Mercurial > hg > xemacs-beta
comparison lisp/mule/ccl.el @ 5118:e0db3c197671 ben-lisp-object
merge up to latest default branch, doesn't compile yet
author | Ben Wing <ben@xemacs.org> |
---|---|
date | Sat, 26 Dec 2009 21:18:49 -0600 |
parents | 476d0799d704 |
children | f00192e1cd49 308d34e9f07d |
comparison
equal
deleted
inserted
replaced
5117:3742ea8250b5 | 5118:e0db3c197671 |
---|---|
1 ;;; ccl.el --- CCL (Code Conversion Language) compiler -*- coding: iso-2022-7bit; -*- | |
2 | |
3 ;; Copyright (C) 1995 Electrotechnical Laboratory, JAPAN. | |
4 ;; Licensed to the Free Software Foundation. | |
5 ;; Copyright (C) 2002, 2007 Free Software Foundation, Inc. | |
6 | |
7 ;; Keywords: CCL, mule, multilingual, character set, coding-system | |
8 | |
9 ;; This file is part of XEmacs. | |
10 | |
11 ;; XEmacs is free software; you can redistribute it and/or modify | |
12 ;; it under the terms of the GNU General Public License as published by | |
13 ;; the Free Software Foundation; either version 2, or (at your option) | |
14 ;; any later version. | |
15 | |
16 ;; XEmacs is distributed in the hope that it will be useful, | |
17 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 ;; GNU General Public License for more details. | |
20 | |
21 ;; You should have received a copy of the GNU General Public License | |
22 ;; along with XEmacs; see the file COPYING. If not, write to the | |
23 ;; Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
24 ;; Boston, MA 02111-1307, USA. | |
25 | |
26 ;; Synched up with: FSF 21.0.90 | |
27 | |
28 ;;; Commentary: | |
29 | |
30 ;; CCL (Code Conversion Language) is a simple programming language to | |
31 ;; be used for various kind of code conversion. CCL program is | |
32 ;; compiled to CCL code (vector of integers) and executed by CCL | |
33 ;; interpreter of Emacs. | |
34 ;; | |
35 ;; CCL is used for code conversion at process I/O and file I/O for | |
36 ;; non-standard coding-system. In addition, it is used for | |
37 ;; calculating a code point of X's font from a character code. | |
38 ;; However, since CCL is designed as a powerful programming language, | |
39 ;; it can be used for more generic calculation. For instance, | |
40 ;; combination of three or more arithmetic operations can be | |
41 ;; calculated faster than Emacs Lisp. | |
42 ;; | |
43 ;; Syntax and semantics of CCL program is described in the | |
44 ;; documentation of `define-ccl-program'. | |
45 | |
46 ;;; Code: | |
47 | |
48 (defconst ccl-command-table | |
49 [if branch loop break repeat write-repeat write-read-repeat | |
50 read read-if read-branch write call end | |
51 read-multibyte-character write-multibyte-character | |
52 translate-character mule-to-unicode unicode-to-mule | |
53 iterate-multiple-map map-multiple map-single lookup-integer | |
54 lookup-character] | |
55 "Vector of CCL commands (symbols).") | |
56 | |
57 ;; Put a property to each symbol of CCL commands for the compiler. | |
58 (let (op (i 0) (len (length ccl-command-table))) | |
59 (while (< i len) | |
60 (setq op (aref ccl-command-table i)) | |
61 (put op 'ccl-compile-function (intern (format "ccl-compile-%s" op))) | |
62 (setq i (1+ i)))) | |
63 | |
64 (defconst ccl-code-table | |
65 [set-register | |
66 set-short-const | |
67 set-const | |
68 set-array | |
69 jump | |
70 jump-cond | |
71 write-register-jump | |
72 write-register-read-jump | |
73 write-const-jump | |
74 write-const-read-jump | |
75 write-string-jump | |
76 write-array-read-jump | |
77 read-jump | |
78 branch | |
79 read-register | |
80 write-expr-const | |
81 read-branch | |
82 write-register | |
83 write-expr-register | |
84 call | |
85 write-const-string | |
86 write-array | |
87 end | |
88 set-assign-expr-const | |
89 set-assign-expr-register | |
90 set-expr-const | |
