifndef STACK_DIRECTION you lose -- must know STACK_DIRECTION at compile-time #endif /* STACK_DIRECTION undefined */ #endif /* static */ #endif /* emacs */ /* If your stack is a linked list of frames, you have to provide an "address metric" ADDRESS_FUNCTION macro. */ #if defined (CRAY) && defined (CRAY_STACKSEG_END) long i00afunc (); #define ADDRESS_FUNCTION(arg) (char *) i00afunc (&(arg)) #else #define ADDRESS_FUNCTION(arg) &(arg) #endif #ifdef __STDC__ /* XEmacs change */ typedef void *pointer; #else typedef char *pointer; #endif /* XEmacs: With ERROR_CHECK_MALLOC defined, there is no xfree -- it's a macro that does some stuff to try and trap invalid frees, and then calls xfree_1 to actually do the work. */ #ifdef emacs # ifdef ERROR_CHECK_MALLOC void xfree_1 (pointer); # define xfree xfree_1 # else void xfree (pointer); # endif #endif #ifndef NULL #define NULL 0 #endif /* Different portions of Emacs need to call different versions of malloc. The Emacs executable needs alloca to call xmalloc, because ordinary malloc isn't protected from input signals. On the other hand, the utilities in lib-src need alloca to call malloc; some of them are very simple, and don't have an xmalloc routine. Non-Emacs programs expect this to call use xmalloc. Callers below should use malloc. */ #ifdef emacs #define malloc xmalloc #endif #ifndef WIN32_NATIVE extern pointer malloc (); #else extern void *malloc(); #endif /* Define STACK_DIRECTION if you know the direction of stack growth for your system; otherwise it will be automatically deduced at run-time. STACK_DIRECTION > 0 => grows toward higher addresses STACK_DIRECTION < 0 => grows toward lower addresses STACK_DIRECTION = 0 => direction of growth unknown */ #ifndef STACK_DIRECTION #define STACK_DIRECTION 0 /* Direction unknown. */ #endif #if STACK_DIRECTION != 0 #define STACK_DIR STACK_DIRECTION /* Known at compile-time. */ #else /* STACK_DIRECTION == 0; need run-time code. */ static int stack_dir; /* 1 or -1 once known. */ #define STACK_DIR stack_dir static void find_stack_direction () { static char *addr = NULL; /* Address of first `dummy', once known. */ auto char dummy; /* To get stack address. */ if (addr == NULL) { /* Initial entry. */ addr = ADDRESS_FUNCTION (dummy); find_stack_direction (); /* Recurse once. */ } else { /* Second entry. */ if (ADDRESS_FUNCTION (dummy) > addr) stack_dir = 1; /* Stack grew upward. */ else stack_dir = -1; /* Stack grew downward. */ } } #endif /* STACK_DIRECTION == 0 */ /* An "alloca header" is used to: (a) chain together all alloca'ed blocks; (b) keep track of stack depth. It is very important that sizeof(header) agree with malloc alignment chunk size. The following default should work okay. */ #ifndef ALIGN_SIZE #define ALIGN_SIZE sizeof(double) #endif typedef union hdr { char align[ALIGN_SIZE]; /* To force sizeof(header). */ struct { union hdr *next; /* For chaining headers. */ char *deep; /* For stack depth measure. */ } h; } header; static header *last_alloca_header = NULL; /* -> last alloca header. */ /* Return a pointer to at least SIZE bytes of storage, which will be automatically reclaimed upon exit from the procedure that called alloca. Originally, this space was supposed to be taken from the current stack frame of the caller, but that method cannot be made to work for some implementations of C, for example under Gould's UTX/32. */ pointer #ifdef EMACS_WANTS_C_ALLOCA c_alloca (size) #else alloca (size) #endif unsigned size; { auto char probe; /* Probes stack depth: */ register char *depth = ADDRESS_FUNCTION (probe); #if STACK_DIRECTION == 0 if (STACK_DIR == 0) /* Unknown growth direction. */ find_stack_direction (); #endif /* Reclaim garbage, defined as all alloca'd storage that was allocated from deeper in the stack than currently. */ { register header *hp; /* Traverses linked list. */ for (hp = last_alloca_header; hp != NULL;) if ((STACK_DIR > 0 && hp->h.deep > depth) || (STACK_DIR < 0 && hp->h.deep < depth)) { register header *np = hp->h.next; free ((pointer) hp); /* Collect garbage. */ hp = np; /* -> next header. */ } else break; /* Rest are not deeper. */ last_alloca_header = hp; /* -> last valid storage. */ } if (size == 0) return NULL; /* No allocation required. */ /* Allocate combined header + user data storage. */ { register pointer new = malloc (sizeof (header) + size); /* Address of header. */ ((header *) new)->h.next = last_alloca_header; ((header *) new)->h.deep = depth; last_alloca_header = (header *) new; /* User storage begins just after header. */ return (pointer) ((char *) new + sizeof (header)); } } #if defined (CRAY) && defined (CRAY_STACKSEG_END) #ifdef DEBUG_I00AFUNC #include <stdio.h> #endif #ifndef CRAY_STACK #define CRAY_STACK #ifndef CRAY2 /* Stack structures for CRAY-1, CRAY X-MP, and CRAY Y-MP */ struct stack_control_header { long shgrow:32; /* Number of times stack has grown. */ long shaseg:32; /* Size of increments to stack. */ long shhwm:32; /* High water mark of stack. */ long shsize:32; /* Current size of stack (all segments). */ }; /* The stack segment linkage control information occurs at the high-address end of a stack segment. (The stack grows from low addresses to high addresses.) The initial part of the stack segment linkage control information is 0200 (octal) words. This provides for register storage for the routine which overflows the stack. */ struct stack_segment_linkage { long ss[0200]; /* 0200 overflow words. */ long sssize:32; /* Number of words in this segment. */ long ssbase:32; /* Offset to stack base. */ long:32; long sspseg:32; /* Offset to linkage control of previous segment of stack. */ long:32; long sstcpt:32; /* Pointer to task common address block. */ long sscsnm; /* Private control structure number for microtasking. */ long ssusr1; /* Reserved for user. */ long ssusr2; /* Reserved for user. */ long sstpid; /* Process ID for pid based multi-tasking. */ long ssgvup; /* Pointer to multitasking thread giveup. */ long sscray[7]; /* Reserved for Cray Research. */ long ssa0; long ssa1; long ssa2; long ssa3; long ssa4; long ssa5; long ssa6; long ssa7; long sss0; long sss1; long sss2; long sss3; long sss4; long sss5; long sss6; long sss7; }; #else /* CRAY2 */ /* The following structure defines the vector of words returned by the STKSTAT library routine. */ struct stk_stat { long now; /* Current total stack size. */ long maxc; /* Amount of contiguous space which would be required to satisfy the maximum stack demand to date. */ long high_water; /* Stack high-water mark. */ long overflows; /* Number of stack overflow ($STKOFEN) calls. */ long hits; /* Number of internal buffer hits. */ long extends; /* Number of block extensions. */ long stko_mallocs; /* Block allocations by $STKOFEN. */ long underflows; /* Number of stack underflow calls ($STKRETN). */ long stko_free; /* Number of deallocations by $STKRETN. */ long stkm_free; /* Number of deallocations by $STKMRET. */ long segments; /* Current number of stack segments. */ long maxs; /* Maximum number of stack segments so far. */ long pad_size; /* Stack pad size. */ long current_address; /* Current stack segment address. */ long current_size; /* Current stack segment size. This number is actually corrupted by STKSTAT to include the fifteen word trailer area. */ long initial_address; /* Address of initial segment. */ long initial_size; /* Size of initial segment. */ }; /* The following structure describes the data structure which trails any stack segment. I think that the description in 'asdef' is out of date. I only describe the parts that I am sure about. */ struct stk_trailer { long this_address; /* Address of this block. */ long this_size; /* Size of this block (does not include this trailer). */ long unknown2; long unknown3; long link; /* Address of trailer