comparison src/fns.c @ 665:fdefd0186b75

[xemacs-hg @ 2001-09-20 06:28:42 by ben] The great integral types renaming. The purpose of this is to rationalize the names used for various integral types, so that they match their intended uses and follow consist conventions, and eliminate types that were not semantically different from each other. The conventions are: -- All integral types that measure quantities of anything are signed. Some people disagree vociferously with this, but their arguments are mostly theoretical, and are vastly outweighed by the practical headaches of mixing signed and unsigned values, and more importantly by the far increased likelihood of inadvertent bugs: Because of the broken "viral" nature of unsigned quantities in C (operations involving mixed signed/unsigned are done unsigned, when exactly the opposite is nearly always wanted), even a single error in declaring a quantity unsigned that should be signed, or even the even more subtle error of comparing signed and unsigned values and forgetting the necessary cast, can be catastrophic, as comparisons will yield wrong results. -Wsign-compare is turned on specifically to catch this, but this tends to result in a great number of warnings when mixing signed and unsigned, and the casts are annoying. More has been written on this elsewhere. -- All such quantity types just mentioned boil down to EMACS_INT, which is 32 bits on 32-bit machines and 64 bits on 64-bit machines. This is guaranteed to be the same size as Lisp objects of type `int', and (as far as I can tell) of size_t (unsigned!) and ssize_t. The only type below that is not an EMACS_INT is Hashcode, which is an unsigned value of the same size as EMACS_INT. -- Type names should be relatively short (no more than 10 characters or so), with the first letter capitalized and no underscores if they can at all be avoided. -- "count" == a zero-based measurement of some quantity. Includes sizes, offsets, and indexes. -- "bpos" == a one-based measurement of a position in a buffer. "Charbpos" and "Bytebpos" count text in the buffer, rather than bytes in memory; thus Bytebpos does not directly correspond to the memory representation. Use "Membpos" for this. -- "Char" refers to internal-format characters, not to the C type "char", which is really a byte. -- For the actual name changes, see the script below. I ran the following script to do the conversion. (NOTE: This script is idempotent. You can safely run it multiple times and it will not screw up previous results -- in fact, it will do nothing if nothing has changed. Thus, it can be run repeatedly as necessary to handle patches coming in from old workspaces, or old branches.) There are two tags, just before and just after the change: `pre-integral-type-rename' and `post-integral-type-rename'. When merging code from the main trunk into a branch, the best thing to do is first merge up to `pre-integral-type-rename', then apply the script and associated changes, then merge from `post-integral-type-change' to the present. (Alternatively, just do the merging in one operation; but you may then have a lot of conflicts needing to be resolved by hand.) Script `fixtypes.sh' follows: ----------------------------------- cut ------------------------------------ files="*.[ch] s/*.h m/*.h config.h.in ../configure.in Makefile.in.in ../lib-src/*.[ch] ../lwlib/*.[ch]" gr Memory_Count Bytecount $files gr Lstream_Data_Count Bytecount $files gr Element_Count Elemcount $files gr Hash_Code Hashcode $files gr extcount bytecount $files gr bufpos charbpos $files gr bytind bytebpos $files gr memind membpos $files gr bufbyte intbyte $files gr Extcount Bytecount $files gr Bufpos Charbpos $files gr Bytind Bytebpos $files gr Memind Membpos $files gr Bufbyte Intbyte $files gr EXTCOUNT BYTECOUNT $files gr BUFPOS CHARBPOS $files gr BYTIND BYTEBPOS $files gr MEMIND MEMBPOS $files gr BUFBYTE INTBYTE $files gr MEMORY_COUNT BYTECOUNT $files gr LSTREAM_DATA_COUNT BYTECOUNT $files gr ELEMENT_COUNT ELEMCOUNT $files gr HASH_CODE HASHCODE $files ----------------------------------- cut ------------------------------------ `fixtypes.sh' is a Bourne-shell script; it uses 'gr': ----------------------------------- cut ------------------------------------ #!/bin/sh # Usage is like this: # gr FROM TO FILES ... # globally replace FROM with TO in FILES. FROM and TO are regular expressions. # backup files are stored in the `backup' directory. from="$1" to="$2" shift 2 echo ${1+"$@"} | xargs global-replace "s/$from/$to/g" ----------------------------------- cut ------------------------------------ `gr' in turn uses a Perl script to do its real work, `global-replace', which follows: ----------------------------------- cut ------------------------------------ : #-*- Perl -*- ### global-modify --- modify the contents of a file by a Perl expression ## Copyright (C) 1999 Martin Buchholz. ## Copyright (C) 2001 Ben Wing. ## Authors: Martin Buchholz <martin@xemacs.org>, Ben Wing <ben@xemacs.org> ## Maintainer: Ben Wing <ben@xemacs.org> ## Current Version: 1.0, May 5, 2001 # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with XEmacs; see the file COPYING. If not, write to the Free # Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA # 02111-1307, USA. eval 'exec perl -w -S $0 ${1+"$@"}' if 0; use strict; use FileHandle; use Carp; use Getopt::Long; use File::Basename; (my $myName = $0) =~ s@.*/@@; my $usage=" Usage: $myName [--help] [--backup-dir=DIR] [--line-mode] [--hunk-mode] PERLEXPR FILE ... Globally modify a file, either line by line or in one big hunk. Typical usage is like this: [with GNU print, GNU xargs: guaranteed to handle spaces, quotes, etc. in file names] find . -name '*.[ch]' -print0 | xargs -0 $0 's/\bCONST\b/const/g'\n [with non-GNU print, xargs] find . -name '*.