view lisp/lisp.el @ 844:047d37eb70d7

[xemacs-hg @ 2002-05-16 13:30:23 by ben] ui fixes for things that were bothering me bytecode.c, editfns.c, lisp.h, lread.c: Fix save-restriction to use markers rather than pseudo-markers (integers representing the amount of text on either side of the region). That way, all inserts are handled correctly, not just those inside old restriction. Add buffer argument to save_restriction_save(). process.c: Clean up very dirty and kludgy code that outputs into a buffer -- use proper unwind protects, etc. font-lock.c: Do save-restriction/widen around the function -- otherwise, incorrect results will ensue when a buffer has been narrowed before a call to e.g. `buffer-syntactic-context' -- something that happens quite often. fileio.c: Look for a handler for make-temp-name. window.c, winslots.h: Try to solve this annoying problem: have two frames displaying the buffer, in different places; in one, temporarily switch away to another buffer and then back -- and you've lost your position; it's reset to the other one in the other frame. My current solution involves window-level caches of buffers and points (also a cache for window-start); when set-window-buffer is called, it looks to see if the buffer was previously visited in the window, and if so, uses the most recent point at that time. (It's a marker, so it handles changes.) #### Note: It could be argued that doing it on the frame level would be better -- e.g. if you visit a buffer temporarily through a grep, and then go back to that buffer, you presumably want the grep's position rather than some previous position provided everything was in the same frame, even though the grep was in another window in the frame. However, doing it on the frame level fails when you have two windows on the same frame. Perhaps we keep both a window and a frame cache, and use the frame cache if there are no other windows on the frame showing the buffer, else the window's cache? This is probably something to be configurable using a specifier. Suggestions please please please? window.c: Clean up a bit code that deals with the annoyance of window-point vs. point. dialog.el: Function to ask a multiple-choice question, automatically choosing a dialog box or minibuffer representation as necessary. Generalized version of yes-or-no-p, y-or-n-p. files.el: Use get-user-response to ask "yes/no/diff" question when recovering. "diff" means that a diff is displayed between the current file and the autosave. (Converts/deconverts escape-quoted as necessary. No more complaints from you, Mr. Turnbull!) One known problem: when a dialog is used, it's modal, so you can't scroll the diff. Will fix soon. lisp-mode.el: If we're filling a string, don't treat semicolon as a comment, which would give very unfriendly results. Uses `buffer-syntactic-context'. simple.el: all changes back to the beginning. (Useful if you've saved the file in the middle of the changes.) simple.el: Add option kill-word-into-kill-ring, which controls whether words deleted with kill-word, backward-kill-word, etc. are "cut" into the kill ring, or "cleared" into nothingness. (My preference is the latter, by far. I'd almost go so far as suggesting we make it the default, as you can always select a word and then cut it if you want it cut.) menubar-items.el: Add option corresponding to kill-word-into-kill-ring.
author ben
date Thu, 16 May 2002 13:30:58 +0000
parents 1ccc32a20af4
children c136144fe765
line wrap: on
line source

;;; lisp.el --- Lisp editing commands for XEmacs

;; Copyright (C) 1985, 1986, 1994, 1997 Free Software Foundation, Inc.

;; Maintainer: FSF
;; Keywords: lisp, languages, dumped

;; This file is part of XEmacs.

;; XEmacs is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.

;; XEmacs is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;; General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with XEmacs; see the file COPYING.  If not, write to the Free
;; Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
;; 02111-1307, USA.

;;; Synched up with: Emacs/Mule zeta.

;;; Commentary:

;; This file is dumped with XEmacs.

;; Lisp editing commands to go with Lisp major mode.

