diff dynodump/dynodump.c @ 0:376386a54a3c r19-14

Import from CVS: tag r19-14
author cvs
date Mon, 13 Aug 2007 08:45:50 +0200
parents
children ac2d302a0011
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/dynodump/dynodump.c	Mon Aug 13 08:45:50 2007 +0200
@@ -0,0 +1,557 @@
+/*
+ *	Copyright (c) 1995 by Sun Microsystems, Inc.
+ *	All rights reserved.
+ *
+ * This source code is a product of Sun Microsystems, Inc. and is provided
+ * for unrestricted use provided that this legend is included on all tape
+ * media and as a part of the software program in whole or part.  Users
+ * may copy or modify this source code without charge, but are not authorized
+ * to license or distribute it to anyone else except as part of a product or
+ * program developed by the user.
+ *
+ * THIS PROGRAM CONTAINS SOURCE CODE COPYRIGHTED BY SUN MICROSYSTEMS, INC.
+ * SUN MICROSYSTEMS, INC., MAKES NO REPRESENTATIONS ABOUT THE SUITABLITY
+ * OF SUCH SOURCE CODE FOR ANY PURPOSE.  IT IS PROVIDED "AS IS" WITHOUT
+ * EXPRESS OR IMPLIED WARRANTY OF ANY KIND.  SUN MICROSYSTEMS, INC. DISCLAIMS
+ * ALL WARRANTIES WITH REGARD TO SUCH SOURCE CODE, INCLUDING ALL IMPLIED
+ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  IN
+ * NO EVENT SHALL SUN MICROSYSTEMS, INC. BE LIABLE FOR ANY SPECIAL, INDIRECT,
+ * INCIDENTAL, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
+ * FROM USE OF SUCH SOURCE CODE, REGARDLESS OF THE THEORY OF LIABILITY.
+ * 
+ * This source code is provided with no support and without any obligation on
+ * the part of Sun Microsystems, Inc. to assist in its use, correction, 
+ * modification or enhancement.
+ *
+ * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
+ * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS
+ * SOURCE CODE OR ANY PART THEREOF.
+ *
+ * Sun Microsystems, Inc.
+ * 2550 Garcia Avenue
+ * Mountain View, California 94043
+ */
+
+/*
+ * dynodump(3x) dumps a running executable into a specified ELF file.  The new
+ * file consists of the memory contents of the original file together with any
+ * heap.  This heap is assigned to a new `.heap' section within the new file.
+ *
+ * The new file may be re-executed, and will contain any data modifications
+ * made to the original image up until the time dynodump(3x) was called.
+ *
+ * The original image may have undergone relocations (performed by ld.so.1)
+ * prior to control being transferred to the image.  These relocations will
+ * reside as the data copied from the image.  To prevent subsequent executions
+ * of the new image from undergoing the same relocations, any relocation entries
+ * (besides copy or jump slot relocations) are nulled out.  Note that copy
+ * relocations such as required for __iob must be reinitialized each time the
+ * process starts, so it is not sufficient to simply null out the .dynamic
+ * sections relocation information.  The effect of this is that if the new
+ * image was bound to definitions in any shared object dependencies, then these
+ * dependencies *must* reside in the same location as when dynodump(3x) was
+ * called.  Any changes to the shared object dependencies of the new image, or
+ * uses of such things as LD_PRELOAD, may result in the bindings encoded in the
+ * image becoming invalid.
+ *
+ * The following flags modify the data of the image created:
+ *
+ *  RTLD_SAVREL	save the original relocation data.  Under this option any
+ *		relocation offset is reset to contain the same data as was
+ *		found in the images original file.
+ *
+ *		This option allows relocation information to be retained in the
+ *		new image so that it may be re-executed when the new image is
+ *		run.  This allows far greater flexibility as the new image can
+ *		now take advantage of new shared objects.
+ *
+ *		Note. under this mechanism, any data item that undergoes
+ *		relocation and is then further modified during the execution of
+ *		the image before dynodump(3x) is called will lose the
+ *		modification that occured during the applications execution.
+ *
+ * N.B. The above commentary is not quite correct in the flags have been hardwired
+ *      to RTLD_SAVREL.