[ch]' -print | xargs $0 's/\bCONST\b/const/g'\n The file is read in, either line by line (with --line-mode specified) or in one big hunk (with --hunk-mode specified; it's the default), and the Perl expression is then evalled with \$_ set to the line or hunk of text, including the terminating newline if there is one. It should destructively modify the value there, storing the changed result in \$_. Files in which any modifications are made are backed up to the directory specified using --backup-dir, or to `backup' by default. To disable this, use --backup-dir= with no argument. Hunk mode is the default because it is MUCH MUCH faster than line-by-line. Use line-by-line only when it matters, e.g. you want to do a replacement only once per line (the default without the `g' argument). Conversely, when using hunk mode, *ALWAYS* use `g'; otherwise, you will only make one replacement in the entire file! "; my %options = (); $Getopt::Long::ignorecase = 0; &GetOptions ( \%options, 'help', 'backup-dir=s', 'line-mode', 'hunk-mode', ); die $usage if $options{"help"} or @ARGV <= 1; my $code = shift; die $usage if grep (-d || ! -w, @ARGV); sub SafeOpen { open ((my $fh = new FileHandle), $_[0]); confess "Can't open $_[0]: $!" if ! defined $fh; return $fh; } sub SafeClose { close $_[0] or confess "Can't close $_[0]: $!"; } sub FileContents { my $fh = SafeOpen ("< $_[0]"); my $olddollarslash = $/; local $/ = undef; my $contents = <$fh>; $/ = $olddollarslash; return $contents; } sub WriteStringToFile { my $fh = SafeOpen ("> $_[0]"); binmode $fh; print $fh $_[1] or confess "$_[0]: $!\n"; SafeClose $fh; } foreach my $file (@ARGV) { my $changed_p = 0; my $new_contents = ""; if ($options{"line-mode"}) { my $fh = SafeOpen $file; while (<$fh>) { my $save_line = $_; eval $code; $changed_p = 1 if $save_line ne $_; $new_contents .= $_; } } else { my $orig_contents = $_ = FileContents $file; eval $code; if ($_ ne $orig_contents) { $changed_p = 1; $new_contents = $_; } } if ($changed_p) { my $backdir = $options{"backup-dir"}; $backdir = "backup" if !defined ($backdir); if ($backdir) { my ($name, $path, $suffix) = fileparse ($file, ""); my $backfulldir = $path . $backdir; my $backfile = "$backfulldir/$name"; mkdir $backfulldir, 0755 unless -d $backfulldir; print "modifying $file (original saved in $backfile)\n"; rename $file, $backfile; } WriteStringToFile ($file, $new_contents); } } ----------------------------------- cut ------------------------------------ In addition to those programs, I needed to fix up a few other things, particularly relating to the duplicate definitions of types, now that some types merged with others. Specifically: 1. in lisp.h, removed duplicate declarations of Bytecount. The changed code should now look like this: (In each code snippet below, the first and last lines are the same as the original, as are all lines outside of those lines. That allows you to locate the section to be replaced, and replace the stuff in that section, verifying that there isn't anything new added that would need to be kept.) --------------------------------- snip ------------------------------------- /* Counts of bytes or chars */ typedef EMACS_INT Bytecount; typedef EMACS_INT Charcount; /* Counts of elements */ typedef EMACS_INT Elemcount; /* Hash codes */ typedef unsigned long Hashcode; /* ------------------------ dynamic arrays ------------------- */ --------------------------------- snip ------------------------------------- 2. in lstream.h, removed duplicate declaration of Bytecount. Rewrote the comment about this type. The changed code should now look like this: --------------------------------- snip ------------------------------------- #endif /* The have been some arguments over the what the type should be that specifies a count of bytes in a data block to be written out or read in, using Lstream_read(), Lstream_write(), and related functions. Originally it was long, which worked fine; Martin "corrected" these to size_t and ssize_t on the grounds that this is theoretically cleaner and is in keeping with the C standards. Unfortunately, this practice is horribly error-prone due to design flaws in the way that mixed signed/unsigned arithmetic happens. In fact, by doing this change, Martin introduced a subtle but fatal error that caused the operation of sending large mail messages to the SMTP server under Windows to fail. By putting all values back to be signed, avoiding any signed/unsigned mixing, the bug immediately went away. The type then in use was Lstream_Data_Count, so that it be reverted cleanly if a vote came to that. Now it is Bytecount. Some earlier comments about why the type must be signed: This MUST BE SIGNED, since it also is used in functions that return the number of bytes actually read to or written from in an operation, and these functions can return -1 to signal error. Note that the standard Unix read() and write() functions define the count going in as a size_t, which is UNSIGNED, and the count going out as an ssize_t, which is SIGNED. This is a horrible design flaw. Not only is it highly likely to lead to logic errors when a -1 gets interpreted as a large positive number, but operations are bound to fail in all sorts of horrible ways when a number in the upper-half of the size_t range is passed in -- this number is unrepresentable as an ssize_t, so code that checks to see how many bytes are actually written (which is mandatory if you are dealing with certain types of devices) will get completely screwed up. --ben */ typedef enum lstream_buffering --------------------------------- snip ------------------------------------- 3. in dumper.c, there are four places, all inside of switch() statements, where XD_BYTECOUNT appears twice as a case tag. In each case, the two case blocks contain identical code, and you should *REMOVE THE SECOND* and leave the first.
