comparison src/elhash.c @ 665:fdefd0186b75

[xemacs-hg @ 2001-09-20 06:28:42 by ben] The great integral types renaming. The purpose of this is to rationalize the names used for various integral types, so that they match their intended uses and follow consist conventions, and eliminate types that were not semantically different from each other. The conventions are: -- All integral types that measure quantities of anything are signed. Some people disagree vociferously with this, but their arguments are mostly theoretical, and are vastly outweighed by the practical headaches of mixing signed and unsigned values, and more importantly by the far increased likelihood of inadvertent bugs: Because of the broken "viral" nature of unsigned quantities in C (operations involving mixed signed/unsigned are done unsigned, when exactly the opposite is nearly always wanted), even a single error in declaring a quantity unsigned that should be signed, or even the even more subtle error of comparing signed and unsigned values and forgetting the necessary cast, can be catastrophic, as comparisons will yield wrong results. -Wsign-compare is turned on specifically to catch this, but this tends to result in a great number of warnings when mixing signed and unsigned, and the casts are annoying. More has been written on this elsewhere. -- All such quantity types just mentioned boil down to EMACS_INT, which is 32 bits on 32-bit machines and 64 bits on 64-bit machines. This is guaranteed to be the same size as Lisp objects of type `int', and (as far as I can tell) of size_t (unsigned!) and ssize_t. The only type below that is not an EMACS_INT is Hashcode, which is an unsigned value of the same size as EMACS_INT. -- Type names should be relatively short (no more than 10 characters or so), with the first letter capitalized and no underscores if they can at all be avoided. -- "count" == a zero-based measurement of some quantity. Includes sizes, offsets, and indexes. -- "bpos" == a one-based measurement of a position in a buffer. "Charbpos" and "Bytebpos" count text in the buffer, rather than bytes in memory; thus Bytebpos does not directly correspond to the memory representation. Use "Membpos" for this. -- "Char" refers to internal-format characters, not to the C type "char", which is really a byte. -- For the actual name changes, see the script below. I ran the following script to do the conversion. (NOTE: This script is idempotent. You can safely run it multiple times and it will not screw up previous results -- in fact, it will do nothing if nothing has changed. Thus, it can be run repeatedly as necessary to handle patches coming in from old workspaces, or old branches.) There are two tags, just before and just after the change: `pre-integral-type-rename' and `post-integral-type-rename'. When merging code from the main trunk into a branch, the best thing to do is first merge up to `pre-integral-type-rename', then apply the script and associated changes, then merge from `post-integral-type-change' to the present. (Alternatively, just do the merging in one operation; but you may then have a lot of conflicts needing to be resolved by hand.) Script `fixtypes.sh' follows: ----------------------------------- cut ------------------------------------ files="*.[ch] s/*.h m/*.h config.h.in ../configure.in Makefile.in.in ../lib-src/*.[ch] ../lwlib/*.[ch]" gr Memory_Count Bytecount $files gr Lstream_Data_Count Bytecount $files gr Element_Count Elemcount $files gr Hash_Code Hashcode $files gr extcount bytecount $files gr bufpos charbpos $files gr bytind bytebpos $files gr memind membpos $files gr bufbyte intbyte $files gr Extcount Bytecount $files gr Bufpos Charbpos $files gr Bytind Bytebpos $files gr Memind Membpos $files gr Bufbyte Intbyte $files gr EXTCOUNT BYTECOUNT $files gr BUFPOS CHARBPOS $files gr BYTIND BYTEBPOS $files gr MEMIND MEMBPOS $files gr BUFBYTE INTBYTE $files gr MEMORY_COUNT BYTECOUNT $files gr LSTREAM_DATA_COUNT BYTECOUNT $files gr ELEMENT_COUNT ELEMCOUNT $files gr HASH_CODE HASHCODE $files ----------------------------------- cut ------------------------------------ `fixtypes.sh' is a Bourne-shell script; it uses 'gr': ----------------------------------- cut ------------------------------------ #!