Mercurial > hg > xemacs-beta
view src/imgproc.c @ 939:025200a2163c
[xemacs-hg @ 2002-07-31 07:23:39 by michaels]
2002-07-17 Marcus Crestani <crestani@informatik.uni-tuebingen.de>
Markus Kaltenbach <makalten@informatik.uni-tuebingen.de>
Mike Sperber <mike@xemacs.org>
configure flag to turn these changes on: --use-kkcc
First we added a dumpable flag to lrecord_implementation. It shows,
if the object is dumpable and should be processed by the dumper.
* lrecord.h (struct lrecord_implementation): added dumpable flag
(MAKE_LRECORD_IMPLEMENTATION): fitted the different makro definitions
to the new lrecord_implementation and their calls.
Then we changed mark_object, that it no longer needs a mark method for
those types that have pdump descritions.
* alloc.c:
(mark_object): If the object has a description, the new mark algorithm
is called, and the object is marked according to its description.
Otherwise it uses the mark method like before.
These procedures mark objects according to their descriptions. They
are modeled on the corresponding pdumper procedures.
(mark_with_description):
(get_indirect_count):
(structure_size):
(mark_struct_contents):
These procedures still call mark_object, this is needed while there are
Lisp_Objects without descriptions left.
We added pdump descriptions for many Lisp_Objects:
* extents.c: extent_auxiliary_description
* database.c: database_description
* gui.c: gui_item_description
* scrollbar.c: scrollbar_instance_description
* toolbar.c: toolbar_button_description
* event-stream.c: command_builder_description
* mule-charset.c: charset_description
* device-msw.c: devmode_description
* dialog-msw.c: mswindows_dialog_id_description
* eldap.c: ldap_description
* postgresql.c: pgconn_description
pgresult_description
* tooltalk.c: tooltalk_message_description
tooltalk_pattern_description
* ui-gtk.c: emacs_ffi_description
emacs_gtk_object_description
* events.c:
* events.h:
* event-stream.c:
* event-Xt.c:
* event-gtk.c:
* event-tty.c:
To write a pdump description for Lisp_Event, we converted every struct
in the union event to a Lisp_Object. So we created nine new
Lisp_Objects: Lisp_Key_Data, Lisp_Button_Data, Lisp_Motion_Data,
Lisp_Process_Data, Lisp_Timeout_Data, Lisp_Eval_Data,
Lisp_Misc_User_Data, Lisp_Magic_Data, Lisp_Magic_Eval_Data.
We also wrote makro selectors and mutators for the fields of the new
designed Lisp_Event and added everywhere these new abstractions.
We implemented XD_UNION support in (mark_with_description), so
we can describe exspecially console/device specific data with XD_UNION.
To describe with XD_UNION, we added a field to these objects, which
holds the variant type of the object. This field is initialized in
the appendant constructor. The variant is an integer, it has also to
be described in an description, if XD_UNION is used.