91 set-expr-register | |
92 jump-cond-expr-const | |
93 jump-cond-expr-register | |
94 read-jump-cond-expr-const | |
95 read-jump-cond-expr-register | |
96 ex-cmd | |
97 ] | |
98 "Vector of CCL compiled codes (symbols).") | |
99 | |
100 (defconst ccl-extended-code-table | |
101 [read-multibyte-character | |
102 write-multibyte-character | |
103 translate-character | |
104 translate-character-const-tbl | |
105 mule-to-unicode | |
106 unicode-to-mule | |
107 nil nil nil nil nil nil nil nil nil nil ; 0x06-0x0f | |
108 iterate-multiple-map | |
109 map-multiple | |
110 map-single | |
111 lookup-int-const-tbl | |
112 lookup-char-const-tbl | |
113 ] | |
114 "Vector of CCL extended compiled codes (symbols).") | |
115 | |
116 ;; Put a property to each symbol of CCL codes for the disassembler. | |
117 (let (code (i 0) (len (length ccl-code-table))) | |
118 (while (< i len) | |
119 (setq code (aref ccl-code-table i)) | |
120 (put code 'ccl-code i) | |
121 (put code 'ccl-dump-function (intern (format "ccl-dump-%s" code))) | |
122 (setq i (1+ i)))) | |
123 | |
124 (let (code (i 0) (len (length ccl-extended-code-table))) | |
125 (while (< i len) | |
126 (setq code (aref ccl-extended-code-table i)) | |
127 (if code | |
128 (progn | |
129 (put code 'ccl-ex-code i) | |
130 (put code 'ccl-dump-function (intern (format "ccl-dump-%s" code))))) | |
131 (setq i (1+ i)))) | |
132 | |
133 (defconst ccl-jump-code-list | |
134 '(jump jump-cond write-register-jump write-register-read-jump | |
135 write-const-jump write-const-read-jump write-string-jump | |
136 write-array-read-jump read-jump)) | |
137 | |
138 ;; Put a property `jump-flag' to each CCL code which execute jump in | |
139 ;; some way. | |
140 (let ((l ccl-jump-code-list)) | |
141 (while l | |
142 (put (car l) 'jump-flag t) | |
143 (setq l (cdr l)))) | |
144 | |
145 (defconst ccl-register-table | |
146 [r0 r1 r2 r3 r4 r5 r6 r7] | |
147 "Vector of CCL registers (symbols).") | |
148 | |
149 ;; Put a property to indicate register number to each symbol of CCL. | |
150 ;; registers. | |
151 (let (reg (i 0) (len (length ccl-register-table))) | |
152 (while (< i len) | |
153 (setq reg (aref ccl-register-table i)) | |
154 (put reg 'ccl-register-number i) | |
155 (setq i (1+ i)))) | |
156 | |
157 (defconst ccl-arith-table | |
158 [+ - * / % & | ^ << >> <8 >8 // nil nil nil | |
159 < > == <= >= != de-sjis en-sjis] | |
160 "Vector of CCL arithmetic/logical operators (symbols).") | |
161 | |
162 ;; Put a property to each symbol of CCL operators for the compiler. | |
163 (let (arith (i 0) (len (length ccl-arith-table))) | |
164 (while (< i len) | |
165 (setq arith (aref ccl-arith-table i)) | |
166 (if arith (put arith 'ccl-arith-code i)) | |
167 (setq i (1+ i)))) | |
168 | |
169 (defconst ccl-assign-arith-table | |
170 [+= -= *= /= %= &= |= ^= <<= >>= <8= >8= //=] | |
171 "Vector of CCL assignment operators (symbols).") | |
172 | |
173 ;; Put a property to each symbol of CCL assignment operators for the compiler. | |
174 (let (arith (i 0) (len (length ccl-assign-arith-table))) | |
175 (while (< i len) | |
176 (setq arith (aref ccl-assign-arith-table i)) | |
177 (put arith 'ccl-self-arith-code i) | |
178 (setq i (1+ i)))) | |
179 | |
180 (defvar ccl-program-vector nil | |
181 "Working vector of CCL codes produced by CCL compiler.") | |
182 (defvar ccl-current-ic 0 | |
183 "The current index for `ccl-program-vector'.") | |
184 | |
185 ;; Embed integer DATA in `ccl-program-vector' at `ccl-current-ic' and | |
186 ;; increment it. If IC is specified, embed DATA at IC. | |
187 (defun ccl-embed-data (data &optional ic) | |
188 ;; XEmacs: Embed characters as characters, since their integer values vary at | |
189 ;; runtime. | |
190 ; (if (characterp data) | |
191 ; (setq data (char-int data))) | |