/bin/sh # Usage is like this: # gr FROM TO FILES ... # globally replace FROM with TO in FILES. FROM and TO are regular expressions. # backup files are stored in the `backup' directory. from="$1" to="$2" shift 2 echo ${1+"$@"} | xargs global-replace "s/$from/$to/g" ----------------------------------- cut ------------------------------------ `gr' in turn uses a Perl script to do its real work, `global-replace', which follows: ----------------------------------- cut ------------------------------------ : #-*- Perl -*- ### global-modify --- modify the contents of a file by a Perl expression ## Copyright (C) 1999 Martin Buchholz. ## Copyright (C) 2001 Ben Wing. ## Authors: Martin Buchholz <martin@xemacs.org>, Ben Wing <ben@xemacs.org> ## Maintainer: Ben Wing <ben@xemacs.org> ## Current Version: 1.0, May 5, 2001 # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with XEmacs; see the file COPYING. If not, write to the Free # Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA # 02111-1307, USA. eval 'exec perl -w -S $0 ${1+"$@"}' if 0; use strict; use FileHandle; use Carp; use Getopt::Long; use File::Basename; (my $myName = $0) =~ s@.*/@@; my $usage=" Usage: $myName [--help] [--backup-dir=DIR] [--line-mode] [--hunk-mode] PERLEXPR FILE ... Globally modify a file, either line by line or in one big hunk. Typical usage is like this: [with GNU print, GNU xargs: guaranteed to handle spaces, quotes, etc. in file names] find . -name '*.[ch]' -print0 | xargs -0 $0 's/\bCONST\b/const/g'\n [with non-GNU print, xargs] find . -name '*.[ch]' -print | xargs $0 's/\bCONST\b/const/g'\n The file is read in, either line by line (with --line-mode specified) or in one big hunk (with --hunk-mode specified; it's the default), and the Perl expression is then evalled with \$_ set to the line or hunk of text, including the terminating newline if there is one. It should destructively modify the value there, storing the changed result in \$_. Files in which any modifications are made are backed up to the directory specified using --backup-dir, or to `backup' by default. To disable this, use --backup-dir= with no argument. Hunk mode is the default because it is MUCH MUCH faster than line-by-line. Use line-by-line only when it matters, e.g. you want to do a replacement only once per line (the default without the `g' argument). Conversely, when using hunk mode, *ALWAYS* use `g'; otherwise, you will only make one replacement in the entire file! "; my %options = (); $Getopt::Long::ignorecase = 0; &GetOptions ( \%options, 'help', 'backup-dir=s', 'line-mode', 'hunk-mode', ); die $usage if $options{"help"} or @ARGV <= 1; my $code = shift; die $usage if grep (-d || ! -w, @ARGV); sub SafeOpen { open ((my $fh = new FileHandle), $_[0]); confess "Can't open $_[0]: $!" if ! defined $fh; return $fh; } sub SafeClose { close $_[0] or confess "Can't close $_[0]: $!"; } sub FileContents { my $fh = SafeOpen ("< $_[0]"); my $olddollarslash = $/; local $/ = undef; my $contents = <$fh>; $/ = $olddollarslash; return $contents; } sub WriteStringToFile { my $fh = SafeOpen ("> $_[0]"); binmode $fh; print $fh $_[1] or confess "$_[0]: $!\n"; SafeClose $fh; } foreach my $file (@ARGV) { my $changed_p = 0; my $new_contents = ""; if ($options{"line-mode"}) { my $fh = SafeOpen $file; while (<$fh>) { my $save_line = $_; eval $code; $changed_p = 1 if $save_line ne $_; $new_contents .