;; 06/11/1997 - Use char-(after|before) instead of
;;  (following|preceding)-char. -slb

;;; Code:

;; Note that this variable is used by non-lisp modes too.
(defcustom defun-prompt-regexp nil
  "*Non-nil => regexp to ignore, before the character that starts a defun.
This is only necessary if the opening paren or brace is not in column 0.
See `beginning-of-defun'."
  :type '(choice (const :tag "none" nil)
		 regexp)
  :group 'lisp)

(make-variable-buffer-local 'defun-prompt-regexp)

(defcustom parens-require-spaces t
  "Non-nil => `insert-parentheses' should insert whitespace as needed."
  :type 'boolean
  :group 'editing-basics
  :group 'lisp)

(defun forward-sexp (&optional arg)
  "Move forward across one balanced expression (sexp).
With argument, do it that many times.  Negative arg -N means
move backward across N balanced expressions."
  ;; XEmacs change (for zmacs regions)
  (interactive "_p")
  (or arg (setq arg 1))
  ;; XEmacs: evil hack! The other half of the evil hack below.
  (if (and (> arg 0) (looking-at "#s("))
      (goto-char (+ (point) 2)))
  (goto-char (or (scan-sexps (point) arg) (buffer-end arg)))
  (if (< arg 0) (backward-prefix-chars))
  ;; XEmacs: evil hack! Skip back over #s so that structures are read
  ;; properly.  the current cheesified syntax tables just aren't up to
  ;; this.
  (if (and (< arg 0)
	   (eq (char-after (point)) ?\()
	   (>= (- (point) (point-min)) 2)
	   (eq (char-after (- (point) 1)) ?s)
	   (eq (char-after (- (point) 2)) ?#))
      (goto-char (- (point) 2))))

(defun backward-sexp (&optional arg)
  "Move backward across one balanced expression (sexp).
With argument, do it that many times.  Negative arg -N means
move forward across N balanced expressions."
  ;; XEmacs change (for zmacs regions)
  (interactive "_p")
  (forward-sexp (- (or arg 1))))

(defun mark-sexp (&optional arg)
  "Set mark ARG sexps from point.
The place mark goes is the same place \\[forward-sexp] would
move to with the same argument.
Repeat this command to mark more sexps in the same direction."
  (interactive "p")
  (mark-something 'mark-sexp 'forward-sexp (or arg 1)))

(defun forward-list (&optional arg)
  "Move forward across one balanced group of parentheses.
With argument, do it that many times.
Negative arg -N means move backward across N groups of parentheses."
  ;; XEmacs change
  (interactive "_p")
  (goto-char (or (scan-lists (point) (or arg 1) 0) (buffer-end (or arg 1)))))

(defun backward-list (&optional arg)
  "Move backward across one balanced group of parentheses.
With argument, do it that many times.
Negative arg -N means move forward across N groups of parentheses."
  ;; XEmacs change (for zmacs regions)
  (interactive "_p")
  (forward-list (- (or arg 1))))

(defun down-list (&optional arg)
  "Move forward down one level of parentheses.
With argument, do this that many times.
A negative argument means move backward but still go down a level."
  ;; XEmacs change (for zmacs regions)
  (interactive "_p")
  (or arg (setq arg 1))
  (let ((inc (if (> arg 0) 1 -1)))
    (while (/= arg 0)
      (goto-char (or (scan-lists (point) inc -1) (buffer-end arg)))
      (setq arg (- arg inc)))))

(defun backward-up-list (&optional arg)
  "Move backward out of one level of parentheses.
With argument, do this that many times.
A negative argument means move forward but still to a less deep spot."
  (interactive "_p")
  (up-list (- (or arg 1))))

(defun up-list (&optional arg)
  "Move forward out of one level of parentheses.
With argument, do this that many times.
A negative argument means move backward but still to a less deep spot.
In Lisp programs, an argument is required."
  ;; XEmacs change (for zmacs regions)
  (interactive "_p")
  (or arg (setq arg 1))
  (let ((inc (if (> arg 0) 1 -1)))
    (while (/= arg 0)
      (goto-char (or (scan-lists (point) inc 1) (buffer-end arg)))
      (setq arg (- arg inc)))))