192 (if ic | |
193 (aset ccl-program-vector ic data) | |
194 (let ((len (length ccl-program-vector))) | |
195 (if (>= ccl-current-ic len) | |
196 (let ((new (make-vector (* len 2) nil))) | |
197 (while (> len 0) | |
198 (setq len (1- len)) | |
199 (aset new len (aref ccl-program-vector len))) | |
200 (setq ccl-program-vector new)))) | |
201 (aset ccl-program-vector ccl-current-ic data) | |
202 (setq ccl-current-ic (1+ ccl-current-ic)))) | |
203 | |
204 ;; Embed pair of SYMBOL and PROP where (get SYMBOL PROP) should give | |
205 ;; proper index number for SYMBOL. PROP should be | |
206 ;; `translation-table-id', `translation-hash-table-id' | |
207 ;; `code-conversion-map-id', or `ccl-program-idx'. | |
208 (defun ccl-embed-symbol (symbol prop) | |
209 (ccl-embed-data (cons symbol prop))) | |
210 | |
211 ;; Embed string STR of length LEN in `ccl-program-vector' at | |
212 ;; `ccl-current-ic'. | |
213 (defun ccl-embed-string (len str) | |
214 (let ((i 0)) | |
215 (while (< i len) | |
216 (ccl-embed-data (logior (ash (aref str i) 16) | |
217 (if (< (1+ i) len) | |
218 (ash (aref str (1+ i)) 8) | |
219 0) | |
220 (if (< (+ i 2) len) | |
221 (aref str (+ i 2)) | |
222 0))) | |
223 (setq i (+ i 3))))) | |
224 | |
225 ;; Embed a relative jump address to `ccl-current-ic' in | |
226 ;; `ccl-program-vector' at IC without altering the other bit field. | |
227 (defun ccl-embed-current-address (ic) | |
228 (let ((relative (- ccl-current-ic (1+ ic)))) | |
229 (aset ccl-program-vector ic | |
230 (logior (aref ccl-program-vector ic) (ash relative 8))))) | |
231 | |
232 ;; Embed CCL code for the operation OP and arguments REG and DATA in | |
233 ;; `ccl-program-vector' at `ccl-current-ic' in the following format. | |
234 ;; |----------------- integer (28-bit) ------------------| | |
235 ;; |------------ 20-bit ------------|- 3-bit --|- 5-bit -| | |
236 ;; |------------- DATA -------------|-- REG ---|-- OP ---| | |
237 ;; If REG2 is specified, embed a code in the following format. | |
238 ;; |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -| | |
239 ;; |-------- DATA -------|-- REG2 --|-- REG ---|-- OP ---| | |
240 | |
241 ;; If REG is a CCL register symbol (e.g. r0, r1...), the register | |
242 ;; number is embedded. If OP is one of unconditional jumps, DATA is | |
243 ;; changed to an relative jump address. | |
244 | |
245 (defun ccl-embed-code (op reg data &optional reg2) | |
246 (if (and (> data 0) (get op 'jump-flag)) | |
247 ;; DATA is an absolute jump address. Make it relative to the | |
248 ;; next of jump code. | |
249 (setq data (- data (1+ ccl-current-ic)))) | |
250 (let ((code (logior (get op 'ccl-code) | |
251 (ash | |
252 (if (symbolp reg) (get reg 'ccl-register-number) reg) 5) | |
253 (if reg2 | |
254 (logior (ash (get reg2 'ccl-register-number) 8) | |
255 (ash data 11)) | |
256 (ash data 8))))) | |
257 (ccl-embed-data code))) | |
258 | |
259 ;; extended ccl command format | |
260 ;; |- 14-bit -|- 3-bit --|- 3-bit --|- 3-bit --|- 5-bit -| | |
261 ;; |- EX-OP --|-- REG3 --|-- REG2 --|-- REG ---|-- OP ---| | |
262 (defun ccl-embed-extended-command (ex-op reg reg2 reg3) | |
263 (let ((data (logior (ash (get ex-op 'ccl-ex-code) 3) | |
264 (if (symbolp reg3) | |
265 (get reg3 'ccl-register-number) | |
266 0)))) | |
267 (ccl-embed-code 'ex-cmd reg data reg2))) | |
268 | |
269 ;; Just advance `ccl-current-ic' by INC. | |
270 (defun ccl-increment-ic (inc) | |
271 (setq ccl-current-ic (+ ccl-current-ic inc))) | |
272 | |
273 ;; If non-nil, index of the start of the current loop. | |
274 (defvar ccl-loop-head nil) | |
275 ;; If non-nil, list of absolute addresses of the breaking points of | |
276 ;; the current loop. | |
277 (defvar ccl-breaks nil) | |
278 | |
279 ;;;###autoload | |