= $_; } } else { my $orig_contents = $_ = FileContents $file; eval $code; if ($_ ne $orig_contents) { $changed_p = 1; $new_contents = $_; } } if ($changed_p) { my $backdir = $options{"backup-dir"}; $backdir = "backup" if !defined ($backdir); if ($backdir) { my ($name, $path, $suffix) = fileparse ($file, ""); my $backfulldir = $path . $backdir; my $backfile = "$backfulldir/$name"; mkdir $backfulldir, 0755 unless -d $backfulldir; print "modifying $file (original saved in $backfile)\n"; rename $file, $backfile; } WriteStringToFile ($file, $new_contents); } } ----------------------------------- cut ------------------------------------ In addition to those programs, I needed to fix up a few other things, particularly relating to the duplicate definitions of types, now that some types merged with others. Specifically: 1. in lisp.h, removed duplicate declarations of Bytecount. The changed code should now look like this: (In each code snippet below, the first and last lines are the same as the original, as are all lines outside of those lines. That allows you to locate the section to be replaced, and replace the stuff in that section, verifying that there isn't anything new added that would need to be kept.) --------------------------------- snip ------------------------------------- /* Counts of bytes or chars */ typedef EMACS_INT Bytecount; typedef EMACS_INT Charcount; /* Counts of elements */ typedef EMACS_INT Elemcount; /* Hash codes */ typedef unsigned long Hashcode; /* ------------------------ dynamic arrays ------------------- */ --------------------------------- snip ------------------------------------- 2. in lstream.h, removed duplicate declaration of Bytecount. Rewrote the comment about this type. The changed code should now look like this: --------------------------------- snip ------------------------------------- #endif /* The have been some arguments over the what the type should be that specifies a count of bytes in a data block to be written out or read in, using Lstream_read(), Lstream_write(), and related functions. Originally it was long, which worked fine; Martin "corrected" these to size_t and ssize_t on the grounds that this is theoretically cleaner and is in keeping with the C standards. Unfortunately, this practice is horribly error-prone due to design flaws in the way that mixed signed/unsigned arithmetic happens. In fact, by doing this change, Martin introduced a subtle but fatal error that caused the operation of sending large mail messages to the SMTP server under Windows to fail. By putting all values back to be signed, avoiding any signed/unsigned mixing, the bug immediately went away. The type then in use was Lstream_Data_Count, so that it be reverted cleanly if a vote came to that. Now it is Bytecount. Some earlier comments about why the type must be signed: This MUST BE SIGNED, since it also is used in functions that return the number of bytes actually read to or written from in an operation, and these functions can return -1 to signal error. Note that the standard Unix read() and write() functions define the count going in as a size_t, which is UNSIGNED, and the count going out as an ssize_t, which is SIGNED. This is a horrible design flaw. Not only is it highly likely to lead to logic errors when a -1 gets interpreted as a large positive number, but operations are bound to fail in all sorts of horrible ways when a number in the upper-half of the size_t range is passed in -- this number is unrepresentable as an ssize_t, so code that checks to see how many bytes are actually written (which is mandatory if you are dealing with certain types of devices) will get completely screwed up. --ben */ typedef enum lstream_buffering --------------------------------- snip ------------------------------------- 3. in dumper.c, there are four places, all inside of switch() statements, where XD_BYTECOUNT appears twice as a case tag. In each case, the two case blocks contain identical code, and you should *REMOVE THE SECOND* and leave the first.