(defun kill-sexp (&optional arg)
  "Kill the sexp (balanced expression) following the cursor.
With argument, kill that many sexps after the cursor.
Negative arg -N means kill N sexps before the cursor."
  (interactive "p")
  (let ((opoint (point)))
    (forward-sexp (or arg 1))
    (kill-region opoint (point))))

(defun backward-kill-sexp (&optional arg)
  "Kill the sexp (balanced expression) preceding the cursor.
With argument, kill that many sexps before the cursor.
Negative arg -N means kill N sexps after the cursor."
  (interactive "p")
  (kill-sexp (- (or arg 1))))

(defun beginning-of-defun (&optional arg)
  "Move backward to the beginning of a defun.
With argument, do it that many times.  Negative arg -N
means move forward to Nth following beginning of defun.
Returns t unless search stops due to beginning or end of buffer.

Normally a defun starts when there is an char with open-parenthesis
syntax at the beginning of a line.  If `defun-prompt-regexp' is
non-nil, then a string which matches that regexp may precede the
open-parenthesis, and point ends up at the beginning of the line."
  ;; XEmacs change (for zmacs regions)
  (interactive "_p")
  (and (beginning-of-defun-raw arg)
       (progn (beginning-of-line) t)))

(defun beginning-of-defun-raw (&optional arg)
  "Move point to the character that starts a defun.
This is identical to beginning-of-defun, except that point does not move
to the beginning of the line when `defun-prompt-regexp' is non-nil."
  (interactive "p")
  (and arg (< arg 0) (not (eobp)) (forward-char 1))
  (and (re-search-backward (if defun-prompt-regexp
			       (concat "^\\s(\\|"
				       "\\(" defun-prompt-regexp "\\)\\s(")
			     "^\\s(")
			   nil 'move (or arg 1))
       (progn (goto-char (1- (match-end 0)))) t))

;; XEmacs change (optional buffer parameter)
(defun buffer-end (arg &optional buffer)
  "Return `point-max' of BUFFER if ARG is > 0; return `point-min' otherwise.
BUFFER defaults to the current buffer if omitted."
  (if (> arg 0) (point-max buffer) (point-min buffer)))

(defun end-of-defun (&optional arg)
  "Move forward to next end of defun.  With argument, do it that many times.
Negative argument -N means move back to Nth preceding end of defun.

An end of a defun occurs right after the close-parenthesis that matches
the open-parenthesis that starts a defun; see `beginning-of-defun'."
  ;; XEmacs change (for zmacs regions)
  (interactive "_p")
  (if (or (null arg) (= arg 0)) (setq arg 1))
  (let ((first t))
    (while (and (> arg 0) (< (point) (point-max)))
      (let ((pos (point))) ; XEmacs -- remove unused npos.
	(while (progn
		(if (and first
			 (progn
			  (end-of-line 1)
			  (beginning-of-defun-raw 1)))
		    nil
		  (or (bobp) (backward-char 1))
		  (beginning-of-defun-raw -1))
		(setq first nil)
		(forward-list 1)
		(skip-chars-forward " \t")
		(if (looking-at "\\s<\\|\n")
		    (forward-line 1))
		(<= (point) pos))))
      (setq arg (1- arg)))
    (while (< arg 0)
      (let ((pos (point)))
	(beginning-of-defun-raw 1)
	(forward-sexp 1)
	(forward-line 1)
	(if (>= (point) pos)
	    (if (beginning-of-defun-raw 2)
		(progn
		  (forward-list 1)
		  (skip-chars-forward " \t")
		  (if (looking-at "\\s<\\|\n")
		      (forward-line 1)))
	      (goto-char (point-min)))))
      (setq arg (1+ arg)))))

(defun mark-defun ()
  "Put mark at end of this defun, point at beginning.
The defun marked is the one that contains point or follows point."
  (interactive)
  (push-mark (point))
  (end-of-defun)
  (push-mark (point) nil t)
  (beginning-of-defun)
  (re-search-backward "^\n" (- (point) 1) t))