author ben
date Thu, 20 Sep 2001 06:31:11 +0000
parents b39c14581166
children 358bd84dc7ff
comparison
equal deleted inserted replaced
664:6e99cc8c6ca5 665:fdefd0186b75
67 } 67 }
68 68
69 static void 69 static void
70 print_bit_vector (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag) 70 print_bit_vector (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag)
71 { 71 {
72 Element_Count i; 72 Elemcount i;
73 Lisp_Bit_Vector *v = XBIT_VECTOR (obj); 73 Lisp_Bit_Vector *v = XBIT_VECTOR (obj);
74 Element_Count len = bit_vector_length (v); 74 Elemcount len = bit_vector_length (v);
75 Element_Count last = len; 75 Elemcount last = len;
76 76
77 if (INTP (Vprint_length)) 77 if (INTP (Vprint_length))
78 last = min (len, XINT (Vprint_length)); 78 last = min (len, XINT (Vprint_length));
79 write_c_string ("#*", printcharfun); 79 write_c_string ("#*", printcharfun);
80 for (i = 0; i < last; i++) 80 for (i = 0; i < last; i++)
99 !memcmp (v1->bits, v2->bits, 99 !memcmp (v1->bits, v2->bits,
100 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v1)) * 100 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v1)) *
101 sizeof (long))); 101 sizeof (long)));
102 } 102 }
103 103
104 static Hash_Code 104 static Hashcode
105 bit_vector_hash (Lisp_Object obj, int depth) 105 bit_vector_hash (Lisp_Object obj, int depth)
106 { 106 {
107 Lisp_Bit_Vector *v = XBIT_VECTOR (obj); 107 Lisp_Bit_Vector *v = XBIT_VECTOR (obj);
108 return HASH2 (bit_vector_length (v), 108 return HASH2 (bit_vector_length (v),
109 memory_hash (v->bits, 109 memory_hash (v->bits,
110 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v)) * 110 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v)) *
111 sizeof (long))); 111 sizeof (long)));
112 } 112 }
113 113
114 static Memory_Count 114 static Bytecount
115 size_bit_vector (const void *lheader) 115 size_bit_vector (const void *lheader)
116 { 116 {
117 Lisp_Bit_Vector *v = (Lisp_Bit_Vector *) lheader; 117 Lisp_Bit_Vector *v = (Lisp_Bit_Vector *) lheader;
118 return FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Bit_Vector, unsigned long, bits, 118 return FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Bit_Vector, unsigned long, bits,
119 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v))); 119 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v)));
221 retry: 221 retry:
222 if (STRINGP (sequence)) 222 if (STRINGP (sequence))
223 return make_int (XSTRING_CHAR_LENGTH (sequence)); 223 return make_int (XSTRING_CHAR_LENGTH (sequence));
224 else if (CONSP (sequence)) 224 else if (CONSP (sequence))
225 { 225 {
226 Element_Count len; 226 Elemcount len;
227 GET_EXTERNAL_LIST_LENGTH (sequence, len); 227 GET_EXTERNAL_LIST_LENGTH (sequence, len);
228 return make_int (len); 228 return make_int (len);
229 } 229 }
230 else if (VECTORP (sequence)) 230 else if (VECTORP (sequence))
231 return make_int (XVECTOR_LENGTH (sequence)); 231 return make_int (XVECTOR_LENGTH (sequence));
248 which is at least the number of distinct elements. 248 which is at least the number of distinct elements.