author ben
date Thu, 20 Sep 2001 06:31:11 +0000
parents b39c14581166
children 943eaba38521
comparison
equal deleted inserted replaced
664:6e99cc8c6ca5 665:fdefd0186b75
80 } hentry; 80 } hentry;
81 81
82 struct Lisp_Hash_Table 82 struct Lisp_Hash_Table
83 { 83 {
84 struct lcrecord_header header; 84 struct lcrecord_header header;
85 Element_Count size; 85 Elemcount size;
86 Element_Count count; 86 Elemcount count;
87 Element_Count rehash_count; 87 Elemcount rehash_count;
88 double rehash_size; 88 double rehash_size;
89 double rehash_threshold; 89 double rehash_threshold;
90 Element_Count golden_ratio; 90 Elemcount golden_ratio;
91 hash_table_hash_function_t hash_function; 91 hash_table_hash_function_t hash_function;
92 hash_table_test_function_t test_function; 92 hash_table_test_function_t test_function;
93 hentry *hentries; 93 hentry *hentries;
94 enum hash_table_weakness weakness; 94 enum hash_table_weakness weakness;
95 Lisp_Object next_weak; /* Used to chain together all of the weak 95 Lisp_Object next_weak; /* Used to chain together all of the weak
103 103
104 #define HASH_TABLE_DEFAULT_SIZE 16 104 #define HASH_TABLE_DEFAULT_SIZE 16
105 #define HASH_TABLE_DEFAULT_REHASH_SIZE 1.3 105 #define HASH_TABLE_DEFAULT_REHASH_SIZE 1.3
106 #define HASH_TABLE_MIN_SIZE 10 106 #define HASH_TABLE_MIN_SIZE 10
107 107
108 #define HASH_CODE(key, ht) \ 108 #define HASHCODE(key, ht) \
109 ((((ht)->hash_function ? (ht)->hash_function (key) : LISP_HASH (key)) \ 109 ((((ht)->hash_function ? (ht)->hash_function (key) : LISP_HASH (key)) \
110 * (ht)->golden_ratio) \ 110 * (ht)->golden_ratio) \
111 % (ht)->size) 111 % (ht)->size)
112 112
113 #define KEYS_EQUAL_P(key1, key2, testfun) \ 113 #define KEYS_EQUAL_P(key1, key2, testfun) \
141 #else 141 #else
142 #define check_hash_table_invariants(ht) 142 #define check_hash_table_invariants(ht)
143 #endif 143 #endif
144 144
145 /* Return a suitable size for a hash table, with at least SIZE slots. */ 145 /* Return a suitable size for a hash table, with at least SIZE slots. */
146 static Element_Count 146 static Elemcount
147 hash_table_size (Element_Count requested_size) 147 hash_table_size (Elemcount requested_size)
148 { 148 {
149 /* Return some prime near, but greater than or equal to, SIZE. 149 /* Return some prime near, but greater than or equal to, SIZE.
150 Decades from the time of writing, someone will have a system large 150 Decades from the time of writing, someone will have a system large
151 enough that the list below will be too short... */ 151 enough that the list below will be too short... */
152 static const Element_Count primes [] = 152 static const Elemcount primes [] =
153 { 153 {
154 19, 29, 41, 59, 79, 107, 149, 197, 263, 347, 457, 599, 787, 1031, 154 19, 29, 41, 59, 79, 107, 149, 197, 263, 347, 457, 599, 787, 1031,
155 1361, 1777, 2333, 3037, 3967, 5167, 6719, 8737, 11369, 14783, 155 1361, 1777, 2333, 3037, 3967, 5167, 6719, 8737, 11369, 14783,
156 19219, 24989, 32491, 42257, 54941, 71429, 92861, 120721, 156941, 156 19219, 24989, 32491, 42257, 54941, 71429, 92861, 120721, 156941,
157 204047, 265271, 344857, 448321, 582821, 757693, 985003, 1280519, 157 204047, 265271, 344857, 448321, 582821, 757693, 985003, 1280519,
186 /* This is wrong anyway. You can't use strcmp() on Lisp strings, 186 /* This is wrong anyway. You can't use strcmp() on Lisp strings,
187 because they can contain zero characters. */ 187 because they can contain zero characters. */
