Mercurial > hg > xemacs-beta
diff lib-src/qsort.c @ 0:376386a54a3c r19-14
Import from CVS: tag r19-14
author | cvs |
---|---|
date | Mon, 13 Aug 2007 08:45:50 +0200 |
parents | |
children | 576fb035e263 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lib-src/qsort.c Mon Aug 13 08:45:50 2007 +0200 @@ -0,0 +1,237 @@ +/* Plug-compatible replacement for UNIX qsort. + Copyright (C) 1989 Free Software Foundation, Inc. + Written by Douglas C. Schmidt (schmidt@ics.uci.edu) + +This file is part of GNU CC. + +GNU QSORT is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU QSORT is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU QSORT; see the file COPYING. If not, write to +the Free the Free Software Foundation, Inc., 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + +/* Synched up with: FSF 19.28. */ + +#ifdef sparc +#include <alloca.h> +#endif + +/* Invoke the comparison function, returns either 0, < 0, or > 0. */ +#define CMP(A,B) ((*cmp)((A),(B))) + +/* Byte-wise swap two items of size SIZE. */ +#define SWAP(A,B,SIZE) do {int sz = (SIZE); char *a = (A); char *b = (B); \ + do { char _temp = *a;*a++ = *b;*b++ = _temp;} while (--sz);} while (0) + +/* Copy SIZE bytes from item B to item A. */ +#define COPY(A,B,SIZE) {int sz = (SIZE); do { *(A)++ = *(B)++; } while (--sz); } + +/* This should be replaced by a standard ANSI macro. */ +#define BYTES_PER_WORD 8 + +/* The next 4 #defines implement a very fast in-line stack abstraction. */ +#define STACK_SIZE (BYTES_PER_WORD * sizeof (long)) +#define PUSH(LOW,HIGH) do {top->lo = LOW;top++->hi = HIGH;} while (0) +#define POP(LOW,HIGH) do {LOW = (--top)->lo;HIGH = top->hi;} while (0) +#define STACK_NOT_EMPTY (stack < top) + +/* Discontinue quicksort algorithm when partition gets below this size. + This particular magic number was chosen to work best on a Sun 4/260. */ +#define MAX_THRESH 4 + +/* Stack node declarations used to store unfulfilled partition obligations. */ +typedef struct +{ + char *lo; + char *hi; +} stack_node; + +/* Order size using quicksort. This implementation incorporates + four optimizations discussed in Sedgewick: + + 1. Non-recursive, using an explicit stack of pointer that store the + next array partition to sort. To save time, this maximum amount + of space required to store an array of MAX_INT is allocated on the + stack. Assuming a 32-bit integer, this needs only 32 * + sizeof (stack_node) == 136 bits. Pretty cheap, actually. + + 2. Chose the pivot element using a median-of-three decision tree. + This reduces the probability of selecting a bad pivot value and + eliminates certain extraneous comparisons. + + 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving + insertion sort to order the MAX_THRESH items within each partition. + This is a big win, since insertion sort is faster for small, mostly + sorted array segments. + + 4. The larger of the two sub-partitions is always pushed onto the + stack first, with the algorithm then concentrating on the + smaller partition. This *guarantees* no more than log (n) + stack size is needed (actually O(1) in this case)! */ + +int +qsort (base_ptr, total_elems, size, cmp) + char *base_ptr; + int total_elems; + int size; + int (*cmp)(); +{ + /* Allocating SIZE bytes for a pivot buffer facilitates a better + algorithm below since we can do comparisons directly on the pivot. */ + char *pivot_buffer = (char *) alloca (size); + int max_thresh = MAX_THRESH * size; + + if (total_elems > MAX_THRESH) + { + char *lo = base_ptr; + char *hi = lo + size * (total_elems - 1); + stack_node