280 (defun ccl-compile (ccl-program) | |
281 "Return a compiled code of CCL-PROGRAM as a vector of integer." | |
282 (if (or (null (consp ccl-program)) | |
283 (null (integerp (car ccl-program))) | |
284 (null (listp (car (cdr ccl-program))))) | |
285 (error "CCL: Invalid CCL program: %s" ccl-program)) | |
286 (if (null (vectorp ccl-program-vector)) | |
287 (setq ccl-program-vector (make-vector 8192 0))) | |
288 (setq ccl-loop-head nil ccl-breaks nil) | |
289 (setq ccl-current-ic 0) | |
290 | |
291 ;; The first element is the buffer magnification. | |
292 (ccl-embed-data (car ccl-program)) | |
293 | |
294 ;; The second element is the address of the start CCL code for | |
295 ;; processing end of input buffer (we call it eof-processor). We | |
296 ;; set it later. | |
297 (ccl-increment-ic 1) | |
298 | |
299 ;; Compile the main body of the CCL program. | |
300 (ccl-compile-1 (car (cdr ccl-program))) | |
301 | |
302 ;; Embed the address of eof-processor. | |
303 (ccl-embed-data ccl-current-ic 1) | |
304 | |
305 ;; Then compile eof-processor. | |
306 (if (nth 2 ccl-program) | |
307 (ccl-compile-1 (nth 2 ccl-program))) | |
308 | |
309 ;; At last, embed termination code. | |
310 (ccl-embed-code 'end 0 0) | |
311 | |
312 (let ((vec (make-vector ccl-current-ic 0)) | |
313 (i 0)) | |
314 (while (< i ccl-current-ic) | |
315 (aset vec i (aref ccl-program-vector i)) | |
316 (setq i (1+ i))) | |
317 vec)) | |
318 | |
319 ;; Signal syntax error. | |
320 (defun ccl-syntax-error (cmd) | |
321 (error "CCL: Syntax error: %s" cmd)) | |
322 | |
323 ;; Check if ARG is a valid CCL register. | |
324 (defun ccl-check-register (arg cmd) | |
325 (if (get arg 'ccl-register-number) | |
326 arg | |
327 (error "CCL: Invalid register %s in %s." arg cmd))) | |
328 | |
329 ;; Check if ARG is a valid CCL command. | |
330 (defun ccl-check-compile-function (arg cmd) | |
331 (or (get arg 'ccl-compile-function) | |
332 (error "CCL: Invalid command: %s" cmd))) | |
333 | |
334 ;; In the following code, most ccl-compile-XXXX functions return t if | |
335 ;; they end with unconditional jump, else return nil. | |
336 | |
337 ;; Compile CCL-BLOCK (see the syntax above). | |
338 (defun ccl-compile-1 (ccl-block) | |
339 (let (unconditional-jump | |
340 cmd) | |
341 (if (or (integer-or-char-p ccl-block) | |
342 (stringp ccl-block) | |
343 (and ccl-block (symbolp (car ccl-block)))) | |
344 ;; This block consists of single statement. | |
345 (setq ccl-block (list ccl-block))) | |
346 | |
347 ;; Now CCL-BLOCK is a list of statements. Compile them one by | |
348 ;; one. | |
349 (while ccl-block | |
350 (setq cmd (car ccl-block)) | |
351 (setq unconditional-jump | |
352 (cond ((integer-or-char-p cmd) | |
353 ;; SET statement for the register 0. | |
354 (ccl-compile-set (list 'r0 '= cmd))) | |
355 | |
356 ((stringp cmd) | |
357 ;; WRITE statement of string argument. | |
358 (ccl-compile-write-string cmd)) | |
359 | |
360 ((listp cmd) | |
361 ;; The other statements. | |
362 (cond ((eq (nth 1 cmd) '=) | |
363 ;; SET statement of the form `(REG = EXPRESSION)'. | |
364 (ccl-compile-set cmd)) | |
365 | |
366 ((and (symbolp (nth 1 cmd)) | |
367 (get (nth 1 cmd) 'ccl-self-arith-code)) | |
368 ;; SET statement with an assignment operation. | |
369 (ccl-compile-self-set cmd)) | |
370 | |
371 (t | |
372 (funcall (ccl-check-compile-function (car cmd) cmd) | |
373 cmd)))) | |
374 | |
375 (t | |
376 (ccl-syntax-error cmd)))) | |
377 (setq ccl-block (cdr ccl-block))) | |
378 unconditional-jump)) | |
379 | |
380 (defconst ccl-max-short-const (ash 1 19)) | |
381 (defconst ccl-min-short-const (ash -1 19)) | |
382 | |
383 ;; Compile SET statement. | |
384 (defun ccl-compile-set (cmd) | |
385 (let ((rrr (ccl-check-register (car cmd) cmd)) | |
386 (right (nth 2 cmd))) | |