188 return !strcmp ((char *) XSTRING_DATA (str1), (char *) XSTRING_DATA (str2)); 188 return !strcmp ((char *) XSTRING_DATA (str1), (char *) XSTRING_DATA (str2));
189 } 189 }
190 190
191 static Hash_Code 191 static Hashcode
192 lisp_string_hash (Lisp_Object obj) 192 lisp_string_hash (Lisp_Object obj)
193 { 193 {
194 return hash_string (XSTRING_DATA (str), XSTRING_LENGTH (str)); 194 return hash_string (XSTRING_DATA (str), XSTRING_LENGTH (str));
195 } 195 }
196 196
200 lisp_object_eql_equal (Lisp_Object obj1, Lisp_Object obj2) 200 lisp_object_eql_equal (Lisp_Object obj1, Lisp_Object obj2)
201 { 201 {
202 return EQ (obj1, obj2) || (FLOATP (obj1) && internal_equal (obj1, obj2, 0)); 202 return EQ (obj1, obj2) || (FLOATP (obj1) && internal_equal (obj1, obj2, 0));
203 } 203 }
204 204
205 static Hash_Code 205 static Hashcode
206 lisp_object_eql_hash (Lisp_Object obj) 206 lisp_object_eql_hash (Lisp_Object obj)
207 { 207 {
208 return FLOATP (obj) ? internal_hash (obj, 0) : LISP_HASH (obj); 208 return FLOATP (obj) ? internal_hash (obj, 0) : LISP_HASH (obj);
209 } 209 }
210 210
212 lisp_object_equal_equal (Lisp_Object obj1, Lisp_Object obj2) 212 lisp_object_equal_equal (Lisp_Object obj1, Lisp_Object obj2)
213 { 213 {
214 return internal_equal (obj1, obj2, 0); 214 return internal_equal (obj1, obj2, 0);
215 } 215 }
216 216
217 static Hash_Code 217 static Hashcode
218 lisp_object_equal_hash (Lisp_Object obj) 218 lisp_object_equal_hash (Lisp_Object obj)
219 { 219 {
220 return internal_hash (obj, 0); 220 return internal_hash (obj, 0);
221 } 221 }
222 222
281 } 281 }
282 282
283 /* This is not a great hash function, but it _is_ correct and fast. 283 /* This is not a great hash function, but it _is_ correct and fast.
284 Examining all entries is too expensive, and examining a random 284 Examining all entries is too expensive, and examining a random
285 subset does not yield a correct hash function. */ 285 subset does not yield a correct hash function. */
286 static Hash_Code 286 static Hashcode
287 hash_table_hash (Lisp_Object hash_table, int depth) 287 hash_table_hash (Lisp_Object hash_table, int depth)
288 { 288 {
289 return XHASH_TABLE (hash_table)->count; 289 return XHASH_TABLE (hash_table)->count;
290 } 290 }
291 291
432 sizeof (hentry), 432 sizeof (hentry),
433 hentry_description_1 433 hentry_description_1
434 }; 434 };
435 435
436 const struct lrecord_description hash_table_description[] = { 436 const struct lrecord_description hash_table_description[] = {
437 { XD_ELEMENT_COUNT, offsetof (Lisp_Hash_Table, size) }, 437 { XD_ELEMCOUNT, offsetof (Lisp_Hash_Table, size) },
438 { XD_STRUCT_PTR, offsetof (Lisp_Hash_Table, hentries), XD_INDIRECT(0, 1), &hentry_description }, 438 { XD_STRUCT_PTR, offsetof (Lisp_Hash_Table, hentries), XD_INDIRECT(0, 1), &hentry_description },
439 { XD_LO_LINK, offsetof (Lisp_Hash_Table, next_weak) }, 439 { XD_LO_LINK, offsetof (Lisp_Hash_Table, next_weak) },
440 { XD_END } 440 { XD_END }
441 }; 441 };
442 442
463 463
464 /* Creation of hash tables, without error-checking. */ 464 /* Creation of hash tables, without error-checking. */
465 static void 465 static void
466 compute_hash_table_derived_values (Lisp_Hash_Table *ht) 466 compute_hash_table_derived_values (Lisp_Hash_Table *ht)
467 { 467 {
468 ht->rehash_count = (Element_Count) 468 ht->rehash_count = (Elemcount)
469 ((double) ht->size * ht->rehash_threshold); 469 ((double) ht->size * ht->rehash_threshold);