stack[STACK_SIZE]; /* Largest size needed for 32-bit int!!! */ + stack_node *top = stack + 1; + + while (STACK_NOT_EMPTY) + { + char *left_ptr; + char *right_ptr; + { + char *pivot = pivot_buffer; + { + /* Select median value from among LO, MID, and HI. Rearrange + LO and HI so the three values are sorted. This lowers the + probability of picking a pathological pivot value and + skips a comparison for both the LEFT_PTR and RIGHT_PTR. */ + + char *mid = lo + size * ((hi - lo) / size >> 1); + + if (CMP (mid, lo) < 0) + SWAP (mid, lo, size); + if (CMP (hi, mid) < 0) + SWAP (mid, hi, size); + else + goto jump_over; + if (CMP (mid, lo) < 0) + SWAP (mid, lo, size); + jump_over: + COPY (pivot, mid, size); + pivot = pivot_buffer; + } + left_ptr = lo + size; + right_ptr = hi - size; + + /* Here's the famous ``collapse the walls'' section of quicksort. + Gotta like those tight inner loops! They are the main reason + that this algorithm runs much faster than others. */ + do + { + while (CMP (left_ptr, pivot) < 0) + left_ptr += size; + + while (CMP (pivot, right_ptr) < 0) + right_ptr -= size; + + if (left_ptr < right_ptr) + { + SWAP (left_ptr, right_ptr, size); + left_ptr += size; + right_ptr -= size; + } + else if (left_ptr == right_ptr) + { + left_ptr += size; + right_ptr -= size; + break; + } + } + while (left_ptr <= right_ptr); + + } + + /* Set up pointers for next iteration. First determine whether + left and right partitions are below the threshold size. If so, + ignore one or both. Otherwise, push the larger partition's + bounds on the stack and continue sorting the smaller one. */ + + if ((right_ptr - lo) <= max_thresh) + { + if ((hi - left_ptr) <= max_thresh) /* Ignore both small partitions. */ + POP (lo, hi); + else /* Ignore small left partition. */ + lo = left_ptr; + } + else if ((hi - left_ptr) <= max_thresh) /* Ignore small right partition. */ + hi = right_ptr; + else if ((right_ptr - lo) > (hi - left_ptr)) /* Push larger left partition indices. */ + { + PUSH (lo, right_ptr); + lo = left_ptr; + } + else /* Push larger right partition indices. */ + { + PUSH (left_ptr, hi); + hi = right_ptr; + } + } + } + + /* Once the BASE_PTR array is partially sorted by quicksort the rest + is completely sorted using insertion sort, since this is efficient + for partitions below MAX_THRESH size. BASE_PTR points to the beginning + of the array to sort, and END_PTR points at the very last element in + the array (*not* one beyond it!). */ + +#define MIN(X,Y) ((X) < (Y) ? (X) : (Y)) + + { + char *end_ptr = base_ptr + size * (total_elems - 1); + char *run_ptr; + char *tmp_ptr = base_ptr; + char *thresh = MIN (end_ptr, base_ptr + max_thresh); + + /* Find smallest element in first threshold and place it at the + array's beginning. This is the smallest array element, + and the operation speeds up insertion sort's inner loop. */ + + for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size) + if (CMP (run_ptr, tmp_ptr) < 0) + tmp_ptr = run_ptr; + + if (tmp_ptr != base_ptr) + SWAP (tmp_ptr, base_ptr, size); + + /* Insertion sort, running from left-hand-side up to `right-hand-side.' + Pretty much straight out of the original GNU qsort routine. */ + + for (run_ptr = base_ptr + size; (tmp_ptr = run_ptr += size) <= end_ptr; ) + { + + while (CMP (run_ptr, tmp_ptr -= size) < 0) + ; + + if ((tmp_ptr += size) != run_ptr) + { + char *trav; + + for (trav = run_ptr + size; --trav >= run_ptr;) + { + char c = *trav; + char *hi, *lo; + + for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo) + *hi = *lo; + *hi = c; + } + } + + } + } + return 1; +} +