block of previous segment. */ long unknown5; long unknown6; long unknown7; long unknown8; long unknown9; long unknown10; long unknown11; long unknown12; long unknown13; long unknown14; }; #endif /* CRAY2 */ #endif /* not CRAY_STACK */ #ifdef CRAY2 /* Determine a "stack measure" for an arbitrary ADDRESS. I doubt that "lint" will like this much. */ static long i00afunc (long *address) { struct stk_stat status; struct stk_trailer *trailer; long *block, size; long result = 0; /* We want to iterate through all of the segments. The first step is to get the stack status structure. We could do this more quickly and more directly, perhaps, by referencing the $LM00 common block, but I know that this works. */ STKSTAT (&status); /* Set up the iteration. */ trailer = (struct stk_trailer *) (status.current_address + status.current_size - 15); /* There must be at least one stack segment. Therefore it is a fatal error if "trailer" is null. */ if (trailer == 0) abort (); /* Discard segments that do not contain our argument address. */ while (trailer != 0) { block = (long *) trailer->this_address; size = trailer->this_size; if (block == 0 || size == 0) abort (); trailer = (struct stk_trailer *) trailer->link; if ((block <= address) && (address < (block + size))) break; } /* Set the result to the offset in this segment and add the sizes of all predecessor segments. */ result = address - block; if (trailer == 0) { return result; } do { if (trailer->this_size <= 0) abort (); result += trailer->this_size; trailer = (struct stk_trailer *) trailer->link; } while (trailer != 0); /* We are done. Note that if you present a bogus address (one not in any segment), you will get a different number back, formed from subtracting the address of the first block. This is probably not what you want. */ return (result); } #else /* not CRAY2 */ /* Stack address function for a CRAY-1, CRAY X-MP, or CRAY Y-MP. Determine the number of the cell within the stack, given the address of the cell. The purpose of this routine is to linearize, in some sense, stack addresses for alloca. */ static long i00afunc (long address) { long stkl = 0; long size, pseg, this_segment, stack; long result = 0; struct stack_segment_linkage *ssptr; /* Register B67 contains the address of the end of the current stack segment. If you (as a subprogram) store your registers on the stack and find that you are past the contents of B67, you have overflowed the segment. B67 also points to the stack segment linkage control area, which is what we are really interested in. */ stkl = CRAY_STACKSEG_END (); ssptr = (struct stack_segment_linkage *) stkl; /* If one subtracts 'size' from the end of the segment, one has the address of the first word of the segment. If this is not the first segment, 'pseg' will be nonzero. */ pseg = ssptr->sspseg; size = ssptr->sssize; this_segment = stkl - size; /* It is possible that calling this routine itself caused a stack overflow. Discard stack segments which do not contain the target address. */ while (!(this_segment <= address && address <= stkl)) { #ifdef DEBUG_I00AFUNC fprintf (stderr, "%011o %011o %011o\n", this_segment, address, stkl); #endif if (pseg == 0) break; stkl = stkl - pseg; ssptr = (struct stack_segment_linkage *) stkl; size = ssptr->sssize; pseg = ssptr->sspseg; this_segment = stkl - size; } result = address - this_segment; /* If you subtract pseg from the current end of the stack, you get the address of the previous stack segment's end. This seems a little convoluted to me, but I'll bet you save a cycle somewhere. */ while (pseg != 0) { #ifdef DEBUG_I00AFUNC fprintf (stderr, "%011o %011o\n", pseg, size); #endif stkl = stkl - pseg; ssptr = (struct stack_segment_linkage *) stkl; size = ssptr->sssize; pseg = ssptr->sspseg; result += size; } return (result); } #endif /* not CRAY2 */ #endif /* CRAY */ #endif /* complicated expression at top of file */