387 (cond ((listp right) | |
388 ;; CMD has the form `(RRR = (XXX OP YYY))'. | |
389 (ccl-compile-expression rrr right)) | |
390 | |
391 ((integer-or-char-p right) | |
392 ;; CMD has the form `(RRR = integer)'. | |
393 (if (and (<= right ccl-max-short-const) | |
394 (>= right ccl-min-short-const)) | |
395 (ccl-embed-code 'set-short-const rrr right) | |
396 (ccl-embed-code 'set-const rrr 0) | |
397 (ccl-embed-data right))) | |
398 | |
399 (t | |
400 ;; CMD has the form `(RRR = rrr [ array ])'. | |
401 (ccl-check-register right cmd) | |
402 (let ((ary (nth 3 cmd))) | |
403 (if (vectorp ary) | |
404 (let ((i 0) (len (length ary))) | |
405 (ccl-embed-code 'set-array rrr len right) | |
406 (while (< i len) | |
407 (ccl-embed-data (aref ary i)) | |
408 (setq i (1+ i)))) | |
409 (ccl-embed-code 'set-register rrr 0 right)))))) | |
410 nil) | |
411 | |
412 ;; Compile SET statement with ASSIGNMENT_OPERATOR. | |
413 (defun ccl-compile-self-set (cmd) | |
414 (let ((rrr (ccl-check-register (car cmd) cmd)) | |
415 (right (nth 2 cmd))) | |
416 (if (listp right) | |
417 ;; CMD has the form `(RRR ASSIGN_OP (XXX OP YYY))', compile | |
418 ;; the right hand part as `(r7 = (XXX OP YYY))' (note: the | |
419 ;; register 7 can be used for storing temporary value). | |
420 (progn | |
421 (ccl-compile-expression 'r7 right) | |
422 (setq right 'r7))) | |
423 ;; Now CMD has the form `(RRR ASSIGN_OP ARG)'. Compile it as | |
424 ;; `(RRR = (RRR OP ARG))'. | |
425 (ccl-compile-expression | |
426 rrr | |
427 (list rrr (intern (substring (symbol-name (nth 1 cmd)) 0 -1)) right))) | |
428 nil) | |
429 | |
430 ;; Compile SET statement of the form `(RRR = EXPR)'. | |
431 (defun ccl-compile-expression (rrr expr) | |
432 (let ((left (car expr)) | |
433 (op (get (nth 1 expr) 'ccl-arith-code)) | |
434 (right (nth 2 expr))) | |
435 (if (listp left) | |
436 (progn | |
437 ;; EXPR has the form `((EXPR2 OP2 ARG) OP RIGHT)'. Compile | |
438 ;; the first term as `(r7 = (EXPR2 OP2 ARG)).' | |
439 (ccl-compile-expression 'r7 left) | |
440 (setq left 'r7))) | |
441 | |
442 ;; Now EXPR has the form (LEFT OP RIGHT). | |
443 (if (and (eq rrr left) | |
444 (< op (length ccl-assign-arith-table))) | |
445 ;; Compile this SET statement as `(RRR OP= RIGHT)'. | |
446 (if (integer-or-char-p right) | |
447 (progn | |
448 (ccl-embed-code 'set-assign-expr-const rrr (ash op 3) 'r0) | |
449 (ccl-embed-data right)) | |
450 (ccl-check-register right expr) | |
451 (ccl-embed-code 'set-assign-expr-register rrr (ash op 3) right)) | |
452 | |
453 ;; Compile this SET statement as `(RRR = (LEFT OP RIGHT))'. | |
454 (if (integer-or-char-p right) | |
455 (progn | |
456 (ccl-embed-code 'set-expr-const rrr (ash op 3) left) | |
457 (ccl-embed-data right)) | |
458 (ccl-check-register right expr) | |
459 (ccl-embed-code 'set-expr-register | |
460 rrr | |
461 (logior (ash op 3) (get right 'ccl-register-number)) | |
462 left))))) | |
463 | |
464 ;; Compile WRITE statement with string argument. | |
465 (defun ccl-compile-write-string (str) | |
466 (setq str (encode-coding-string str 'binary)) | |
467 (let ((len (length str))) | |
468 (ccl-embed-code 'write-const-string 1 len) | |
469 (ccl-embed-string len str)) | |
470 nil) | |
471 | |
472 ;; Compile IF statement of the form `(if CONDITION TRUE-PART FALSE-PART)'. | |
473 ;; If READ-FLAG is non-nil, this statement has the form | |
474 ;; `(read-if (REG OPERATOR ARG) TRUE-PART FALSE-PART)'. | |
475 (defun ccl-compile-if (cmd &optional read-flag) | |
476 (if (and (/= (length cmd) 3) (/= (length cmd) 4)) | |
477 (error "CCL: Invalid number of arguments: %s" cmd)) | |
478 (let ((condition (nth 1 cmd)) | |
479 (true-cmds (nth 2 cmd)) | |
480 (false-cmds (nth 3 cmd)) | |
481 jump-cond-address) | |
482 (if (and (listp condition) | |