249 */ 249 */
250 (list)) 250 (list))
251 { 251 {
252 Lisp_Object hare, tortoise; 252 Lisp_Object hare, tortoise;
253 Element_Count len; 253 Elemcount len;
254 254
255 for (hare = tortoise = list, len = 0; 255 for (hare = tortoise = list, len = 0;
256 CONSP (hare) && (! EQ (hare, tortoise) || len == 0); 256 CONSP (hare) && (! EQ (hare, tortoise) || len == 0);
257 hare = XCDR (hare), len++) 257 hare = XCDR (hare), len++)
258 { 258 {
369 return Qnil; 369 return Qnil;
370 } 370 }
371 } 371 }
372 #else /* not I18N2, or MULE */ 372 #else /* not I18N2, or MULE */
373 { 373 {
374 Bufbyte *ptr1 = string_data (p1); 374 Intbyte *ptr1 = string_data (p1);
375 Bufbyte *ptr2 = string_data (p2); 375 Intbyte *ptr2 = string_data (p2);
376 376
377 /* #### It is not really necessary to do this: We could compare 377 /* #### It is not really necessary to do this: We could compare
378 byte-by-byte and still get a reasonable comparison, since this 378 byte-by-byte and still get a reasonable comparison, since this
379 would compare characters with a charset in the same way. With 379 would compare characters with a charset in the same way. With
380 a little rearrangement of the leading bytes, we could make most 380 a little rearrangement of the leading bytes, we could make most
528 copy_list (Lisp_Object list) 528 copy_list (Lisp_Object list)
529 { 529 {
530 Lisp_Object list_copy = Fcons (XCAR (list), XCDR (list)); 530 Lisp_Object list_copy = Fcons (XCAR (list), XCDR (list));
531 Lisp_Object last = list_copy; 531 Lisp_Object last = list_copy;
532 Lisp_Object hare, tortoise; 532 Lisp_Object hare, tortoise;
533 Element_Count len; 533 Elemcount len;
534 534
535 for (tortoise = hare = XCDR (list), len = 1; 535 for (tortoise = hare = XCDR (list), len = 1;
536 CONSP (hare); 536 CONSP (hare);
537 hare = XCDR (hare), len++) 537 hare = XCDR (hare), len++)
538 { 538 {
601 int toindex; 601 int toindex;
602 int argnum; 602 int argnum;
603 Lisp_Object last_tail; 603 Lisp_Object last_tail;
604 Lisp_Object prev; 604 Lisp_Object prev;
605 struct merge_string_extents_struct *args_mse = 0; 605 struct merge_string_extents_struct *args_mse = 0;
606 Bufbyte *string_result = 0; 606 Intbyte *string_result = 0;
607 Bufbyte *string_result_ptr = 0; 607 Intbyte *string_result_ptr = 0;
608 struct gcpro gcpro1; 608 struct gcpro gcpro1;
609 609
610 /* The modus operandi in Emacs is "caller gc-protects args". 610 /* The modus operandi in Emacs is "caller gc-protects args".
611 However, concat is called many times in Emacs on freshly 611 However, concat is called many times in Emacs on freshly
612 created stuff. So we help those callers out by protecting 612 created stuff. So we help those callers out by protecting
707 to the place where the substitution is called for in order 707 to the place where the substitution is called for in order
708 to find the place to change, and may have to do some 708 to find the place to change, and may have to do some
709 realloc()ing in order to make the char fit properly. 709 realloc()ing in order to make the char fit properly.
710 O(N^2) yuckage. */ 710 O(N^2) yuckage. */
711 val = Qnil; 711 val = Qnil;
712 string_result = (Bufbyte *) alloca (total_length * MAX_EMCHAR_LEN); 712 string_result = (Intbyte *) alloca (total_length * MAX_EMCHAR_LEN);
713 string_result_ptr = string_result; 713 string_result_ptr = string_result;
714 break; 714 break;
715 default: 715 default:
716 val = Qnil; 716 val = Qnil;
717 abort (); 717 abort ();
730 for (argnum = 0; argnum < nargs; argnum++) 730 for (argnum = 0; argnum < nargs; argnum++)
731 { 731 {
732 Charcount thisleni = 0; 732 Charcount thisleni = 0;
733 Charcount thisindex = 0; 733 Charcount thisindex = 0;
734 Lisp_Object seq = args[argnum]; 734 Lisp_Object seq = args[argnum];
735 Bufbyte *string_source_ptr = 0; 735 Intbyte *string_source_ptr = 0;
736 Bufbyte *string_prev_result_ptr = string_result_ptr; 736 Intbyte *string_prev_result_ptr = string_result_ptr;
737 737
738 if (!CONSP (seq)) 738 if (!CONSP (seq))
739 { 739 {
740 #ifdef LOSING_BYTECODE 740 #ifdef LOSING_BYTECODE