XD_UNION is used in following descriptions:
* console.c: console_description
(get_console_variant): returns the variant
(create_console): added variant initialization
* console.h (console_variant): the different console types
* console-impl.h (struct console): added enum console_variant contype
* device.c: device_description
(Fmake_device): added variant initialization
* device-impl.h (struct device): added enum console_variant devtype
* objects.c: image_instance_description
font_instance_description
(Fmake_color_instance): added variant initialization
(Fmake_font_instance): added variant initialization
* objects-impl.h (struct Lisp_Color_Instance): added color_instance_type
* objects-impl.h (struct Lisp_Font_Instance): added font_instance_type
* process.c: process_description
(make_process_internal): added variant initialization
* process.h (process_variant): the different process types
author | michaels |
---|---|
date | Wed, 31 Jul 2002 07:23:39 +0000 |
parents | b39c14581166 |
children | a8d8f419b459 |
line wrap: on
line source
/* Image processing functions Copyright (C) 1998 Jareth Hein This file is a part of XEmacs XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Synched up with: Not in FSF. */ /* Original author: Jareth Hein */ /* Parts of this file are based on code from Sam Leffler's tiff library, with the original copyright displayed here: Copyright (c) 1988-1997 Sam Leffler Copyright (c) 1991-1997 Silicon Graphics, Inc. Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is hereby granted without fee, provided that (i) the above copyright notices and this permission notice appear in all copies of the software and related documentation, and (ii) the names of Sam Leffler and Silicon Graphics may not be used in any advertising or publicity relating to the software without the specific, prior written permission of Sam Leffler and Silicon Graphics. */ /* Quantizing code based off of the paper Color Image Quantization for Frame Buffer Display, Paul Heckbert, Siggraph '82 proceedings, pp. 297-307 */ #include <config.h> #include "lisp.h" #include "imgproc.h" static void get_histogram(quant_table *qt, UChar_Binary *pic, int width, int height, Colorbox* box) { register UChar_Binary *inptr; register int red, green, blue; register int j, i; box->rmin = box->gmin = box->bmin = 999; box->rmax = box->gmax = box->bmax = -1; box->total = width * height; inptr = pic; for (i = 0; i < height; i++) { for (j = width; j-- > 0;) { red = *inptr++ >> COLOR_SHIFT; green = *inptr++ >> COLOR_SHIFT; blue = *inptr++ >> COLOR_SHIFT; if (red < box->rmin) box->rmin = red; if (red > box->rmax) box->rmax = red; if (green < box->gmin) box->gmin = green; if (green > box->gmax) box->gmax = green; if (blue < box->bmin) box->bmin = blue; if (blue > box->bmax) box->bmax = blue; qt->histogram[red][green][blue]++; } } } static Colorbox * largest_box(quant_table *qt) { register Colorbox *p, *b; register int size; b = NULL; size = -1; for (p = qt->usedboxes; p != NULL; p = p->next) if ((p->rmax > p->rmin || p->gmax > p->gmin || p->bmax > p->bmin) && p->total > size) size = (b = p)->total; return (b); } static void shrinkbox(quant_table *qt, Colorbox* box) { register int *histp, ir, ig, ib; if (box->rmax > box->rmin) { for (ir = box->rmin; ir <= box->rmax; ++ir) for (ig = box->gmin; ig <= box->gmax; ++ig) { histp = &(qt->histogram[ir][ig][box->bmin]); for (ib = box->bmin; ib <= box->bmax; ++ib) if (*histp++ != 0) { box->rmin = ir; goto have_rmin; } } have_rmin: if (box->rmax > box->rmin) for (ir = box->rmax; ir >= box->rmin; --ir) for (ig = box->gmin; ig <= box->gmax; ++ig) { histp = &(qt->histogram[ir][ig][box->bmin]); ib = box->bmin; for (; ib <= box->bmax; ++ib) if (*histp++ != 0) { box->rmax = ir; goto have_rmax; } } } have_rmax: if (box->gmax > box->gmin) { for (ig = box->gmin; ig <= box->gmax; ++ig) for (ir = box->rmin; ir <= box->rmax; ++ir) { histp = &(qt->histogram[ir][ig][box->bmin]); for (ib = box->bmin; ib <= box->bmax; ++ib) if (*histp++ != 0) { box->gmin = ig; goto have_gmin; } } have_gmin: if (box->gmax > box->gmin) for (ig = box->gmax; ig >= box->gmin; --ig) for (ir = box->rmin; ir <= box->rmax; ++ir) { histp = &(qt->histogram[ir][ig][box->bmin]); ib = box->bmin; for (; ib <= box->bmax; ++ib) if (*histp++ != 0) { box->gmax = ig; goto have_gmax; } } } have_gmax: if (box->bmax > box->bmin) { for (ib = box->bmin; ib <= box->bmax; ++ib) for (ir = box->rmin; ir <= box->rmax; ++ir) { histp = &(qt->histogram[ir][box->gmin][ib]); for (ig = box->gmin; ig <= box->gmax; ++ig) { if (*histp != 0) { box->bmin = ib; goto have_bmin; } histp += B_LEN; } } have_bmin: if (box->bmax > box->bmin) for (ib = box->bmax; ib >= box->bmin; --ib) for (ir = box->rmin; ir <= box->rmax; ++ir) { histp = &(qt->histogram[ir][box->gmin][ib]); ig = box->gmin; for (; ig <= box->gmax; ++ig) { if (*histp != 0) { box->bmax = ib; goto have_bmax; } histp += B_LEN; } } } have_bmax: ; } static void splitbox(quant_table *qt, Colorbox* ptr) { int hist2[B_LEN]; int first = 0, last = 0; register Colorbox *new; register int *iptr, *histp; register int i, j; register int ir,ig,ib; register int sum, sum1, sum2; enum { RED, GREEN, BLUE } axis; /* * See which axis is the largest, do a histogram along that * axis. Split at median point. Contract both new boxes to * fit points and return */ i = ptr->rmax - ptr->rmin; if (i >= ptr->gmax - ptr->gmin && i >= ptr->bmax - ptr->bmin) axis = RED; else if (ptr->gmax - ptr->gmin >= ptr->bmax - ptr->bmin) axis = GREEN; else axis = BLUE; /* get histogram along longest axis */ switch (axis) { case RED: histp = &hist2[ptr->rmin]; for (ir = ptr->rmin; ir <= ptr->rmax; ++ir) { *histp = 0; for (ig = ptr->gmin; ig <= ptr->gmax; ++ig) { iptr = &(qt->histogram[ir][ig][ptr->bmin]); for (ib = ptr->bmin; ib <= ptr->bmax; ++ib) *histp += *iptr++; } histp++; } first = ptr->rmin; last = ptr->rmax; break; case GREEN: histp = &hist2[ptr->gmin]; for (ig = ptr->gmin; ig <= ptr->gmax; ++ig) { *histp = 0; for (ir = ptr->rmin; ir <= ptr->rmax; ++ir) { iptr = &(qt->histogram[ir][ig][ptr->bmin]); for (ib = ptr->bmin; ib <= ptr->bmax; ++ib) *histp += *iptr++; } histp++; } first = ptr->gmin; last = ptr->gmax; break; case BLUE: histp = &hist2[ptr->bmin]; for (ib = ptr->bmin; ib <= ptr->bmax; ++ib) { *histp = 0; for (ir = ptr->rmin; ir <= ptr->rmax; ++ir) { iptr = &(qt->histogram[ir][ptr->gmin][ib]); for (ig = ptr->gmin; ig <= ptr->gmax; ++ig) { *histp += *iptr; iptr += B_LEN; } } histp++; } first = ptr->bmin; last = ptr->bmax; break; } /* find median point */ sum2 = ptr->total / 2; histp = &hist2[first]; sum = 0; for (i = first; i <= last && (sum += *histp++) < sum2; ++i) ; if (i == first) i++; /* Create new box, re-allocate points */ new = qt->freeboxes; qt->freeboxes = new->next; if (qt->freeboxes) qt->freeboxes->prev = NULL; if (qt->usedboxes) qt->usedboxes->prev = new; new->next = qt->usedboxes; qt->usedboxes = new; histp = &hist2[first]; for (sum1 = 0, j = first; j < i; j++) sum1 += *histp++; for (sum2 = 0, j = i; j <= last; j++) sum2 += *histp++; new->total = sum1; ptr->total = sum2; new->rmin = ptr->rmin; new->rmax = ptr->rmax; new->gmin = ptr->gmin; new->gmax = ptr->gmax; new->bmin = ptr->bmin; new->bmax = ptr->bmax; switch (axis) { case RED: new->rmax = i-1; ptr->rmin = i; break; case GREEN: new->gmax = i-1; ptr->gmin = i; break; case BLUE: new->bmax = i-1; ptr->bmin = i; break; } shrinkbox (qt, new); shrinkbox (qt, ptr); } static C_cell * create_colorcell(quant_table *qt, int num_colors, int red, int green, int blue) { register int ir, ig, ib, i; register C_cell *ptr; int mindist, next_n; register int tmp, dist, n; ir = red >> (COLOR_DEPTH-C_DEPTH); ig = green >> (COLOR_DEPTH-C_DEPTH); ib = blue >> (COLOR_DEPTH-C_DEPTH); ptr = (C_cell *)xmalloc(sizeof (C_cell)); *(qt->ColorCells + ir*C_LEN*C_LEN + ig*C_LEN + ib) = ptr; ptr->num_ents = 0; /* * Step 1: find all colors inside this cell, while we're at * it, find distance of centermost point to furthest corner */ mindist = 99999999; for (i = 0; i < num_colors; ++i) { if (qt->rm[i]>>(COLOR_DEPTH-C_DEPTH) != ir || qt->gm[i]>>(COLOR_DEPTH-C_DEPTH) != ig || qt->bm[i]>>(COLOR_DEPTH-C_DEPTH) != ib) continue; ptr->entries[ptr->num_ents][0] = i; ptr->entries[ptr->num_ents][1] = 0; ++ptr->num_ents; tmp = qt->rm[i] - red; if (tmp < (MAX_COLOR/C_LEN/2)) tmp = MAX_COLOR/C_LEN-1 - tmp; dist = tmp*tmp; tmp = qt->gm[i] - green; if (tmp < (MAX_COLOR/C_LEN/2)) tmp = MAX_COLOR/C_LEN-1 - tmp; dist += tmp*tmp; tmp = qt->bm[i] - blue; if (tmp < (MAX_COLOR/C_LEN/2)) tmp = MAX_COLOR/C_LEN-1 - tmp; dist += tmp*tmp; if (dist < mindist) mindist = dist; } /* * Step 3: find all points within that distance to cell. */ for (i = 0; i < num_colors; ++i) { if (qt->rm[i] >> (COLOR_DEPTH-C_DEPTH) == ir && qt->gm[i] >> (COLOR_DEPTH-C_DEPTH) == ig && qt->bm[i] >> (COLOR_DEPTH-C_DEPTH) == ib) continue; dist = 0; if ((tmp = red - qt->rm[i]) > 0 || (tmp = qt->rm[i] - (red + MAX_COLOR/C_LEN-1)) > 0 ) dist += tmp*tmp; if ((tmp = green - qt->gm[i]) > 0 || (tmp = qt->gm[i] - (green + MAX_COLOR/C_LEN-1)) > 0 ) dist += tmp*tmp; if ((tmp = blue - qt->bm[i]) > 0 || (tmp = qt->bm[i] - (blue + MAX_COLOR/C_LEN-1)) > 0 ) dist += tmp*tmp; if (dist < mindist) { ptr->entries[ptr->num_ents][0] = i; ptr->entries[ptr->num_ents][1] = dist; ++ptr->num_ents; } } /* * Sort color cells by distance, use cheap exchange sort */ for (n = ptr->num_ents - 1; n > 0; n = next_n) { next_n = 0; for (i = 0; i < n; ++i) if (ptr->entries[i][1] > ptr->entries[i+1][1]) { tmp = ptr->entries[i][0]; ptr->entries[i][0] = ptr->entries[i+1][0]; ptr->entries[i+1][0] = tmp; tmp = ptr->entries[i][1]; ptr->entries[i][1] = ptr->entries[i+1][1]; ptr->entries[i+1][1] = tmp; next_n = i; } } return (ptr); } static int map_colortable(quant_table *qt, int num_colors) { register int *histp = &(qt->histogram[0][0][0]); register C_cell *cell; register int j, tmp, d2, dist; int ir, ig, ib, i; for (ir = 0; ir < B_LEN; ++ir) for (ig = 0; ig < B_LEN; ++ig) for (ib = 0; ib < B_LEN; ++ib, histp++) { if (*histp == 0) { *histp = -1; continue; } cell = *(qt->ColorCells + (((ir>>(B_DEPTH-C_DEPTH)) << C_DEPTH*2) + ((ig>>(B_DEPTH-C_DEPTH)) << C_DEPTH) + (ib>>(B_DEPTH-C_DEPTH)))); if (cell == NULL ) cell = create_colorcell (qt, num_colors, ir << COLOR_SHIFT, ig << COLOR_SHIFT, ib << COLOR_SHIFT); if (cell == NULL) /* memory exhausted! punt! */ return -1; dist = 9999999; for (i = 0; i < cell->num_ents && dist > cell->entries[i][1]; ++i) { j = cell->entries[i][0]; d2 = qt->rm[j] - (ir << COLOR_SHIFT); d2 *= d2; tmp = qt->gm[j] - (ig << COLOR_SHIFT); d2 += tmp*tmp; tmp = qt->bm[j] - (ib << COLOR_SHIFT); d2 += tmp*tmp; if (d2 < dist) { dist = d2; *histp = j; } } } return 0; } quant_table * build_EImage_quantable(UChar_Binary *eimage, int width, int height, int num_colors) { quant_table *qt; Colorbox *box_list, *ptr; int i,res; qt = (quant_table*)xmalloc_and_zero (sizeof(quant_table)); if (qt == NULL) return NULL; assert (num_colors < 257 && num_colors > 2); /* * STEP 1: create empty boxes */ qt->usedboxes = NULL; box_list = qt->freeboxes = (Colorbox *)xmalloc (num_colors*sizeof (Colorbox)); qt->freeboxes[0].next = &(qt->freeboxes[1]); qt->freeboxes[0].prev = NULL; for (i = 1; i < num_colors-1; ++i) { qt->freeboxes[i].next = &(qt->freeboxes[i+1]); qt->freeboxes[i].prev = &(qt->freeboxes[i-1]); } qt->freeboxes[num_colors-1].next = NULL; qt->freeboxes[num_colors-1].prev = &(qt->freeboxes[num_colors-2]); /* * STEP 2: get histogram, initialize first box */ ptr = qt->freeboxes; qt->freeboxes = ptr->next; if (qt->freeboxes) qt->freeboxes->prev = NULL; ptr->next = qt->usedboxes; qt->usedboxes = ptr; if (ptr->next) ptr->next->prev = ptr; get_histogram (qt, eimage, width, height, ptr); /* * STEP 3: continually subdivide boxes until no more free * boxes remain or until all colors assigned. */ while (qt->freeboxes != NULL) { ptr = largest_box(qt); if (ptr != NULL) splitbox (qt, ptr); else qt->freeboxes = NULL; } /* * STEP 4: assign colors to all boxes */ for (i = 0, ptr = qt->usedboxes; ptr != NULL; ++i, ptr = ptr->next) { qt->rm[i] = ((ptr->rmin + ptr->rmax) << COLOR_SHIFT) / 2; qt->gm[i] = ((ptr->gmin + ptr->gmax) << COLOR_SHIFT) / 2; qt->bm[i] = ((ptr->bmin + ptr->bmax) << COLOR_SHIFT) / 2; qt->um[i] = ptr->total; } qt->num_active_colors = i; /* We're done with the boxes now */ xfree (box_list); qt->freeboxes = qt->usedboxes = NULL; /* * STEP 5: scan histogram and map all values to closest color */ /* 5a: create cell list as described in Heckbert */ qt->ColorCells = (C_cell **)xmalloc_and_zero (C_LEN*C_LEN*C_LEN*sizeof (C_cell*)); /* 5b: create mapping from truncated pixel space to color table entries */ res = map_colortable (qt, num_colors); /* 5c: done with ColorCells */ for (i = 0; i < C_LEN*C_LEN*C_LEN; i++) if (qt->ColorCells[i]) xfree (qt->ColorCells[i]); xfree (qt->ColorCells); if (res) { /* we failed in memory allocation, so clean up an leave */ xfree(qt); return NULL; } return qt; }