470 ht->golden_ratio = (Element_Count) 470 ht->golden_ratio = (Elemcount)
471 ((double) ht->size * (.6180339887 / (double) sizeof (Lisp_Object))); 471 ((double) ht->size * (.6180339887 / (double) sizeof (Lisp_Object)));
472 } 472 }
473 473
474 Lisp_Object 474 Lisp_Object
475 make_standard_lisp_hash_table (enum hash_table_test test, 475 make_standard_lisp_hash_table (enum hash_table_test test,
476 Element_Count size, 476 Elemcount size,
477 double rehash_size, 477 double rehash_size,
478 double rehash_threshold, 478 double rehash_threshold,
479 enum hash_table_weakness weakness) 479 enum hash_table_weakness weakness)
480 { 480 {
481 hash_table_hash_function_t hash_function = 0; 481 hash_table_hash_function_t hash_function = 0;
508 } 508 }
509 509
510 Lisp_Object 510 Lisp_Object
511 make_general_lisp_hash_table (hash_table_hash_function_t hash_function, 511 make_general_lisp_hash_table (hash_table_hash_function_t hash_function,
512 hash_table_test_function_t test_function, 512 hash_table_test_function_t test_function,
513 Element_Count size, 513 Elemcount size,
514 double rehash_size, 514 double rehash_size,
515 double rehash_threshold, 515 double rehash_threshold,
516 enum hash_table_weakness weakness) 516 enum hash_table_weakness weakness)
517 { 517 {
518 Lisp_Object hash_table; 518 Lisp_Object hash_table;
529 rehash_threshold > 0.0 ? rehash_threshold : 529 rehash_threshold > 0.0 ? rehash_threshold :
530 size > 4096 && !ht->test_function ? 0.7 : 0.6; 530 size > 4096 && !ht->test_function ? 0.7 : 0.6;
531 531
532 if (size < HASH_TABLE_MIN_SIZE) 532 if (size < HASH_TABLE_MIN_SIZE)
533 size = HASH_TABLE_MIN_SIZE; 533 size = HASH_TABLE_MIN_SIZE;
534 ht->size = hash_table_size ((Element_Count) (((double) size / ht->rehash_threshold) 534 ht->size = hash_table_size ((Elemcount) (((double) size / ht->rehash_threshold)
535 + 1.0)); 535 + 1.0));
536 ht->count = 0; 536 ht->count = 0;
537 537
538 compute_hash_table_derived_values (ht); 538 compute_hash_table_derived_values (ht);
539 539
549 549
550 return hash_table; 550 return hash_table;
551 } 551 }
552 552
553 Lisp_Object 553 Lisp_Object
554 make_lisp_hash_table (Element_Count size, 554 make_lisp_hash_table (Elemcount size,
555 enum hash_table_weakness weakness, 555 enum hash_table_weakness weakness,
556 enum hash_table_test test) 556 enum hash_table_test test)
557 { 557 {
558 return make_standard_lisp_hash_table (test, size, -1.0, -1.0, weakness); 558 return make_standard_lisp_hash_table (test, size, -1.0, -1.0, weakness);
559 } 559 }
579 maybe_signal_error_1 (Qwrong_type_argument, list2 (Qnatnump, value), 579 maybe_signal_error_1 (Qwrong_type_argument, list2 (Qnatnump, value),
580 Qhash_table, errb); 580 Qhash_table, errb);
581 return 0; 581 return 0;
582 } 582 }
583 583
584 static Element_Count 584 static Elemcount
585 decode_hash_table_size (Lisp_Object obj) 585 decode_hash_table_size (Lisp_Object obj)
586 { 586 {
587 return NILP (obj) ? HASH_TABLE_DEFAULT_SIZE : XINT (obj); 587 return NILP (obj) ? HASH_TABLE_DEFAULT_SIZE : XINT (obj);
588 } 588 }
589 589
954 954
955 return hash_table; 955 return hash_table;
956 } 956 }
957 957
958 static void 958 static void
959 resize_hash_table (Lisp_Hash_Table *ht, Element_Count new_size) 959 resize_hash_table (Lisp_Hash_Table *ht, Elemcount new_size)
960 { 960 {
961 hentry *old_entries, *new_entries, *sentinel, *e; 961 hentry *old_entries, *new_entries, *sentinel, *e;
962 Element_Count old_size; 962 Elemcount old_size;