741 thisleni = length_with_bytecode_hack (seq); 741 thisleni = length_with_bytecode_hack (seq);
2726 { 2726 {
2727 Lisp_String *s = XSTRING (array); 2727 Lisp_String *s = XSTRING (array);
2728 Bytecount old_bytecount = string_length (s); 2728 Bytecount old_bytecount = string_length (s);
2729 Bytecount new_bytecount; 2729 Bytecount new_bytecount;
2730 Bytecount item_bytecount; 2730 Bytecount item_bytecount;
2731 Bufbyte item_buf[MAX_EMCHAR_LEN]; 2731 Intbyte item_buf[MAX_EMCHAR_LEN];
2732 Bufbyte *p; 2732 Intbyte *p;
2733 Bufbyte *end; 2733 Intbyte *end;
2734 2734
2735 CHECK_CHAR_COERCE_INT (item); 2735 CHECK_CHAR_COERCE_INT (item);
2736 CHECK_LISP_WRITEABLE (array); 2736 CHECK_LISP_WRITEABLE (array);
2737 2737
2738 item_bytecount = set_charptr_emchar (item_buf, XCHAR (item)); 2738 item_bytecount = set_charptr_emchar (item_buf, XCHAR (item));
2749 bump_string_modiff (array); 2749 bump_string_modiff (array);
2750 } 2750 }
2751 else if (VECTORP (array)) 2751 else if (VECTORP (array))
2752 { 2752 {
2753 Lisp_Object *p = XVECTOR_DATA (array); 2753 Lisp_Object *p = XVECTOR_DATA (array);
2754 Element_Count len = XVECTOR_LENGTH (array); 2754 Elemcount len = XVECTOR_LENGTH (array);
2755 CHECK_LISP_WRITEABLE (array); 2755 CHECK_LISP_WRITEABLE (array);
2756 while (len--) 2756 while (len--)
2757 *p++ = item; 2757 *p++ = item;
2758 } 2758 }
2759 else if (BIT_VECTORP (array)) 2759 else if (BIT_VECTORP (array))
2760 { 2760 {
2761 Lisp_Bit_Vector *v = XBIT_VECTOR (array); 2761 Lisp_Bit_Vector *v = XBIT_VECTOR (array);
2762 Element_Count len = bit_vector_length (v); 2762 Elemcount len = bit_vector_length (v);
2763 int bit; 2763 int bit;
2764 CHECK_BIT (item); 2764 CHECK_BIT (item);
2765 bit = XINT (item); 2765 bit = XINT (item);
2766 CHECK_LISP_WRITEABLE (array); 2766 CHECK_LISP_WRITEABLE (array);
2767 while (len--) 2767 while (len--)
2796 2796
2797 if (CONSP (args[0])) 2797 if (CONSP (args[0]))
2798 { 2798 {
2799 /* (setcdr (last args[0]) args[1]) */ 2799 /* (setcdr (last args[0]) args[1]) */
2800 Lisp_Object tortoise, hare; 2800 Lisp_Object tortoise, hare;
2801 Element_Count count; 2801 Elemcount count;
2802 2802
2803 for (hare = tortoise = args[0], count = 0; 2803 for (hare = tortoise = args[0], count = 0;
2804 CONSP (XCDR (hare)); 2804 CONSP (XCDR (hare));
2805 hare = XCDR (hare), count++) 2805 hare = XCDR (hare), count++)
2806 { 2806 {
2865 Lisp_Object next = args[argnum]; 2865 Lisp_Object next = args[argnum];
2866 retry_next: 2866 retry_next:
2867 if (CONSP (next) || argnum == nargs -1) 2867 if (CONSP (next) || argnum == nargs -1)
2868 { 2868 {
2869 /* (setcdr (last val) next) */ 2869 /* (setcdr (last val) next) */
2870 Element_Count count; 2870 Elemcount count;
2871 2871
2872 for (count = 0; 2872 for (count = 0;
2873 CONSP (XCDR (last_cons)); 2873 CONSP (XCDR (last_cons));
2874 last_cons = XCDR (last_cons), count++) 2874 last_cons = XCDR (last_cons), count++)
2875 { 2875 {
2914 LENI is the length of VALS, which should also be the length of SEQUENCE. 2914 LENI is the length of VALS, which should also be the length of SEQUENCE.
2915 2915
2916 If VALS is a null pointer, do not accumulate the results. */ 2916 If VALS is a null pointer, do not accumulate the results. */
2917 2917
2918 static void 2918 static void
2919 mapcar1 (Element_Count leni, Lisp_Object *vals, 2919 mapcar1 (Elemcount leni, Lisp_Object *vals,
2920 Lisp_Object function, Lisp_Object sequence) 2920 Lisp_Object function, Lisp_Object sequence)
2921 { 2921 {
2922 Lisp_Object result; 2922 Lisp_Object result;
2923 Lisp_Object args[2]; 2923 Lisp_Object args[2];
2924 struct gcpro gcpro1; 2924 struct gcpro gcpro1;
2948 So we use EXTERNAL_LIST_LOOP_3_NO_DECLARE and GCPRO the tail. */ 2948 So we use EXTERNAL_LIST_LOOP_3_NO_DECLARE and GCPRO the tail. */
2949 2949
2950 if (vals) 2950 if (vals)
2951 { 2951 {
2952 Lisp_Object *val = vals; 2952 Lisp_Object *val = vals;
2953 Element_Count i; 2953 Elemcount i;
2954 2954
2955 LIST_LOOP_2 (elt, sequence) 2955 LIST_LOOP_2 (elt, sequence)
2956 *val++ = elt; 2956 *val++ = elt;
2957 2957
2958 gcpro1.nvars = leni; 2958 gcpro1.nvars = leni;