+ */
+#pragma ident	"@(#) $Id: dynodump.c,v 1.1.1.1 1996/12/18 03:37:22 steve Exp $ - SMI"
+
+#include	<sys/param.h>
+#include	<sys/procfs.h>
+#include	<fcntl.h>
+#include	<stdio.h>
+#include	<libelf.h>
+#include	<link.h>
+#include	<stdlib.h>
+#include	<string.h>
+#include	<unistd.h>
+#include	<errno.h>
+#include	<malloc.h>
+#include	"machdep.h"
+#include	"_dynodump.h"
+
+/*
+ * Generic elf error message generator
+ */
+static int
+elferr(const char * str)
+{
+    fprintf(stderr, "%s: %s\n", str, elf_errmsg(elf_errno()));
+    return (1);
+}
+
+int
+dynodump(const char * file)
+{
+    Elf		*ielf, *oelf;
+    Ehdr	*iehdr, *oehdr;
+    Phdr	*iphdr, *ophdr, *data_phdr = 0;
+    Cache	*icache, *ocache, *_icache, *_ocache;
+    Cache	*data_cache = 0, *shstr_cache = 0;
+    Cache	*heap_cache = 0;
+    Word	heap_sz = 0;
+    Elf_Scn	*scn;
+    Shdr	*shdr;
+    Elf_Data	*data, rundata;
+    Half	ndx, _ndx;
+    int		fd, _fd;
+    Addr	edata, _addr;
+    char	*istrs, *ostrs, *_ostrs, proc[16];
+    const char 	heap[] = ".heap";
+    prstatus_t	pstat;
+
+    /* make a call to the processor specific un-init stuff */
+    dynodump_uninit();
+
+    /*
+     * Obtain a file descriptor for this process,
+     * for the executable and get a prstatus_t
+     * structure.
+     */
+    sprintf(proc, "/proc/%ld", getpid());
+    if (((_fd = open(proc, O_RDONLY, 0)) == -1) ||
+	((fd = ioctl(_fd, PIOCOPENM, (void *)0)) == -1) ||
+	(ioctl(_fd, PIOCSTATUS, &pstat) == -1)) {
+	fprintf(stderr, "/proc: initialization error: %s\n",
+		strerror(errno));
+	close(_fd);
+	return (1);
+    }
+    close(_fd);
+
+    /*
+     * Initialize with the ELF library and make sure this is an executable
+     * ELF file we're dealing with.
+     */
+    elf_version(EV_CURRENT);
+    if ((ielf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) {
+	close(fd);
+	return (elferr("elf_begin"));
+    }
+    close(fd);
+
+    if ((elf_kind(ielf) != ELF_K_ELF) ||
+	((iehdr = elf_getehdr(ielf)) == NULL) ||
+	(iehdr->e_type != ET_EXEC)) {
+	fprintf(stderr, "image is not an ELF executable\n");
+	elf_end(ielf);
+	return (1);
+    }
+    /*
+     * Elf_elf_header(iehdr);
+     */
+
+    /*
+     * Create the new output file.
+     */
+    if ((fd = open(file, O_RDWR | O_CREAT | O_TRUNC, 0777)) == -1) {
+	fprintf(stderr, "%s: open failed: %s\n", file,
+		       strerror(errno));
+	elf_end(ielf);
+	return (1);
+    }
+    if ((oelf = elf_begin(fd, ELF_C_WRITE, NULL)) == NULL) {
+	elf_end(ielf);
+	close(fd);
+	return (elferr("elf_begin"));
+    }
+
+    /*
+     * Obtain the input program headers.  Remember the data segments
+     * program header entry as this will be updated later to reflect the
+     * new .heap sections size.
+     */
+    if ((iphdr = elf_getphdr(ielf)) == NULL)
+	return (elferr("elf_getphdr"));
+
+    for (ndx = 0, ophdr = iphdr; ndx != iehdr->e_phnum; ndx++, ophdr++) {
+	/*
+	 * Save the program header that contains the NOBITS section, or
+	 * the last loadable program header if no NOBITS exists.
+	 * A NOBITS section translates to a memory size requirement that
+	 * is greater than the file data it is mapped from.
+	 */
+	if (ophdr->p_type == PT_LOAD) {
+	    if (ophdr->p_filesz != ophdr->p_memsz)
+		data_phdr = ophdr;
+	    else if (data_phdr) {
+		if (data_phdr->p_vaddr < ophdr->p_vaddr)
+		    data_phdr = ophdr;
+	    } else
+		data_phdr = ophdr;
+	}
+    }
+    if (data_phdr == 0) {
+	fprintf(stderr, "no data segment found!\n");
+	return (0);
+    }
+
+    /*
+     * Obtain the input files section header string table.