963 963
964 old_size = ht->size; 964 old_size = ht->size;
965 ht->size = new_size; 965 ht->size = new_size;
966 966
967 old_entries = ht->hentries; 967 old_entries = ht->hentries;
972 compute_hash_table_derived_values (ht); 972 compute_hash_table_derived_values (ht);
973 973
974 for (e = old_entries, sentinel = e + old_size; e < sentinel; e++) 974 for (e = old_entries, sentinel = e + old_size; e < sentinel; e++)
975 if (!HENTRY_CLEAR_P (e)) 975 if (!HENTRY_CLEAR_P (e))
976 { 976 {
977 hentry *probe = new_entries + HASH_CODE (e->key, ht); 977 hentry *probe = new_entries + HASHCODE (e->key, ht);
978 LINEAR_PROBING_LOOP (probe, new_entries, new_size) 978 LINEAR_PROBING_LOOP (probe, new_entries, new_size)
979 ; 979 ;
980 *probe = *e; 980 *probe = *e;
981 } 981 }
982 982
983 free_hentries (old_entries, old_size); 983 free_hentries (old_entries, old_size);
984 } 984 }
985 985
986 /* After a hash table has been saved to disk and later restored by the 986 /* After a hash table has been saved to disk and later restored by the
987 portable dumper, it contains the same objects, but their addresses 987 portable dumper, it contains the same objects, but their addresses
988 and thus their HASH_CODEs have changed. */ 988 and thus their HASHCODEs have changed. */
989 void 989 void
990 pdump_reorganize_hash_table (Lisp_Object hash_table) 990 pdump_reorganize_hash_table (Lisp_Object hash_table)
991 { 991 {
992 const Lisp_Hash_Table *ht = xhash_table (hash_table); 992 const Lisp_Hash_Table *ht = xhash_table (hash_table);
993 hentry *new_entries = xnew_array_and_zero (hentry, ht->size + 1); 993 hentry *new_entries = xnew_array_and_zero (hentry, ht->size + 1);
994 hentry *e, *sentinel; 994 hentry *e, *sentinel;
995 995
996 for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++) 996 for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
997 if (!HENTRY_CLEAR_P (e)) 997 if (!HENTRY_CLEAR_P (e))
998 { 998 {
999 hentry *probe = new_entries + HASH_CODE (e->key, ht); 999 hentry *probe = new_entries + HASHCODE (e->key, ht);
1000 LINEAR_PROBING_LOOP (probe, new_entries, ht->size) 1000 LINEAR_PROBING_LOOP (probe, new_entries, ht->size)
1001 ; 1001 ;
1002 *probe = *e; 1002 *probe = *e;
1003 } 1003 }
1004 1004
1008 } 1008 }
1009 1009
1010 static void 1010 static void
1011 enlarge_hash_table (Lisp_Hash_Table *ht) 1011 enlarge_hash_table (Lisp_Hash_Table *ht)
1012 { 1012 {
1013 Element_Count new_size = 1013 Elemcount new_size =
1014 hash_table_size ((Element_Count) ((double) ht->size * ht->rehash_size)); 1014 hash_table_size ((Elemcount) ((double) ht->size * ht->rehash_size));
1015 resize_hash_table (ht, new_size); 1015 resize_hash_table (ht, new_size);
1016 } 1016 }
1017 1017
1018 static hentry * 1018 static hentry *
1019 find_hentry (Lisp_Object key, const Lisp_Hash_Table *ht) 1019 find_hentry (Lisp_Object key, const Lisp_Hash_Table *ht)
1020 { 1020 {
1021 hash_table_test_function_t test_function = ht->test_function; 1021 hash_table_test_function_t test_function = ht->test_function;
1022 hentry *entries = ht->hentries; 1022 hentry *entries = ht->hentries;
1023 hentry *probe = entries + HASH_CODE (key, ht); 1023 hentry *probe = entries + HASHCODE (key, ht);
1024 1024
1025 LINEAR_PROBING_LOOP (probe, entries, ht->size) 1025 LINEAR_PROBING_LOOP (probe, entries, ht->size)
1026 if (KEYS_EQUAL_P (probe->key, key, test_function)) 1026 if (KEYS_EQUAL_P (probe->key, key, test_function))
1027 break; 1027 break;
