Mercurial > hg > xemacs-beta
diff src/floatfns.c @ 0:376386a54a3c r19-14
Import from CVS: tag r19-14
author | cvs |
---|---|
date | Mon, 13 Aug 2007 08:45:50 +0200 |
parents | |
children | 859a2309aef8 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/floatfns.c Mon Aug 13 08:45:50 2007 +0200 @@ -0,0 +1,1103 @@ +/* Primitive operations on floating point for XEmacs Lisp interpreter. + Copyright (C) 1988, 1993, 1994 Free Software Foundation, Inc. + +This file is part of XEmacs. + +XEmacs is free software; you can redistribute it and/or modify it +under the terms of the GNU General Public License as published by the +Free Software Foundation; either version 2, or (at your option) any +later version. + +XEmacs is distributed in the hope that it will be useful, but WITHOUT +ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with XEmacs; see the file COPYING. If not, write to +the Free Software Foundation, Inc., 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + +/* Synched up with: FSF 19.30. */ + +/* ANSI C requires only these float functions: + acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod, + frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh. + + Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh. + Define HAVE_CBRT if you have cbrt(). + Define HAVE_RINT if you have rint(). + If you don't define these, then the appropriate routines will be simulated. + + Define HAVE_MATHERR if on a system supporting the SysV matherr() callback. + (This should happen automatically.) + + Define FLOAT_CHECK_ERRNO if the float library routines set errno. + This has no effect if HAVE_MATHERR is defined. + + Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL. + (What systems actually do this? Let me know. -jwz) + + Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by + either setting errno, or signalling SIGFPE/SIGILL. Otherwise, domain and + range checking will happen before calling the float routines. This has + no effect if HAVE_MATHERR is defined (since matherr will be called when + a domain error occurs). + */ + +#include <config.h> +#include "lisp.h" +#include "syssignal.h" + +#ifdef LISP_FLOAT_TYPE + +/* Need to define a differentiating symbol -- see sysfloat.h */ +#define THIS_FILENAME floatfns +#include "sysfloat.h" + +#ifndef HAVE_RINT +static double +rint (double x) +{ + double r = floor (x + 0.5); + double diff = fabs (r - x); + /* Round to even and correct for any roundoff errors. */ + if (diff >= 0.5 && (diff > 0.5 || r != 2.0 * floor (r / 2.0))) + r += r < x ? 1.0 : -1.0; + return r; +} +#endif + +/* Nonzero while executing in floating point. + This tells float_error what to do. */ +static int in_float; + +/* If an argument is out of range for a mathematical function, + here is the actual argument value to use in the error message. */ +static Lisp_Object float_error_arg, float_error_arg2; +static CONST char *float_error_fn_name; + +/* Evaluate the floating point expression D, recording NUM + as the original argument for error messages. + D is normally an assignment expression. + Handle errors which may result in signals or may set errno. + + Note that float_error may be declared to return void, so you can't + just cast the zero after the colon to (SIGTYPE) to make the types + check properly. */ +#ifdef FLOAT_CHECK_ERRNO +#define IN_FLOAT(d, name, num) \ + do { \ + float_error_arg = num; \ + float_error_fn_name = name; \ + in_float = 1; errno = 0; (d); in_float = 0; \ + if (errno != 0) in_float_error (); \ + } while (0) +#define IN_FLOAT2(d, name, num, num2) \ + do { \ + float_error_arg = num; \ + float_error_arg2 = num2; \ + float_error_fn_name = name; \ + in_float = 2; errno = 0; (d); in_float = 0; \ + if (errno != 0) in_float_error (); \ + } while (0) +#else +#define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0) +#define IN_FLOAT2(d, name, num, num2) (in_float = 2, (d), in_float = 0) +#endif + + +#define arith_error(op,arg) \ + Fsignal (Qarith_error, list2 (build_string ((op)), (arg))) +#define range_error(op,arg) \ + Fsignal (Qrange_error, list2 (build_string ((op)), (arg))) +#define range_error2(op,a1,a2) \ + Fsignal (Qrange_error, list3 (build_string ((op)), (a1), (a2))) +#define domain_error(op,arg) \ + Fsignal (Qdomain_error, list2 (build_string ((op)), (arg))) +#define domain_error2(op,a1,a2) \ + Fsignal (Qdomain_error, list3 (build_string ((op)), (a1), (a2))) + + +/* Convert float to Lisp_Int if it fits, else signal a range error + using the given arguments. */ +static Lisp_Object +float_to_int (double x, CONST char *name, Lisp_Object num, Lisp_Object num2) +{ + if (x >= ((EMACS_INT) 1 << (VALBITS-1)) + || x <= - ((EMACS_INT) 1 << (VALBITS-1)) - (EMACS_INT) 1) + { + if (!UNBOUNDP (num2)) + range_error2 (name, num, num2); + else + range_error (name, num); + } + return (make_int ((EMACS_INT) x)); +} + + +static void +in_float_error (void) +{ + switch (errno) + { + case 0: + break; + case EDOM: + if (in_float == 2) + domain_error2 (float_error_fn_name, float_error_arg, float_error_arg2); + else + domain_error (float_error_fn_name, float_error_arg); + break; + case ERANGE: + range_error (float_error_fn_name, float_error_arg); + break; + default: + arith_error (float_error_fn_name, float_error_arg); + break; + } +} + + + +static Lisp_Object mark_float (Lisp_Object, void (*) (Lisp_Object)); +extern void print_float (Lisp_Object, Lisp_Object, int); +static int float_equal (Lisp_Object o1, Lisp_Object o2, int depth); +static unsigned long float_hash (Lisp_Object obj, int depth); +DEFINE_BASIC_LRECORD_IMPLEMENTATION ("float", float, + mark_float, print_float, 0, float_equal, + float_hash, struct Lisp_Float); + +static Lisp_Object +mark_float (Lisp_Object obj, void (*markobj) (Lisp_Object)) +{ + return (Qnil); +} + +static int +float_equal (Lisp_Object o1, Lisp_Object o2, int depth) +{ + return (extract_float (o1) == extract_float (o2)); +} + +static unsigned long +float_hash (Lisp_Object obj, int depth) +{ + /* mod the value down to 32-bit range */ + /* #### change for 64-bit machines */ + return (unsigned long) fmod (extract_float (obj), 4e9); +} + + +/* Extract a Lisp number as a `double', or signal an error. */ + +double +extract_float (Lisp_Object num) +{ + CHECK_INT_OR_FLOAT (num); + + if (FLOATP (num)) + return (float_data (XFLOAT (num))); + return (double) XINT (num); +} +#endif /* LISP_FLOAT_TYPE */ + + +/* Trig functions. */ +#ifdef LISP_FLOAT_TYPE + +DEFUN ("acos", Facos, Sacos, 1, 1, 0 /* +Return the inverse cosine of ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); +#ifdef FLOAT_CHECK_DOMAIN + if (d > 1.0 || d < -1.0) + domain_error ("acos", arg); +#endif + IN_FLOAT (d = acos (d), "acos", arg); + return make_float (d); +} + +DEFUN ("asin", Fasin, Sasin, 1, 1, 0 /* +Return the inverse sine of ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); +#ifdef FLOAT_CHECK_DOMAIN + if (d > 1.0 || d < -1.0) + domain_error ("asin", arg); +#endif + IN_FLOAT (d = asin (d), "asin", arg); + return make_float (d); +} + +DEFUN ("atan", Fatan, Satan, 1, 2, 0 /* +Return the inverse tangent of ARG. +*/ ) + (arg1, arg2) + Lisp_Object arg1, arg2; +{ + double d = extract_float (arg1); + + if (NILP (arg2)) + IN_FLOAT (d = atan (d), "atan", arg1); + else + { + double d2 = extract_float (arg2); +#ifdef FLOAT_CHECK_DOMAIN + if (d == 0.0 && d2 == 0.0) + domain_error2 ("atan", arg1, arg2); +#endif + IN_FLOAT2 (d = atan2 (d, d2), "atan", arg1, arg2); + } + return make_float (d); +} + +DEFUN ("cos", Fcos, Scos, 1, 1, 0 /* +Return the cosine of ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); + IN_FLOAT (d = cos (d), "cos", arg); + return make_float (d); +} + +DEFUN ("sin", Fsin, Ssin, 1, 1, 0 /* +Return the sine of ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); + IN_FLOAT (d = sin (d), "sin", arg); + return make_float (d); +} + +DEFUN ("tan", Ftan, Stan, 1, 1, 0 /* +Return the tangent of ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); + double c = cos (d); +#ifdef FLOAT_CHECK_DOMAIN + if (c == 0.0) + domain_error ("tan", arg); +#endif + IN_FLOAT (d = (sin (d) / c), "tan", arg); + return make_float (d); +} +#endif /* LISP_FLOAT_TYPE (trig functions) */ + + +/* Bessel functions */ +#if 0 /* Leave these out unless we find there's a reason for them. */ +/* #ifdef LISP_FLOAT_TYPE */ + +DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0 /* +Return the bessel function j0 of ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); + IN_FLOAT (d = j0 (d), "bessel-j0", arg); + return make_float (d); +} + +DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0 /* +Return the bessel function j1 of ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); + IN_FLOAT (d = j1 (d), "bessel-j1", arg); + return make_float (d); +} + +DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0 /* +Return the order N bessel function output jn of ARG. +The first arg (the order) is truncated to an integer. +*/ ) + (arg1, arg2) + Lisp_Object arg1, arg2; +{ + int i1 = extract_float (arg1); + double f2 = extract_float (arg2); + + IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", arg1); + return make_float (f2); +} + +DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0 /* +Return the bessel function y0 of ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); + IN_FLOAT (d = y0 (d), "bessel-y0", arg); + return make_float (d); +} + +DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0 /* +Return the bessel function y1 of ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); + IN_FLOAT (d = y1 (d), "bessel-y0", arg); + return make_float (d); +} + +DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0 /* +Return the order N bessel function output yn of ARG. +The first arg (the order) is truncated to an integer. +*/ ) + (arg1, arg2) + Lisp_Object arg1, arg2; +{ + int i1 = extract_float (arg1); + double f2 = extract_float (arg2); + + IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", arg1); + return make_float (f2); +} + +#endif /* 0 (bessel functions) */ + +/* Error functions. */ +#if 0 /* Leave these out unless we see they are worth having. */ +/* #ifdef LISP_FLOAT_TYPE */ + +DEFUN ("erf", Ferf, Serf, 1, 1, 0 /* +Return the mathematical error function of ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); + IN_FLOAT (d = erf (d), "erf", arg); + return make_float (d); +} + +DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0 /* +Return the complementary error function of ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); + IN_FLOAT (d = erfc (d), "erfc", arg); + return make_float (d); +} + +DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0 /* +Return the log gamma of ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); + IN_FLOAT (d = lgamma (d), "log-gamma", arg); + return make_float (d); +} + +#endif /* 0 (error functions) */ + + +/* Root and Log functions. */ + +#ifdef LISP_FLOAT_TYPE +DEFUN ("exp", Fexp, Sexp, 