+     */
+    if ((scn = elf_getscn(ielf, iehdr->e_shstrndx)) == NULL)
+	return (elferr("elf_getscn"));
+    if ((data = elf_getdata(scn, NULL)) == NULL)
+	return (elferr("elf_getdata"));
+    istrs = data->d_buf;
+
+    /*
+     * Construct a cache to maintain the input files section information.
+     */
+    if ((icache = (Cache *) malloc(iehdr->e_shnum * sizeof (Cache))) == 0) {
+	fprintf(stderr, "malloc failed: %s\n", strerror(errno));
+	return (1);
+    }
+    _icache = icache;
+    _icache++;
+
+    /*
+     * Traverse each section from the input file.
+     */
+    for (ndx = 1, scn = 0;
+	 _icache->c_scn = elf_nextscn(ielf, scn);
+	 ndx++, scn = _icache->c_scn, _icache++) {
+
+	if ((_icache->c_shdr = shdr = elf_getshdr(_icache->c_scn)) == NULL)
+	    return (elferr("elf_getshdr"));
+
+	if ((_icache->c_data = elf_getdata(_icache->c_scn, NULL)) == NULL)
+	    return (elferr("elf_getdata"));
+
+	_icache->c_name = istrs + (size_t)(shdr->sh_name);
+
+	/*
+	 * For each section that has a virtual address reestablish the
+	 * data buffer to point to the memory image.
+	 *
+	 * if (shdr->sh_addr)
+	 *     _icache->c_data->d_buf = (void *)shdr->sh_addr;
+	 */
+
+	/*
+	 * Remember the last section of the data segment, the new .heap
+	 * section will be added after this section.
+	 * If we already have one, then set data_cache to the previous
+	 * section and set heap_cache to this one.
+	 */
+	if ((shdr->sh_addr + shdr->sh_size)
+	    == (data_phdr->p_vaddr + data_phdr->p_memsz)) {
+	    if (strcmp(_icache->c_name, heap) == 0) {
+#ifdef DEBUG
+		printf("Found a previous .heap section\n");
+#endif
+		data_cache = _icache - 1;
+		heap_cache = _icache;
+		heap_sz = shdr->sh_size;
+	    } else {
+		data_cache = _icache;
+	    }
+	}
+
+	/*
+	 * Remember the section header string table as this will be
+	 * rewritten with the new .heap name.
+	 */
+	if ((shdr->sh_type == SHT_STRTAB) &&
+	    ((strcmp(_icache->c_name, ".shstrtab")) == 0))
+	    shstr_cache = _icache;
+    }
+    if (data_cache == 0) {
+	fprintf(stderr, "final data section not found!\n");
+	return (0);
+    }
+
+    /*
+     * Determine the new .heap section to create.
+     */
+    rundata.d_buf = (void *)(data_cache->c_shdr->sh_addr +
+			     data_cache->c_shdr->sh_size);
+    rundata.d_size = (int)sbrk(0) - (int)rundata.d_buf;
+    rundata.d_type = ELF_T_BYTE;
+    rundata.d_off = 0;
+    rundata.d_align = 1;
+    rundata.d_version = EV_CURRENT;
+
+    /*
+     * From the new data buffer determine the new value for _end and _edata.
+     * This will also be used to update the data segment program header.
+     *
+     * If we had a .heap section, then its size is part of the program
+     * headers notion of data size.  Because we're only going to output one
+     * heap section (ignoring the one in the running binary) we need to
+     * subract the size of that which we're ignoring.
+     */
+    if (heap_cache) {
+	edata = S_ROUND((data_phdr->p_vaddr
+			 + data_phdr->p_memsz
+			 - heap_sz), rundata.d_align) + rundata.d_size;
+    } else {
+	edata = S_ROUND((data_phdr->p_vaddr + data_phdr->p_memsz),
+			rundata.d_align) + rundata.d_size;
+    }
+
+    /*
+     * We're now ready to construct the new elf image.
+     *
+     * Obtain a new elf header and initialize it with any basic information
+     * that isn't calculated as part of elf_update().  Bump the section
+     * header string table index to account for the .heap section we'll be
+     * adding.