1028 1028
1065 Subsequent entries are removed and reinserted. 1065 Subsequent entries are removed and reinserted.
1066 We don't use tombstones - too wasteful. */ 1066 We don't use tombstones - too wasteful. */
1067 static void 1067 static void
1068 remhash_1 (Lisp_Hash_Table *ht, hentry *entries, hentry *probe) 1068 remhash_1 (Lisp_Hash_Table *ht, hentry *entries, hentry *probe)
1069 { 1069 {
1070 Element_Count size = ht->size; 1070 Elemcount size = ht->size;
1071 CLEAR_HENTRY (probe); 1071 CLEAR_HENTRY (probe);
1072 probe++; 1072 probe++;
1073 ht->count--; 1073 ht->count--;
1074 1074
1075 LINEAR_PROBING_LOOP (probe, entries, size) 1075 LINEAR_PROBING_LOOP (probe, entries, size)
1076 { 1076 {
1077 Lisp_Object key = probe->key; 1077 Lisp_Object key = probe->key;
1078 hentry *probe2 = entries + HASH_CODE (key, ht); 1078 hentry *probe2 = entries + HASHCODE (key, ht);
1079 LINEAR_PROBING_LOOP (probe2, entries, size) 1079 LINEAR_PROBING_LOOP (probe2, entries, size)
1080 if (EQ (probe2->key, key)) 1080 if (EQ (probe2->key, key))
1081 /* hentry at probe doesn't need to move. */ 1081 /* hentry at probe doesn't need to move. */
1082 goto continue_outer_loop; 1082 goto continue_outer_loop;
1083 /* Move hentry from probe to new home at probe2. */ 1083 /* Move hentry from probe to new home at probe2. */
1548 } 1548 }
1549 } 1549 }
1550 1550
1551 /* Return a hash value for an array of Lisp_Objects of size SIZE. */ 1551 /* Return a hash value for an array of Lisp_Objects of size SIZE. */
1552 1552
1553 Hash_Code 1553 Hashcode
1554 internal_array_hash (Lisp_Object *arr, int size, int depth) 1554 internal_array_hash (Lisp_Object *arr, int size, int depth)
1555 { 1555 {
1556 int i; 1556 int i;
1557 Hash_Code hash = 0; 1557 Hashcode hash = 0;
1558 depth++; 1558 depth++;
1559 1559
1560 if (size <= 5) 1560 if (size <= 5)
1561 { 1561 {
1562 for (i = 0; i < size; i++) 1562 for (i = 0; i < size; i++)
1583 few elements you hash. Thus, we only go to a short depth (5) 1583 few elements you hash. Thus, we only go to a short depth (5)
1584 and only hash at most 5 elements out of a vector. Theoretically 1584 and only hash at most 5 elements out of a vector. Theoretically
1585 we could still take 5^5 time (a big big number) to compute a 1585 we could still take 5^5 time (a big big number) to compute a
1586 hash, but practically this won't ever happen. */ 1586 hash, but practically this won't ever happen. */
1587 1587
1588 Hash_Code 1588 Hashcode
1589 internal_hash (Lisp_Object obj, int depth) 1589 internal_hash (Lisp_Object obj, int depth)
1590 { 1590 {
1591 if (depth > 5) 1591 if (depth > 5)
1592 return 0; 1592 return 0;
1593 if (CONSP (obj)) 1593 if (CONSP (obj))
1627 The value is returned as (HIGH . LOW). 1627 The value is returned as (HIGH . LOW).
1628 */ 1628 */
1629 (object)) 1629 (object))
1630 { 1630 {
1631 /* This function is pretty 32bit-centric. */ 1631 /* This function is pretty 32bit-centric. */
1632 Hash_Code hash = internal_hash (object, 0); 1632 Hashcode hash = internal_hash (object, 0);
1633 return Fcons (hash >> 16, hash & 0xffff); 1633 return Fcons (hash >> 16, hash & 0xffff);
1634 } 1634 }
1635 #endif 1635 #endif
1636 1636
1637 1637