Mercurial > hg > xemacs-beta
view lisp/compat.el @ 788:026c5bf9c134
[xemacs-hg @ 2002-03-21 07:29:57 by ben]
chartab.c: Fix bugs in implementation and doc strings.
config.h.in: Add foo_checking_assert_at_line() macros. Not clear whether these
are actually useful, though; I'll take them out if not.
symsinit.h, emacs.c: Some improvements to the timeline. Rearrange a bit the init
calls. Add call for reinit_vars_of_object_mswindows() and
declare in symsinit.h.
event-Xt.c, event-gtk.c, event-msw.c, event-stream.c, event-tty.c, events.c, events.h: Introduce new event methods for printing, comparing, and hashing
magic events, to avoid event-type-specific stuff that had crept
into events.c. (And was crashing, since the channel in MS Windows
magic events may be nil.) Implement the methods in
event-{tty,gtk,Xt,mswindows}.c. Make wrapping functions
event_stream_{compare,hash,format}_magic_event() to check if
everything's OK and call the actual callback. Fix events.c to use
the new methods. Add a new event-stream-operation
EVENT_STREAM_NOTHING -- event stream not actually required to be
able to do anything, just be open. (#### This
event-stream-operation stuff needs to be rethought.)
Fixed describe_event() in event-Xt.c to print its output to a
stream, not always to stderr, so it can be used
elsewhere. (e.g. in print-event when a magic event is
encountered?)
lisp.h, lrecord.h: Define new assert_at_line(), for use in asserts inside of inline
functions. The assert will report the line and file of the inline
function, which is almost certainly not what you want as it's
useless. what you want to see is where the pseudo-macro was
called from. So, when error-checking is on, we pass in the line
and file into the macros, for accurate printout using
assert_at_line(). Happens only when error-checking is defined so
doesn't slow down non-error-checking builds. Fix XCHAR, XINT,
XCHAR_OR_INT, XFOO, and wrap_foo() in this fashion.
lstream.c, lstream.h: Add resizing_buffer_to_lisp_string().
objects-gtk.c: Fix typo.
objects-msw.c: Implement a smarter way of determining whether a font matches a
charset. Formerly we just looked at the "script" element of the
font spec, converted it to a code page, and compared it with the
code page derived from the charset. Now, as well as doing this,
we ask the font for the list of unicode ranges it supports, see
what range the charset falls into (#### bogus! need to do this
char-by-char), and see if any of the font's supported ranges
include the charset's range. also do some caching in
Vfont_signature_data of previous inquiries.
charset.h, text.c, mule-charset.c: New fun; extracted out of
Fmake_char() and declare prototype in charset.h.
text.h: introduce assert_by_line() to make
REP_BYTES_BY_FIRST_BYTE report the file and line more accurately
in an assertion failure.
unicode.c: make non-static (used in objects-msw.c), declare in charset.h.
mule\mule-category.el: Start implementing a category API compatible with FSF. Not there yet.
We need improvements to char-tables.
mule\mule-charset.el: Copy translation table code from FSF 21.1 and fix up. Eventually
we'll have them in XEmacs. (used in ccl) Not here quite yet, and
we need some improvements to char-tables.
mule\cyril-util.el, mule\cyrillic.el, mule\devan-util.el, mule\ethio-util.el, mule\korea-util.el, mule\mule-tty-init.el, mule\tibet-util.el, mule\viet-util.el, mule\vietnamese.el: Fix numerous compilation warnings. Fix up code related to
translation tables and other types of char-tables.
menubar-items.el: Move the frame commands from
the View menu to the File menu, to be consistent with how most other
programs do things. Move less-used revert/recover items to a submenu.
Make "recover" not prompt for a file, but recover the current buffer.
TODO.ben-mule-21-5: Create bug list for latest problems.