+     */
+    if ((oehdr = elf_newehdr(oelf)) == NULL)
+	return (elferr("elf_newehdr"));
+
+    oehdr->e_entry = iehdr->e_entry;
+    oehdr->e_machine = iehdr->e_machine;
+    oehdr->e_type = iehdr->e_type;
+    oehdr->e_flags = iehdr->e_flags;
+    /*
+     * If we already have a heap section, we don't need any adjustment
+     */
+    if (heap_cache)
+	oehdr->e_shstrndx = iehdr->e_shstrndx;
+    else
+	oehdr->e_shstrndx = iehdr->e_shstrndx + 1;
+
+#ifdef DEBUG
+    printf("iehdr->e_flags   = %x\n", iehdr->e_flags);
+    printf("iehdr->e_entry   = %x\n", iehdr->e_entry);
+    printf("iehdr->e_shstrndx= %d\n", iehdr->e_shstrndx);
+    printf("iehdr->e_machine = %d\n", iehdr->e_machine);
+    printf("iehdr->e_type    = 0x%x\n", iehdr->e_type);
+    printf("oehdr->e_machine = %d\n", oehdr->e_machine);
+    printf("oehdr->e_type    = 0x%x\n", oehdr->e_type);
+#endif
+
+    /*
+     * Obtain a new set of program headers.  Initialize these with the same
+     * information as the input program headers and update the data segment
+     * to reflect the new .heap section.
+     */
+    if ((ophdr = elf_newphdr(oelf, iehdr->e_phnum)) == NULL)
+	return (elferr("elf_newphdr"));
+
+    for (ndx = 0; ndx != iehdr->e_phnum; ndx++, iphdr++, ophdr++) {
+	*ophdr = *iphdr;
+	if (data_phdr == iphdr)
+	    ophdr->p_filesz = ophdr->p_memsz = edata - ophdr->p_vaddr;
+    }
+
+    /*
+     * Obtain a new set of sections.
+     */
+    _icache = icache;
+    _icache++;
+    for (ndx = 1; ndx != iehdr->e_shnum; ndx++, _icache++) {
+	/*
+	 * Skip the heap section of the running executable
+	 */
+	if (_icache == heap_cache)
+	    continue;
+	/*
+	 * Create a matching section header in the output file.
+	 */
+	if ((scn = elf_newscn(oelf)) == NULL)
+	    return (elferr("elf_newscn"));
+	if ((shdr = elf_getshdr(scn)) == NULL)
+	    return (elferr("elf_getshdr"));
+	*shdr = *_icache->c_shdr;
+
+	/*
+	 * Create a matching data buffer for this section.
+	 */
+	if ((data = elf_newdata(scn)) == NULL)
+	    return (elferr("elf_newdata"));
+	*data = *_icache->c_data;
+
+	/*
+	 * For each section that has a virtual address reestablish the
+	 * data buffer to point to the memory image.  Note, we skip
+	 * the plt section.
+	 */
+	if ((shdr->sh_addr) && (!((shdr->sh_type == SHT_PROGBITS)
+				  && (strcmp(_icache->c_name, ".plt") == 0))))
+	    data->d_buf = (void *)shdr->sh_addr;
+
+	/*
+	 * Update any NOBITS section to indicate that it now contains
+	 * data.
+	 */
+	if (shdr->sh_type == SHT_NOBITS)
+	    shdr->sh_type = SHT_PROGBITS;
+
+	/*
+	 * Add the new .heap section after the last section of the
+	 * present data segment.  If we had a heap section, then
+	 * this is the section preceding it.
+	 */
+	if (data_cache == _icache) {
+	    if ((scn = elf_newscn(oelf)) == NULL)
+		return (elferr("elf_newscn"));
+	    if ((shdr = elf_getshdr(scn)) == NULL)
+		return (elferr("elf_getshdr"));
+	    shdr->sh_type = SHT_PROGBITS;
+	    shdr->sh_flags = SHF_ALLOC | SHF_WRITE;
+
+	    if ((data = elf_newdata(scn)) == NULL)
+		return (elferr("elf_newdata"));
+	    *data = rundata;
+	}
+
+	/*
+	 * Update the section header string table size to reflect the
+	 * new section name (only if we didn't already have a heap).
+	 */
+	if (!heap_cache) {
+	    if (shstr_cache && (shstr_cache == _icache)) {
+		data->d_size += sizeof (heap);
+	    }
+	}
+    }
+
+    /*
+     * Write out the new image, and obtain a new elf descriptor that will
+     * allow us to write to the new image.