(defun narrow-to-defun (&optional arg)
  "Make text outside current defun invisible.
The defun visible is the one that contains point or follows point."
  (interactive)
  (save-excursion
    (widen)
    (end-of-defun)
    (let ((end (point)))
      (beginning-of-defun)
      (narrow-to-region (point) end))))

(defun insert-parentheses (arg)
  "Enclose following ARG sexps in parentheses.  Leave point after open-paren.
A negative ARG encloses the preceding ARG sexps instead.
No argument is equivalent to zero: just insert `()' and leave point between.
If `parens-require-spaces' is non-nil, this command also inserts a space
before and after, depending on the surrounding characters."
  (interactive "P")
  (if arg (setq arg (prefix-numeric-value arg))
    (setq arg 0))
  (cond ((> arg 0) (skip-chars-forward " \t"))
	((< arg 0) (forward-sexp arg) (setq arg (- arg))))
  (and parens-require-spaces
       (not (bobp))
       (memq (char-syntax (char-before (point))) '(?w ?_ ?\) ))
       (insert " "))
  (insert ?\()
  (save-excursion
    (or (eq arg 0) (forward-sexp arg))
    (insert ?\))
    (and parens-require-spaces
	 (not (eobp))
	 (memq (char-syntax (char-after (point))) '(?w ?_ ?\( ))
	 (insert " "))))

(defun move-past-close-and-reindent ()
  "Move past next `)', delete indentation before it, then indent after it."
  (interactive)
  (up-list 1)
  (backward-char 1)
  (while (save-excursion		; this is my contribution
	   (let ((before-paren (point)))
	     (back-to-indentation)
	     (= (point) before-paren)))
    (delete-indentation))
  (forward-char 1)
  (newline-and-indent))

(defun lisp-complete-symbol ()
  "Perform completion on Lisp symbol preceding point.
Compare that symbol against the known Lisp symbols.

The context determines which symbols are considered.
If the symbol starts just after an open-parenthesis, only symbols
with function definitions are considered.  Otherwise, all symbols with
function definitions, values or properties are considered."
  (interactive)
  (let* ((end (point))
	 (buffer-syntax (syntax-table))
	 (beg (unwind-protect
		  (save-excursion
		    ;; XEmacs change
		    (if emacs-lisp-mode-syntax-table
			(set-syntax-table emacs-lisp-mode-syntax-table))
		    (backward-sexp 1)
		    (while (eq (char-syntax (char-after (point))) ?\')
		      (forward-char 1))
		    (point))
		(set-syntax-table buffer-syntax)))
	 (pattern (buffer-substring beg end))
	 (predicate
	  (if (eq (char-after (1- beg)) ?\()
	      'fboundp
	    ;; XEmacs change
	    #'(lambda (sym)
		(or (boundp sym) (fboundp sym)
		    (symbol-plist sym)))))
	 (completion (try-completion pattern obarray predicate)))
    (cond ((eq completion t))
	  ((null completion)
	   (message "Can't find completion for \"%s\"" pattern)
	   (ding))
	  ((not (string= pattern completion))
	   (delete-region beg end)
	   (insert completion))
	  (t
	   (message "Making completion list...")
	   (let ((list (all-completions pattern obarray predicate))
		 ;FSFmacs crock unnecessary in XEmacs
		 ;see minibuf.el
		 ;(completion-fixup-function
		 ; (function (lambda () (if (save-excursion
		 ;		(goto-char (max (point-min)
		 ;				(- (point) 4)))
		 ;		(looking-at " <f>"))
		 ;	      (forward-char -4))))
		 )
	     (or (eq predicate 'fboundp)
		 (let (new)
		   (while list
		     (setq new (cons (if (fboundp (intern (car list)))
					 (list (car list) " <f>")
				       (car list))
				     new))
		     (setq list (cdr list)))
		   (setq list (nreverse new))))
	     (with-output-to-temp-buffer "*Completions*"
	       (display-completion-list list)))
	   (message "Making completion list...%s" "done")))))

;;; lisp.el ends here