2983 } 2983 }
2984 } 2984 }
2985 else if (VECTORP (sequence)) 2985 else if (VECTORP (sequence))
2986 { 2986 {
2987 Lisp_Object *objs = XVECTOR_DATA (sequence); 2987 Lisp_Object *objs = XVECTOR_DATA (sequence);
2988 Element_Count i; 2988 Elemcount i;
2989 for (i = 0; i < leni; i++) 2989 for (i = 0; i < leni; i++)
2990 { 2990 {
2991 args[1] = *objs++; 2991 args[1] = *objs++;
2992 result = Ffuncall (2, args); 2992 result = Ffuncall (2, args);
2993 if (vals) vals[gcpro1.nvars++] = result; 2993 if (vals) vals[gcpro1.nvars++] = result;
2995 } 2995 }
2996 else if (STRINGP (sequence)) 2996 else if (STRINGP (sequence))
2997 { 2997 {
2998 /* The string data of `sequence' might be relocated during GC. */ 2998 /* The string data of `sequence' might be relocated during GC. */
2999 Bytecount slen = XSTRING_LENGTH (sequence); 2999 Bytecount slen = XSTRING_LENGTH (sequence);
3000 Bufbyte *p = alloca_array (Bufbyte, slen); 3000 Intbyte *p = alloca_array (Intbyte, slen);
3001 Bufbyte *end = p + slen; 3001 Intbyte *end = p + slen;
3002 3002
3003 memcpy (p, XSTRING_DATA (sequence), slen); 3003 memcpy (p, XSTRING_DATA (sequence), slen);
3004 3004
3005 while (p < end) 3005 while (p < end)
3006 { 3006 {
3011 } 3011 }
3012 } 3012 }
3013 else if (BIT_VECTORP (sequence)) 3013 else if (BIT_VECTORP (sequence))
3014 { 3014 {
3015 Lisp_Bit_Vector *v = XBIT_VECTOR (sequence); 3015 Lisp_Bit_Vector *v = XBIT_VECTOR (sequence);
3016 Element_Count i; 3016 Elemcount i;
3017 for (i = 0; i < leni; i++) 3017 for (i = 0; i < leni; i++)
3018 { 3018 {
3019 args[1] = make_int (bit_vector_bit (v, i)); 3019 args[1] = make_int (bit_vector_bit (v, i));
3020 result = Ffuncall (2, args); 3020 result = Ffuncall (2, args);
3021 if (vals) vals[gcpro1.nvars++] = result; 3021 if (vals) vals[gcpro1.nvars++] = result;
3061 The result is a list of the same length as SEQUENCE. 3061 The result is a list of the same length as SEQUENCE.
3062 SEQUENCE may be a list, a vector, a bit vector, or a string. 3062 SEQUENCE may be a list, a vector, a bit vector, or a string.
3063 */ 3063 */
3064 (function, sequence)) 3064 (function, sequence))
3065 { 3065 {
3066 Element_Count len = XINT (Flength (sequence)); 3066 Elemcount len = XINT (Flength (sequence));
3067 Lisp_Object *args = alloca_array (Lisp_Object, len); 3067 Lisp_Object *args = alloca_array (Lisp_Object, len);
3068 3068
3069 mapcar1 (len, args, function, sequence); 3069 mapcar1 (len, args, function, sequence);
3070 3070
3071 return Flist ((int) len, args); 3071 return Flist ((int) len, args);
3076 The result is a vector of the same length as SEQUENCE. 3076 The result is a vector of the same length as SEQUENCE.
3077 SEQUENCE may be a list, a vector, a bit vector, or a string. 3077 SEQUENCE may be a list, a vector, a bit vector, or a string.
3078 */ 3078 */
3079 (function, sequence)) 3079 (function, sequence))
3080 { 3080 {
3081 Element_Count len = XINT (Flength (sequence)); 3081 Elemcount len = XINT (Flength (sequence));
3082 Lisp_Object result = make_vector (len, Qnil); 3082 Lisp_Object result = make_vector (len, Qnil);
3083 struct gcpro gcpro1; 3083 struct gcpro gcpro1;
3084 3084
3085 GCPRO1 (result); 3085 GCPRO1 (result);
3086 mapcar1 (len, XVECTOR_DATA (result), function, sequence); 3086 mapcar1 (len, XVECTOR_DATA (result), function, sequence);
3430 #define ADVANCE_INPUT(c, stream) \ 3430 #define ADVANCE_INPUT(c, stream) \
3431 ((ec = Lstream_get_emchar (stream)) == -1 ? 0 : \ 3431 ((ec = Lstream_get_emchar (stream)) == -1 ? 0 : \
3432 ((ec > 255) ? \ 3432 ((ec > 255) ? \
3433 (base64_conversion_error ("Non-ascii character in base64 input", \ 3433 (base64_conversion_error ("Non-ascii character in base64 input", \
3434 make_char (ec)), 0) \ 3434 make_char (ec)), 0) \
3435 : (c = (Bufbyte)ec), 1)) 3435 : (c = (Intbyte)ec), 1))
3436 3436
3437 static Bytind 3437 static Bytebpos
3438 base64_encode_1 (Lstream *istream, Bufbyte *to, int line_break) 3438 base64_encode_1 (Lstream *istream, Intbyte *to, int line_break)
3439 { 3439 {
3440 EMACS_INT counter = 0; 3440 EMACS_INT counter = 0;