1, 1, 0 /* +Return the exponential base e of ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); +#ifdef FLOAT_CHECK_DOMAIN + if (d > 709.7827) /* Assume IEEE doubles here */ + range_error ("exp", arg); + else if (d < -709.0) + return make_float (0.0); + else +#endif + IN_FLOAT (d = exp (d), "exp", arg); + return make_float (d); +} +#endif /* LISP_FLOAT_TYPE */ + + +DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0 /* +Return the exponential ARG1 ** ARG2. +*/ ) + (arg1, arg2) + Lisp_Object arg1, arg2; +{ + double f1, f2; + + CHECK_INT_OR_FLOAT (arg1); + CHECK_INT_OR_FLOAT (arg2); + if ((INTP (arg1)) && /* common lisp spec */ + (INTP (arg2))) /* don't promote, if both are ints */ + { + EMACS_INT acc, x, y; + x = XINT (arg1); + y = XINT (arg2); + + if (y < 0) + { + if (x == 1) + acc = 1; + else if (x == -1) + acc = (y & 1) ? -1 : 1; + else + acc = 0; + } + else + { + acc = 1; + while (y > 0) + { + if (y & 1) + acc *= x; + x *= x; + y = (unsigned EMACS_INT) y >> 1; + } + } + return (make_int (acc)); + } +#ifdef LISP_FLOAT_TYPE + f1 = (FLOATP (arg1)) ? float_data (XFLOAT (arg1)) : XINT (arg1); + f2 = (FLOATP (arg2)) ? float_data (XFLOAT (arg2)) : XINT (arg2); + /* Really should check for overflow, too */ + if (f1 == 0.0 && f2 == 0.0) + f1 = 1.0; +# ifdef FLOAT_CHECK_DOMAIN + else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2))) + domain_error2 ("expt", arg1, arg2); +# endif /* FLOAT_CHECK_DOMAIN */ + IN_FLOAT2 (f1 = pow (f1, f2), "expt", arg1, arg2); + return make_float (f1); +#else /* !LISP_FLOAT_TYPE */ + abort (); +#endif /* LISP_FLOAT_TYPE */ +} + +#ifdef LISP_FLOAT_TYPE +DEFUN ("log", Flog, Slog, 1, 2, 0 /* +Return the natural logarithm of ARG. +If second optional argument BASE is given, return log ARG using that base. +*/ ) + (arg, base) + Lisp_Object arg, base; +{ + double d = extract_float (arg); +#ifdef FLOAT_CHECK_DOMAIN + if (d <= 0.0) + domain_error2 ("log", arg, base); +#endif + if (NILP (base)) + IN_FLOAT (d = log (d), "log", arg); + else + { + double b = extract_float (base); +#ifdef FLOAT_CHECK_DOMAIN + if (b <= 0.0 || b == 1.0) + domain_error2 ("log", arg, base); +#endif + if (b == 10.0) + IN_FLOAT2 (d = log10 (d), "log", arg, base); + else + IN_FLOAT2 (d = (log (d) / log (b)), "log", arg, base); + } + return make_float (d); +} + + +DEFUN ("log10", Flog10, Slog10, 1, 1, 0 /* +Return the logarithm base 10 of ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); +#ifdef FLOAT_CHECK_DOMAIN + if (d <= 0.0) + domain_error ("log10", arg); +#endif + IN_FLOAT (d = log10 (d), "log10", arg); + return make_float (d); +} + + +DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0 /* +Return the square root of ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); +#ifdef FLOAT_CHECK_DOMAIN + if (d < 0.0) + domain_error ("sqrt", arg); +#endif + IN_FLOAT (d = sqrt (d), "sqrt", arg); + return make_float (d); +} + + +DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0 /* +Return the cube root of ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); +#ifdef HAVE_CBRT + IN_FLOAT (d = cbrt (d), "cube-root", arg); +#else + if (d >= 0.0) + IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg); + else + IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg); +#endif + return make_float (d); +} +#endif /* LISP_FLOAT_TYPE */ + + +/* Inverse trig functions. */ +#ifdef LISP_FLOAT_TYPE +/* #if 0 Not clearly worth adding... */ + +DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0 /* +Return the inverse hyperbolic cosine of ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); +#ifdef FLOAT_CHECK_DOMAIN + if (d < 1.0) + domain_error ("acosh", arg); +#endif +#ifdef HAVE_INVERSE_HYPERBOLIC + IN_FLOAT (d = acosh (d), "acosh", arg); +#else + IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg); +#endif + return make_float (d); +} + +DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0 /* +Return the inverse hyperbolic sine of ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); +#ifdef HAVE_INVERSE_HYPERBOLIC + IN_FLOAT (d = asinh (d), "asinh", arg); +#else + IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg); +#endif + return make_float (d); +} + +DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0 /* +Return the inverse hyperbolic tangent of ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); +#ifdef FLOAT_CHECK_DOMAIN + if (d >= 1.0 || d <= -1.0) + domain_error ("atanh", arg); +#endif +#ifdef HAVE_INVERSE_HYPERBOLIC + IN_FLOAT (d = atanh (d), "atanh", arg); +#else + IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg); +#endif + return make_float (d); +} + +DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0 /* +Return the hyperbolic cosine of ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); +#ifdef FLOAT_CHECK_DOMAIN + if (d > 710.0 || d < -710.0) + range_error ("cosh", arg); +#endif + IN_FLOAT (d = cosh (d), "cosh", arg); + return make_float (d); +} + +DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0 /* +Return the hyperbolic sine of ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); +#ifdef FLOAT_CHECK_DOMAIN + if (d > 710.0 || d < -710.0) + range_error ("sinh", arg); +#endif + IN_FLOAT (d = sinh (d), "sinh", arg); + return make_float (d); +} + +DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0 /* +Return the hyperbolic tangent of ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); + IN_FLOAT (d = tanh (d), "tanh", arg); + return make_float (d); +} +#endif /* LISP_FLOAT_TYPE (inverse trig functions) */ + +/* Rounding functions */ + +DEFUN ("abs", Fabs, Sabs, 1, 1, 0 /* +Return the absolute value of ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + CHECK_INT_OR_FLOAT (arg); + +#ifdef LISP_FLOAT_TYPE + if (FLOATP (arg)) + { + IN_FLOAT (arg = make_float ((double) fabs (float_data (XFLOAT (arg)))), + "abs", arg); + return (arg); + } + else +#endif /* LISP_FLOAT_TYPE */ + if (XINT (arg) < 0) + return (make_int (- XINT (arg))); + else + return (arg); +} + +#ifdef LISP_FLOAT_TYPE +DEFUN ("float", Ffloat, Sfloat, 1, 1, 0 /* +Return the floating point number equal to ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + CHECK_INT_OR_FLOAT (arg); + + if (INTP (arg)) + return make_float ((double) XINT (arg)); + else /* give 'em the same float back */ + return arg; +} +#endif /* LISP_FLOAT_TYPE */ + + +#ifdef LISP_FLOAT_TYPE +DEFUN ("logb", Flogb, Slogb, 1, 1, 0 /* +Return largest integer <= the base 2 log of the magnitude of ARG. +This is the same as the exponent of a float. +*/ ) + (arg) + Lisp_Object arg; +{ + double f = extract_float (arg); + + if (f == 0.0) + return (make_int (- (((EMACS_UINT) 1) << (VALBITS - 1)))); /* most-negative-fixnum */ +#ifdef HAVE_LOGB + { + Lisp_Object val; + IN_FLOAT (val = make_int (logb (f)), "logb", arg); + return (val); + } +#else +#ifdef HAVE_FREXP + { + int exqp; + IN_FLOAT (frexp (f, &exqp), "logb", arg); + return (make_int (exqp - 1)); + } +#else + { + int i; + double d; + EMACS_INT val; + if (f < 0.0) + f = -f; + val = -1; + while (f < 0.5) + { + for (i = 1, d = 0.5; d * d >= f; i += i) + d *= d; + f /= d; + val -= i; + } + while (f >= 1.0) + { + for (i = 1, d = 2.0; d * d <= f; i += i) + d *= d; + f /= d; + val += i; + } + return (make_int (val)); + } +#endif /* ! HAVE_FREXP */ +#endif /* ! HAVE_LOGB */ +} +#endif /* LISP_FLOAT_TYPE */ + + +DEFUN ("ceiling", Fceiling, Sceiling, 1, 1, 0 /* +Return the smallest integer no less than ARG. (Round toward +inf.) +*/ ) + (arg) + Lisp_Object arg; +{ + CHECK_INT_OR_FLOAT (arg); + +#ifdef LISP_FLOAT_TYPE + if (FLOATP (arg)) + { + double d; + IN_FLOAT ((d = ceil (float_data (XFLOAT (arg)))), "ceiling", arg); + return (float_to_int (d, "ceiling", arg, Qunbound)); + } +#endif /* LISP_FLOAT_TYPE */ + + return arg; +} + + +DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0 /* +Return the largest integer no greater than ARG. (Round towards -inf.) +With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. +*/ ) + (arg, divisor) + Lisp_Object arg, divisor; +{ + CHECK_INT_OR_FLOAT (arg); + + if (! NILP (divisor)) + { + EMACS_INT i1, i2; + + CHECK_INT_OR_FLOAT (divisor); + +#ifdef LISP_FLOAT_TYPE + if (FLOATP (arg) || FLOATP (divisor)) + { + double f1, f2; + + f1 = ((FLOATP (arg)) ? float_data (XFLOAT (arg)) : XINT (arg)); + f2 = ((FLOATP (divisor)) ? float_data (XFLOAT (divisor)) : XINT (divisor)); + if (f2 == 0) + Fsignal (Qarith_error, Qnil); + + IN_FLOAT2 (f1 = floor (f1 / f2), "floor", arg, divisor); + return float_to_int (f1, "floor", arg, divisor); + } +#endif /* LISP_FLOAT_TYPE */ + + i1 = XINT (arg); + i2 = XINT (divisor); + + if (i2 == 0) + Fsignal (Qarith_error, Qnil); + + /* With C's /, the result is implementation-defined if either operand + is negative, so use only nonnegative operands. */ + i1 = (i2 < 0 + ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2)) + : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2)); + + return (make_int (i1)); + } + +#ifdef LISP_FLOAT_TYPE + if (FLOATP (arg)) + { + double d; + IN_FLOAT ((d = floor (float_data (XFLOAT (arg)))), "floor", arg); + return (float_to_int (d, "floor", arg, Qunbound)); + } +#endif /* LISP_FLOAT_TYPE */ + + return arg; +} + +DEFUN ("round", Fround, Sround, 1, 1, 0 /* +Return the nearest integer to ARG. +*/ ) + (arg) + Lisp_Object arg; +{ + CHECK_INT_OR_FLOAT (arg); + +#ifdef LISP_FLOAT_TYPE + if (FLOATP (arg)) + { + double d; + /* Screw the prevailing rounding mode. */ + IN_FLOAT ((d = rint (float_data (XFLOAT (arg)))), "round", arg); + return (float_to_int (d, "round", arg, Qunbound)); + } +#endif /* LISP_FLOAT_TYPE */ + + return arg; +} + +DEFUN ("truncate", Ftruncate, Struncate, 1, 1, 0 /* +Truncate a floating point number to an integer. +Rounds the value toward zero. +*/ ) + (arg) + Lisp_Object arg; +{ + CHECK_INT_OR_FLOAT (arg); + +#ifdef LISP_FLOAT_TYPE + if (FLOATP (arg)) + return (float_to_int (float_data (XFLOAT (arg)), + "truncate", arg, Qunbound)); +#endif /* LISP_FLOAT_TYPE */ + + return arg; +} + +/* Float-rounding functions. */ +#ifdef LISP_FLOAT_TYPE +/* #if 1 It's not clear these are worth adding... */ + +DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0 /* +Return the smallest integer no less than ARG, as a float. +\(Round toward +inf.\) +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); + IN_FLOAT (d = ceil (d), "fceiling", arg); + return make_float (d); +} + +DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0 /* +Return the largest integer no greater than ARG, as a float. +\(Round towards -inf.\) +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); + IN_FLOAT (d = floor (d), "ffloor", arg); + return make_float (d); +} + +DEFUN ("fround", Ffround, Sfround, 1, 1, 0 /* +Return the nearest integer to ARG, as a float. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); + IN_FLOAT (d = rint (d), "fround", arg); + return make_float (d); +} + +DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0 /* +Truncate a floating point number to an integral float value. +Rounds the value toward zero. +*/ ) + (arg) + Lisp_Object arg; +{ + double d = extract_float (arg); + if (d >= 0.0) + IN_FLOAT (d = floor (d), "ftruncate", arg); + else + IN_FLOAT (d = ceil (d), "ftruncate", arg); + return make_float (d); +} + +#endif /* LISP_FLOAT_TYPE (float-rounding functions) */ + + +#ifdef LISP_FLOAT_TYPE +#ifdef FLOAT_CATCH_SIGILL +static SIGTYPE +float_error (int signo) +{ + if (! in_float) + fatal_error_signal (signo); + + EMACS_REESTABLISH_SIGNAL (signo, arith_error); + EMACS_UNBLOCK_SIGNAL (signo); + + in_float = 0; + + /* Was Fsignal(), but it just doesn't make sense for an error + occurring inside a signal handler to be restartable, considering + that anything could happen when the error is signaled and trapped + and considering the asynchronous nature of signal handlers. */ + signal_error (Qarith_error, list1 (float_error_arg)); +} + +/* Another idea was to replace the library function `infnan' + where SIGILL is signaled. */ + +#endif /* FLOAT_CATCH_SIGILL */ + +#ifdef HAVE_MATHERR +int +matherr (struct exception *x) +{ + Lisp_Object args; + if (! in_float) + /* Not called from emacs-lisp float routines; do the default thing. */ + return 0; + + /* if (!strcmp (x->name, "pow")) x->name = "expt"; */ + + args = Fcons (build_string (x->name), + Fcons (make_float (x->arg1), + ((in_float == 2) + ? Fcons (make_float (x->arg2), Qnil) + : Qnil))); + switch (x->type) + { + case DOMAIN: Fsignal (Qdomain_error, args); break; + case SING: Fsignal (Qsingularity_error, args); break; + case OVERFLOW: Fsignal (Qoverflow_error, args); break; + case UNDERFLOW: Fsignal (Qunderflow_error, args); break; + default: Fsignal (Qarith_error, args); break; + } + return (1); /* don't set errno or print a message */ +} +#endif /* HAVE_MATHERR */ +#endif /* LISP_FLOAT_TYPE */ + + +void +init_floatfns_very_early (void) +{ +#ifdef LISP_FLOAT_TYPE +# ifdef FLOAT_CATCH_SIGILL + signal (SIGILL, float_error); +# endif + in_float = 0; +#endif /* LISP_FLOAT_TYPE */ +} + +void +syms_of_floatfns (void) +{ + + /* Trig functions. */ + +#ifdef LISP_FLOAT_TYPE + defsubr (&Sacos); + defsubr (&Sasin); + defsubr (&Satan); + defsubr (&Scos); + defsubr (&Ssin); + defsubr (&Stan); +#endif /* LISP_FLOAT_TYPE */ + + /* Bessel functions */ + +#if 0 + defsubr (&Sbessel_y0); + defsubr (&Sbessel_y1); + defsubr (&Sbessel_yn); + defsubr (&Sbessel_j0); + defsubr (&Sbessel_j1); + defsubr (&Sbessel_jn); +#endif /* 0 */ + + /* Error functions. */ + +#if 0 + defsubr (&Serf); + defsubr (&Serfc); + defsubr (&Slog_gamma); +#endif /* 0 */ + + /* Root and Log functions. */ + +#ifdef LISP_FLOAT_TYPE + defsubr (&Sexp); +#endif /* LISP_FLOAT_TYPE */ + defsubr (&Sexpt); +#ifdef LISP_FLOAT_TYPE + defsubr (&Slog); + defsubr (&Slog10); + defsubr (&Ssqrt); + defsubr (&Scube_root); +#endif /* LISP_FLOAT_TYPE */ + + /* Inverse trig functions. */ + +#ifdef LISP_FLOAT_TYPE + defsubr (&Sacosh); + defsubr (&Sasinh); + defsubr (&Satanh); + defsubr (&Scosh); + defsubr (&Ssinh); + defsubr (&Stanh); +#endif /* LISP_FLOAT_TYPE */ + + /* Rounding functions */ + + defsubr (&Sabs); +#ifdef LISP_FLOAT_TYPE + defsubr (&Sfloat); + defsubr (&Slogb); +#endif /* LISP_FLOAT_TYPE */ + defsubr (&Sceiling); + defsubr (&Sfloor); + defsubr (&Sround); + defsubr (&Struncate); + + /* Float-rounding functions. */ + +#ifdef LISP_FLOAT_TYPE + defsubr (&Sfceiling); + defsubr (&Sffloor); + defsubr (&Sfround); + defsubr (&Sftruncate); +#endif /* LISP_FLOAT_TYPE */ +} + +void +vars_of_floatfns (void) +{ +#ifdef LISP_FLOAT_TYPE + Fprovide (intern ("lisp-float-type")); +#endif +}