+     */
+    if (elf_update(oelf, ELF_C_WRITE) == -1)
+	return (elferr("elf_update"));
+    elf_end(oelf);
+    if ((oelf = elf_begin(fd, ELF_C_RDWR, NULL)) == NULL)
+	return (elferr("elf_begin"));
+    if ((oehdr = elf_getehdr(oelf)) == NULL)
+	return (elferr("elf_getehdr"));
+
+    /*
+     * Obtain the output files section header string table.
+     */
+    if ((scn = elf_getscn(oelf, oehdr->e_shstrndx)) == NULL)
+	return (elferr("elf_getscn"));
+    if ((data = elf_getdata(scn, NULL)) == NULL)
+	return (elferr("elf_getdata"));
+    ostrs = _ostrs = data->d_buf;
+    *_ostrs++ = '\0';
+
+    /*
+     * Construct a cache to maintain the output files section information.
+     */
+    if ((ocache = (Cache *)malloc(oehdr->e_shnum * sizeof (Cache))) == 0) {
+	fprintf(stderr, "malloc failed: %s\n", strerror(errno));
+	return (1);
+    }
+    _ocache = ocache;
+    _ocache++;
+    _icache = icache;
+    _icache++;
+
+    /*
+     * Traverse each section from the input file rebuilding the section
+     * header string table as we go.
+     */
+    _ndx = _addr = 0;
+    for (ndx = 1, scn = 0;
+	 _ocache->c_scn = elf_nextscn(oelf, scn);
+	 ndx++, scn = _ocache->c_scn, _ocache++, _icache++) {
+
+	const char *strs;
+
+	if (_icache == heap_cache) {
+#ifdef DEBUG
+	    printf("ignoring .heap section in input\n");
+#endif
+	    _icache++;
+	}
+
+	if ((_ocache->c_shdr = shdr =
+	     elf_getshdr(_ocache->c_scn)) == NULL)
+	    return (elferr("elf_getshdr"));
+	if ((_ocache->c_data =
+	     elf_getdata(_ocache->c_scn, NULL)) == NULL)
+	    return (elferr("elf_getdata"));
+
+	/*
+	 * If were inserting the new .heap section, insert the new
+	 * section name and initialize it's virtual address.
+	 */
+	if (_addr) {
+	    strs = heap;
+	    shdr->sh_addr = S_ROUND(_addr, shdr->sh_addralign);
+	    _addr = 0;
+	} else {
+	    strs = istrs + (size_t)(_icache->c_shdr->sh_name);
+	}
+
+	strcpy(_ostrs, strs);
+	shdr->sh_name = _ostrs - ostrs;
+	_ocache->c_name = _ostrs;
+	_ostrs += strlen(strs) + 1;
+
+	/*
+	 * If we've inserted a new section any later section may need
+	 * their sh_link fields updated.
+	 * If we already had a heap section, then this is not required.
+	 */
+	if (!heap_cache) {
+	    if (_ndx) {
+		if (_ocache->c_shdr->sh_link >= _ndx)
+		    _ocache->c_shdr->sh_link++;
+	    }
+	}
+
+	/*
+	 * If this is the last section of the original data segment
+	 * determine sufficient information to initialize the new .heap
+	 * section which will be obtained next.
+	 */
+	if (data_cache == _icache) {
+	    _ndx = ndx + 1;
+	    _addr = shdr->sh_addr + shdr->sh_size;
+	    _icache--;
+	    data_cache = 0;
+	}
+    }
+
+    /*
+     * Now that we have a complete description of the new image update any
+     * sections that are required.
+     *
+     *  o	update the value of _edata and _end.
+     *
+     *  o	reset any relocation entries if necessary.
+     */
+    _ocache = &ocache[1];
+    _icache = &icache[1];
+    for (ndx = 1; ndx < oehdr->e_shnum; ndx++, _ocache++, _icache++) {
+	if ((_ocache->c_shdr->sh_type == SHT_SYMTAB) ||
+	    (_ocache->c_shdr->sh_type == SHT_DYNSYM))
+	    update_sym(ocache, _ocache, edata);
+
+	if (_ocache->c_shdr->sh_type == M_REL_SHT_TYPE)
+	    update_reloc(ocache, _ocache, icache, _icache, oehdr->e_shnum);
+    }
+
+    if (elf_update(oelf, ELF_C_WRITE) == -1)
+	return (elferr("elf_update"));
+
+    elf_end(oelf);
+    elf_end(ielf);
+    return (0);
+}