3441 Bufbyte *e = to; 3441 Intbyte *e = to;
3442 Emchar ec; 3442 Emchar ec;
3443 unsigned int value; 3443 unsigned int value;
3444 3444
3445 while (1) 3445 while (1)
3446 { 3446 {
3447 Bufbyte c; 3447 Intbyte c;
3448 if (!ADVANCE_INPUT (c, istream)) 3448 if (!ADVANCE_INPUT (c, istream))
3449 break; 3449 break;
3450 3450
3451 /* Wrap line every 76 characters. */ 3451 /* Wrap line every 76 characters. */
3452 if (line_break) 3452 if (line_break)
3507 #define STORE_BYTE(pos, val, ccnt) do { \ 3507 #define STORE_BYTE(pos, val, ccnt) do { \
3508 pos += set_charptr_emchar (pos, (Emchar)((unsigned char)(val))); \ 3508 pos += set_charptr_emchar (pos, (Emchar)((unsigned char)(val))); \
3509 ++ccnt; \ 3509 ++ccnt; \
3510 } while (0) 3510 } while (0)
3511 3511
3512 static Bytind 3512 static Bytebpos
3513 base64_decode_1 (Lstream *istream, Bufbyte *to, Charcount *ccptr) 3513 base64_decode_1 (Lstream *istream, Intbyte *to, Charcount *ccptr)
3514 { 3514 {
3515 Charcount ccnt = 0; 3515 Charcount ccnt = 0;
3516 Bufbyte *e = to; 3516 Intbyte *e = to;
3517 EMACS_INT streampos = 0; 3517 EMACS_INT streampos = 0;
3518 3518
3519 while (1) 3519 while (1)
3520 { 3520 {
3521 Emchar ec; 3521 Emchar ec;
3597 3597
3598 /* We need to setup proper unwinding, because there is a number of 3598 /* We need to setup proper unwinding, because there is a number of
3599 ways these functions can blow up, and we don't want to have memory 3599 ways these functions can blow up, and we don't want to have memory
3600 leaks in those cases. */ 3600 leaks in those cases. */
3601 #define XMALLOC_OR_ALLOCA(ptr, len, type) do { \ 3601 #define XMALLOC_OR_ALLOCA(ptr, len, type) do { \
3602 Element_Count XOA_len = (len); \ 3602 Elemcount XOA_len = (len); \
3603 if (XOA_len > MAX_ALLOCA) \ 3603 if (XOA_len > MAX_ALLOCA) \
3604 { \ 3604 { \
3605 ptr = xnew_array (type, XOA_len); \ 3605 ptr = xnew_array (type, XOA_len); \
3606 record_unwind_protect (free_malloced_ptr, \ 3606 record_unwind_protect (free_malloced_ptr, \
3607 make_opaque_ptr ((void *)ptr)); \ 3607 make_opaque_ptr ((void *)ptr)); \
3621 Optional third argument NO-LINE-BREAK means do not break long lines 3621 Optional third argument NO-LINE-BREAK means do not break long lines
3622 into shorter lines. 3622 into shorter lines.
3623 */ 3623 */
3624 (start, end, no_line_break)) 3624 (start, end, no_line_break))
3625 { 3625 {
3626 Bufbyte *encoded; 3626 Intbyte *encoded;
3627 Bytind encoded_length; 3627 Bytebpos encoded_length;
3628 Charcount allength, length; 3628 Charcount allength, length;
3629 struct buffer *buf = current_buffer; 3629 struct buffer *buf = current_buffer;
3630 Bufpos begv, zv, old_pt = BUF_PT (buf); 3630 Charbpos begv, zv, old_pt = BUF_PT (buf);
3631 Lisp_Object input; 3631 Lisp_Object input;
3632 int speccount = specpdl_depth(); 3632 int speccount = specpdl_depth();
3633 3633
3634 get_buffer_range_char (buf, start, end, &begv, &zv, 0); 3634 get_buffer_range_char (buf, start, end, &begv, &zv, 0);
3635 barf_if_buffer_read_only (buf, begv, zv); 3635 barf_if_buffer_read_only (buf, begv, zv);
3642 allength += allength / MIME_LINE_LENGTH + 1 + 6; 3642 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3643 3643
3644 input = make_lisp_buffer_input_stream (buf, begv, zv, 0); 3644 input = make_lisp_buffer_input_stream (buf, begv, zv, 0);
3645 /* We needn't multiply allength with MAX_EMCHAR_LEN because all the 3645 /* We needn't multiply allength with MAX_EMCHAR_LEN because all the
3646 base64 characters will be single-byte. */ 3646 base64 characters will be single-byte. */
3647 XMALLOC_OR_ALLOCA (encoded, allength, Bufbyte); 3647 XMALLOC_OR_ALLOCA (encoded, allength, Intbyte);
3648 encoded_length = base64_encode_1 (XLSTREAM (input), encoded, 3648 encoded_length = base64_encode_1 (XLSTREAM (input), encoded,
3649 NILP (no_line_break)); 3649 NILP (no_line_break));
3650 if (encoded_length > allength) 3650 if (encoded_length > allength)
3651 abort (); 3651 abort ();
3652 Lstream_delete (XLSTREAM (input)); 3652 Lstream_delete (XLSTREAM (input));
3672 into shorter lines. 3672 into shorter lines.