483 (listp (car condition))) | |
484 ;; If CONDITION is a nested expression, the inner expression | |
485 ;; should be compiled at first as SET statement, i.e.: | |
486 ;; `(if ((X OP2 Y) OP Z) ...)' is compiled into two statements: | |
487 ;; `(r7 = (X OP2 Y)) (if (r7 OP Z) ...)'. | |
488 (progn | |
489 (ccl-compile-expression 'r7 (car condition)) | |
490 (setq condition (cons 'r7 (cdr condition))) | |
491 (setq cmd (cons (car cmd) | |
492 (cons condition (cdr (cdr cmd))))))) | |
493 | |
494 (setq jump-cond-address ccl-current-ic) | |
495 ;; Compile CONDITION. | |
496 (if (symbolp condition) | |
497 ;; CONDITION is a register. | |
498 (progn | |
499 (ccl-check-register condition cmd) | |
500 (ccl-embed-code 'jump-cond condition 0)) | |
501 ;; CONDITION is a simple expression of the form (RRR OP ARG). | |
502 (let ((rrr (car condition)) | |
503 (op (get (nth 1 condition) 'ccl-arith-code)) | |
504 (arg (nth 2 condition))) | |
505 (ccl-check-register rrr cmd) | |
506 (if (integer-or-char-p arg) | |
507 (progn | |
508 (ccl-embed-code (if read-flag 'read-jump-cond-expr-const | |
509 'jump-cond-expr-const) | |
510 rrr 0) | |
511 (ccl-embed-data op) | |
512 (ccl-embed-data arg)) | |
513 (ccl-check-register arg cmd) | |
514 (ccl-embed-code (if read-flag 'read-jump-cond-expr-register | |
515 'jump-cond-expr-register) | |
516 rrr 0) | |
517 (ccl-embed-data op) | |
518 (ccl-embed-data (get arg 'ccl-register-number))))) | |
519 | |
520 ;; Compile TRUE-PART. | |
521 (let ((unconditional-jump (ccl-compile-1 true-cmds))) | |
522 (if (null false-cmds) | |
523 ;; This is the place to jump to if condition is false. | |
524 (progn | |
525 (ccl-embed-current-address jump-cond-address) | |
526 (setq unconditional-jump nil)) | |
527 (let (end-true-part-address) | |
528 (if (not unconditional-jump) | |
529 (progn | |
530 ;; If TRUE-PART does not end with unconditional jump, we | |
531 ;; have to jump to the end of FALSE-PART from here. | |
532 (setq end-true-part-address ccl-current-ic) | |
533 (ccl-embed-code 'jump 0 0))) | |
534 ;; This is the place to jump to if CONDITION is false. | |
535 (ccl-embed-current-address jump-cond-address) | |
536 ;; Compile FALSE-PART. | |
537 (setq unconditional-jump | |
538 (and (ccl-compile-1 false-cmds) unconditional-jump)) | |
539 (if end-true-part-address | |
540 ;; This is the place to jump to after the end of TRUE-PART. | |
541 (ccl-embed-current-address end-true-part-address)))) | |
542 unconditional-jump))) | |
543 | |
544 ;; Compile BRANCH statement. | |
545 (defun ccl-compile-branch (cmd) | |
546 (if (< (length cmd) 3) | |
547 (error "CCL: Invalid number of arguments: %s" cmd)) | |
548 (ccl-compile-branch-blocks 'branch | |
549 (ccl-compile-branch-expression (nth 1 cmd) cmd) | |
550 (cdr (cdr cmd)))) | |
551 | |
552 ;; Compile READ statement of the form `(read-branch EXPR BLOCK0 BLOCK1 ...)'. | |
553 (defun ccl-compile-read-branch (cmd) | |
554 (if (< (length cmd) 3) | |
555 (error "CCL: Invalid number of arguments: %s" cmd)) | |
556 (ccl-compile-branch-blocks 'read-branch | |
557 (ccl-compile-branch-expression (nth 1 cmd) cmd) | |
558 (cdr (cdr cmd)))) | |
559 | |
560 ;; Compile EXPRESSION part of BRANCH statement and return register | |
561 ;; which holds a value of the expression. | |
562 (defun ccl-compile-branch-expression (expr cmd) | |
563 (if (listp expr) | |
564 ;; EXPR has the form `(EXPR2 OP ARG)'. Compile it as SET | |
565 ;; statement of the form `(r7 = (EXPR2 OP ARG))'. | |
566 (progn | |
567 (ccl-compile-expression 'r7 expr) | |
568 'r7) | |
569 (ccl-check-register expr cmd))) | |
570 | |
571 ;; Compile BLOCKs of BRANCH statement. CODE is 'branch or 'read-branch. | |
572 ;; REG is a register which holds a value of EXPRESSION part. BLOCKs | |
573 ;; is a list of CCL-BLOCKs. | |