author | ben |
---|---|
date | Thu, 21 Mar 2002 07:31:30 +0000 |
parents | de805c49cfc1 |
children | 6728e641994e |
line wrap: on
line source
;;; compat.el --- Mechanism for non-intrusively providing compatibility funs. ;; Copyright (C) 2000 Ben Wing. ;; Author: Ben Wing <ben@xemacs.org> ;; Maintainer: Ben Wing ;; Keywords: internal ;; This file is part of XEmacs. ;; XEmacs is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 2, or (at your option) ;; any later version. ;; XEmacs is distributed in the hope that it will be useful, but ;; WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;; General Public License for more details. ;; You should have received a copy of the GNU General Public License ;; along with XEmacs; see the file COPYING. If not, write to the ;; Free Software Foundation, Inc., 59 Temple Place - Suite 330, ;; Boston, MA 02111-1307, USA. ;;; Synched up with: Not in FSF. ;;; Authorship: ; Written May 2000 by Ben Wing. ;;; Commentary: ;; Typical usage: ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 1. Wrap modules that define compatibility functions like this: ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;(compat-define-group 'fsf-compat) ;(compat-define-functions 'fsf-compat ;(defun overlayp (object) ; "Return t if OBJECT is an overlay." ; (and (extentp object) ; (extent-property object 'overlay))) ;(defun make-overlay (beg end &optional buffer front-advance rear-advance) ; ...) ;... ;) ;; end of (compat-define-group 'fsf-compat) ;;;; overlay.el ends here ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 2. Wrap modules that use the compatibility functions like this: ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;(compat 'fsf-compat ;(defun random-module-my-fun (bar baz) ; (if (fboundp 'overlays-in) (overlays-in bar baz))) ;... ;) ;; end of (compat 'fsf-compat) ;;;; random-module.el ends here (defun compat-hash-table (group) (get group 'compat-table)) (defun compat-make-hash-table (group) (put group 'compat-table (make-hash-table))) (defmacro compat-define-group (group) "Define GROUP as a group of compatibility functions. Individual functions are defined using `compat-define-functions'. Once defined, the functions can be used by wrapping your code in the `compat' macro. If GROUP is already defined, nothing happens." (let ((group (eval group))) (or (hash-table-p (compat-hash-table group)) (compat-make-hash-table group)))) (defmacro compat-clear-functions (group) "Clear all defined functions and macros out of GROUP." (let ((group (eval group))) (clrhash (compat-hash-table group)))) (defmacro compat-define-functions (group &rest body) "Define compatibility functions in GROUP. You should simply wrap this around the code that defines the functions. Any functions and macros defined at top level using `defun' or `defmacro' will be noticed and added to GROUP. Other top-level code will be executed normally. All code and definitions in this group can safely reference any other functions in this group -- the code is effectively wrapped in a `compat' call. You can call `compat-define-functions' more than once, if necessary, for a single group. What actually happens is that the functions and macros defined here are in fact defined using names prefixed with GROUP. To use these functions, wrap any calling code with the `compat' macro, which lexically renames the function and macro calls appropriately." (let ((group (eval group))) (let (fundef (body-tail body)) (while body-tail (setq fundef (car body-tail)) (when (and (consp fundef) (eq (car fundef) 'defun)) (puthash (second fundef) (third fundef) (compat-hash-table group))) (when (and (consp fundef) (eq (car fundef) 'defmacro)) (puthash (second fundef) (third fundef) (compat-hash-table group))) (setq body-tail (cdr body-tail)))) (let (fundef (body-tail body) result) (while body-tail (setq fundef (car body-tail)) (push (cond ((and (consp fundef) (eq (car fundef) 'defun)) (nconc (list 'defun (intern (concat (symbol-name group) "-" (symbol-name (second fundef)))) (third fundef)) (nthcdr 3 fundef))) ((and (consp fundef) (eq (car fundef) 'defmacro)) (nconc (list 'defmacro (intern (concat (symbol-name group) "-" (symbol-name (second fundef)))) (third fundef)) (nthcdr 3 fundef))) (t fundef)) result) (setq body-tail (cdr body-tail))) (nconc (list 'compat (list 'quote group)) (nreverse result))))) (defvar compat-active-groups nil) (defun compat-fboundp (groups fun) "T if FUN is either `fboundp' or one of the compatibility funs in GROUPS. GROUPS is a list of compatibility groups as defined using `compat-define-group'." (or (fboundp fun) (block nil (mapcar #'(lambda (group) (if (gethash fun (compat-hash-table group)) (return t))) groups)))) (defmacro compat (group &rest body) "Make use of compatibility functions and macros in GROUP. You should simply wrap this around the code that uses the functions and macros in GROUP. Typically, a call to `compat' should be placed at the top of an ELisp module, with the closing parenthesis at the bottom; use this in place of a `require' statement. Wrapped code can be either function or macro definitions or other ELisp code, and wrapped function or macro definitions need not be at top level. All calls to the compatibility functions or macros will be noticed anywhere within the wrapped code. Calls to `fboundp' within the wrapped code will also behave correctly when called on compatibility functions and macros, even though they would return nil elsewhere (including in code in other modules called dynamically from the wrapped code). The functions and macros define in GROUP are actually defined under prefixed names, to avoid namespace clashes and bad interactions with other code that calls `fboundp'. All calls inside of the wrapped code to the compatibility functions and macros in GROUP are lexically mapped to the prefixed names. Since this is a lexical mapping, code in other modules that is called by functions in this module will not be affected." (let ((group (eval group)) defs) (maphash #'(lambda (fun args) (push (list fun args (nconc (list 'list (list 'quote (intern (concat (symbol-name group) "-" (symbol-name fun))))) args)) defs)) (compat-hash-table group)) ;; it would be cleaner to use `lexical-let' instead of `let', but that ;; causes function definitions to have obnoxious, unreadable junk in ;; them. #### Move `lexical-let' into C!!! `(let ((compat-active-groups (cons ',group compat-active-groups))) (macrolet ((fboundp (fun) `(compat-fboundp ',compat-active-groups ,fun)) ,@defs) ,@body))))