3673 */ 3673 */
3674 (string, no_line_break)) 3674 (string, no_line_break))
3675 { 3675 {
3676 Charcount allength, length; 3676 Charcount allength, length;
3677 Bytind encoded_length; 3677 Bytebpos encoded_length;
3678 Bufbyte *encoded; 3678 Intbyte *encoded;
3679 Lisp_Object input, result; 3679 Lisp_Object input, result;
3680 int speccount = specpdl_depth(); 3680 int speccount = specpdl_depth();
3681 3681
3682 CHECK_STRING (string); 3682 CHECK_STRING (string);
3683 3683
3684 length = XSTRING_CHAR_LENGTH (string); 3684 length = XSTRING_CHAR_LENGTH (string);
3685 allength = length + length/3 + 1; 3685 allength = length + length/3 + 1;
3686 allength += allength / MIME_LINE_LENGTH + 1 + 6; 3686 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3687 3687
3688 input = make_lisp_string_input_stream (string, 0, -1); 3688 input = make_lisp_string_input_stream (string, 0, -1);
3689 XMALLOC_OR_ALLOCA (encoded, allength, Bufbyte); 3689 XMALLOC_OR_ALLOCA (encoded, allength, Intbyte);
3690 encoded_length = base64_encode_1 (XLSTREAM (input), encoded, 3690 encoded_length = base64_encode_1 (XLSTREAM (input), encoded,
3691 NILP (no_line_break)); 3691 NILP (no_line_break));
3692 if (encoded_length > allength) 3692 if (encoded_length > allength)
3693 abort (); 3693 abort ();
3694 Lstream_delete (XLSTREAM (input)); 3694 Lstream_delete (XLSTREAM (input));
3704 Characters out of the base64 alphabet are ignored. 3704 Characters out of the base64 alphabet are ignored.
3705 */ 3705 */
3706 (start, end)) 3706 (start, end))
3707 { 3707 {
3708 struct buffer *buf = current_buffer; 3708 struct buffer *buf = current_buffer;
3709 Bufpos begv, zv, old_pt = BUF_PT (buf); 3709 Charbpos begv, zv, old_pt = BUF_PT (buf);
3710 Bufbyte *decoded; 3710 Intbyte *decoded;
3711 Bytind decoded_length; 3711 Bytebpos decoded_length;
3712 Charcount length, cc_decoded_length; 3712 Charcount length, cc_decoded_length;
3713 Lisp_Object input; 3713 Lisp_Object input;
3714 int speccount = specpdl_depth(); 3714 int speccount = specpdl_depth();
3715 3715
3716 get_buffer_range_char (buf, start, end, &begv, &zv, 0); 3716 get_buffer_range_char (buf, start, end, &begv, &zv, 0);
3718 3718
3719 length = zv - begv; 3719 length = zv - begv;
3720 3720
3721 input = make_lisp_buffer_input_stream (buf, begv, zv, 0); 3721 input = make_lisp_buffer_input_stream (buf, begv, zv, 0);
3722 /* We need to allocate enough room for decoding the text. */ 3722 /* We need to allocate enough room for decoding the text. */
3723 XMALLOC_OR_ALLOCA (decoded, length * MAX_EMCHAR_LEN, Bufbyte); 3723 XMALLOC_OR_ALLOCA (decoded, length * MAX_EMCHAR_LEN, Intbyte);
3724 decoded_length = base64_decode_1 (XLSTREAM (input), decoded, &cc_decoded_length); 3724 decoded_length = base64_decode_1 (XLSTREAM (input), decoded, &cc_decoded_length);
3725 if (decoded_length > length * MAX_EMCHAR_LEN) 3725 if (decoded_length > length * MAX_EMCHAR_LEN)
3726 abort (); 3726 abort ();
3727 Lstream_delete (XLSTREAM (input)); 3727 Lstream_delete (XLSTREAM (input));
3728 3728
3746 Base64-decode STRING and return the result. 3746 Base64-decode STRING and return the result.
3747 Characters out of the base64 alphabet are ignored. 3747 Characters out of the base64 alphabet are ignored.
3748 */ 3748 */
3749 (string)) 3749 (string))
3750 { 3750 {
3751 Bufbyte *decoded; 3751 Intbyte *decoded;
3752 Bytind decoded_length; 3752 Bytebpos decoded_length;
3753 Charcount length, cc_decoded_length; 3753 Charcount length, cc_decoded_length;
3754 Lisp_Object input, result; 3754 Lisp_Object input, result;
3755 int speccount = specpdl_depth(); 3755 int speccount = specpdl_depth();
3756 3756
3757 CHECK_STRING (string); 3757 CHECK_STRING (string);
3758 3758
3759 length = XSTRING_CHAR_LENGTH (string); 3759 length = XSTRING_CHAR_LENGTH (string);
3760 /* We need to allocate enough room for decoding the text. */ 3760 /* We need to allocate enough room for decoding the text. */
3761 XMALLOC_OR_ALLOCA (decoded, length * MAX_EMCHAR_LEN, Bufbyte); 3761 XMALLOC_OR_ALLOCA (decoded, length * MAX_EMCHAR_LEN, Intbyte);
3762 3762
3763 input = make_lisp_string_input_stream (string, 0, -1); 3763 input = make_lisp_string_input_stream (string, 0, -1);
3764 decoded_length = base64_decode_1 (XLSTREAM (input), decoded, 3764 decoded_length = base64_decode_1 (XLSTREAM (input), decoded,
3765 &cc_decoded_length); 3765 &cc_decoded_length);
3766 if (decoded_length > length * MAX_EMCHAR_LEN) 3766 if (decoded_length > length * MAX_EMCHAR_LEN)