574 (defun ccl-compile-branch-blocks (code rrr blocks) | |
575 (let ((branches (length blocks)) | |
576 branch-idx | |
577 jump-table-head-address | |
578 empty-block-indexes | |
579 block-tail-addresses | |
580 block-unconditional-jump) | |
581 (ccl-embed-code code rrr branches) | |
582 (setq jump-table-head-address ccl-current-ic) | |
583 ;; The size of jump table is the number of blocks plus 1 (for the | |
584 ;; case RRR is out of range). | |
585 (ccl-increment-ic (1+ branches)) | |
586 (setq empty-block-indexes (list branches)) | |
587 ;; Compile each block. | |
588 (setq branch-idx 0) | |
589 (while blocks | |
590 (if (null (car blocks)) | |
591 ;; This block is empty. | |
592 (setq empty-block-indexes (cons branch-idx empty-block-indexes) | |
593 block-unconditional-jump t) | |
594 ;; This block is not empty. | |
595 (ccl-embed-data (- ccl-current-ic jump-table-head-address) | |
596 (+ jump-table-head-address branch-idx)) | |
597 (setq block-unconditional-jump (ccl-compile-1 (car blocks))) | |
598 (if (not block-unconditional-jump) | |
599 (progn | |
600 ;; Jump address of the end of branches are embedded later. | |
601 ;; For the moment, just remember where to embed them. | |
602 (setq block-tail-addresses | |
603 (cons ccl-current-ic block-tail-addresses)) | |
604 (ccl-embed-code 'jump 0 0)))) | |
605 (setq branch-idx (1+ branch-idx)) | |
606 (setq blocks (cdr blocks))) | |
607 (if (not block-unconditional-jump) | |
608 ;; We don't need jump code at the end of the last block. | |
609 (setq block-tail-addresses (cdr block-tail-addresses) | |
610 ccl-current-ic (1- ccl-current-ic))) | |
611 ;; Embed jump address at the tailing jump commands of blocks. | |
612 (while block-tail-addresses | |
613 (ccl-embed-current-address (car block-tail-addresses)) | |
614 (setq block-tail-addresses (cdr block-tail-addresses))) | |
615 ;; For empty blocks, make entries in the jump table point directly here. | |
616 (while empty-block-indexes | |
617 (ccl-embed-data (- ccl-current-ic jump-table-head-address) | |
618 (+ jump-table-head-address (car empty-block-indexes))) | |
619 (setq empty-block-indexes (cdr empty-block-indexes)))) | |
620 ;; Branch command ends by unconditional jump if RRR is out of range. | |
621 nil) | |
622 | |
623 ;; Compile LOOP statement. | |
624 (defun ccl-compile-loop (cmd) | |
625 (if (< (length cmd) 2) | |
626 (error "CCL: Invalid number of arguments: %s" cmd)) | |
627 (let* ((ccl-loop-head ccl-current-ic) | |
628 (ccl-breaks nil) | |
629 unconditional-jump) | |
630 (setq cmd (cdr cmd)) | |
631 (if cmd | |
632 (progn | |
633 (setq unconditional-jump t) | |
634 (while cmd | |
635 (setq unconditional-jump | |
636 (and (ccl-compile-1 (car cmd)) unconditional-jump)) | |
637 (setq cmd (cdr cmd))) | |
638 (if (not ccl-breaks) | |
639 unconditional-jump | |
640 ;; Embed jump address for break statements encountered in | |
641 ;; this loop. | |
642 (while ccl-breaks | |
643 (ccl-embed-current-address (car ccl-breaks)) | |
644 (setq ccl-breaks (cdr ccl-breaks)))) | |
645 nil)))) | |
646 | |
647 ;; Compile BREAK statement. | |
648 (defun ccl-compile-break (cmd) | |
649 (if (/= (length cmd) 1) | |
650 (error "CCL: Invalid number of arguments: %s" cmd)) | |
651 (if (null ccl-loop-head) | |
652 (error "CCL: No outer loop: %s" cmd)) | |
653 (setq ccl-breaks (cons ccl-current-ic ccl-breaks)) | |
654 (ccl-embed-code 'jump 0 0) | |
655 t) | |
656 | |
657 ;; Compile REPEAT statement. | |
658 (defun ccl-compile-repeat (cmd) | |
659 (if (/= (length cmd) 1) | |
660 (error "CCL: Invalid number of arguments: %s" cmd)) | |
661 (if (null ccl-loop-head) | |
662 (error "CCL: No outer loop: %s" cmd)) | |
663 (ccl-embed-code 'jump 0 ccl-loop-head) | |
664 t) | |
665 | |
666 ;; Compile WRITE-REPEAT statement. | |
667 (defun ccl-compile-write-repeat (cmd) | |
668 (if (/= (length cmd) 2) | |
669 (error "CCL: Invalid number of arguments: %s" cmd)) | |
670 (if (null ccl-loop-head) | |
671 (error "CCL: No outer loop: %s" cmd)) | |
672 (let ((arg (nth 1 cmd))) | |
673 (cond ((integer-or-char-p arg) | |
674 (ccl-embed-code 'write-const-jump 0 ccl-loop-head) | |
675 (ccl-embed-data arg)) | |
676 ((stringp arg) | |
677 (setq arg (encode-coding-string arg 'binary)) | |
678 (let ((len (length arg))) | |
679 (ccl-embed-code 'write-string-jump 0 ccl-loop-head) | |
680 (ccl-embed-data len) | |
681 (ccl-embed-string len arg))) | |
682 (t | |
683 (ccl-check-register arg cmd) | |
684 (ccl-embed-code 'write-register-jump arg ccl-loop-head)))) | |
685 t) | |
686 | |
687 ;; Compile WRITE-READ-REPEAT statement. | |
688 (defun ccl-compile-write-read-repeat (cmd) | |
689 (if (or (< (length cmd) 2) (> (length cmd) 3)) | |
690 (error "CCL: Invalid number of arguments: %s" cmd)) | |
691 (if (null ccl-loop-head) | |
692 (error "CCL: No outer loop: %s" cmd)) | |
693 (let ((rrr (ccl-check-register (nth 1 cmd) cmd)) | |
694 (arg (nth 2 cmd))) | |
695 (cond ((null arg) | |
696 (ccl-embed-code 'write-register-read-jump rrr ccl-loop-head)) | |
697 ((integer-or-char-p arg) | |
698 (ccl-embed-code 'write-const-read-jump rrr arg ccl-loop-head)) | |
699 ((vectorp arg) | |
700 (let ((len (length arg)) | |
701 (i 0)) | |
702 (ccl-embed-code 'write-array-read-jump rrr ccl-loop-head) | |
703 (ccl-embed-data len) | |
704 (while (< i len) | |
705 (ccl-embed-data (aref arg i)) | |
706 (setq i (1+ i))))) | |
707 (t | |
708 (error "CCL: Invalid argument %s: %s" arg cmd))) | |
709 (ccl-embed-code 'read-jump rrr ccl-loop-head)) | |
710 t) | |
711 | |
712 ;; Compile READ statement. | |
713 (defun ccl-compile-read (cmd) | |
714 (if (< (length cmd) 2) | |
715 (error "CCL: Invalid number of arguments: %s" cmd)) | |
716 (let* ((args (cdr cmd)) | |
717 (i (1- (length args)))) | |
718 (while args | |
719 (let ((rrr (ccl-check-register (car args) cmd))) | |
720 (ccl-embed-code 'read-register rrr i) | |
721 (setq args (cdr args) i (1- i))))) | |
722 nil) | |
723 | |
724 ;; Compile READ-IF statement. | |
725 (defun ccl-compile-read-if (cmd) | |
726 (ccl-compile-if cmd 'read)) | |
727 | |
728 ;; Compile WRITE statement. | |
729 (defun ccl-compile-write (cmd) | |
730 (if (< (length cmd) 2) | |
731 (error "CCL: Invalid number of arguments: %s" cmd)) | |
732 (let ((rrr (nth 1 cmd))) | |
733 (cond ((integer-or-char-p rrr) | |
734 (ccl-embed-code 'write-const-string 0 rrr)) | |
735 ((stringp rrr) | |
736 (ccl-compile-write-string rrr)) | |
737 ((and (symbolp rrr) (vectorp (nth 2 cmd))) | |
738 (ccl-check-register rrr cmd) | |
739 ;; CMD has the form `(write REG ARRAY)'. | |
740 (let* ((arg (nth 2 cmd)) | |
741 (len (length arg)) | |
742 (i 0)) | |
743 (ccl-embed-code 'write-array rrr len) | |
744 (while (< i len) | |
745 (if (not (integer-or-char-p (aref arg i))) | |
746 (error "CCL: Invalid argument %s: %s" arg cmd)) | |
747 (ccl-embed-data (aref arg i)) | |
748 (setq i (1+ i))))) | |
749 | |
750 ((symbolp rrr) | |
751 ;; CMD has the form `(write REG ...)'. | |
752 (let* ((args (cdr cmd)) | |
753 (i (1- (length args)))) | |
754 (while args | |
755 (setq rrr (ccl-check-register (car args) cmd)) | |
756 (ccl-embed-code 'write-register rrr i) | |
757 (setq args (cdr args) i (1- i))))) | |
758 | |
759 ((listp rrr) | |
760 ;; CMD has the form `(write (LEFT OP RIGHT))'. | |
761 (let ((left (car rrr)) | |
762 (op (get (nth 1 rrr) 'ccl-arith-code)) | |
763 (right (nth 2 rrr))) | |
764 (if (listp left) | |
765 (progn | |
766 ;; RRR has the form `((EXPR OP2 ARG) OP RIGHT)'. | |
767 ;; Compile the first term as `(r7 = (EXPR OP2 ARG))'. | |
768 (ccl-compile-expression 'r7 left) | |
769 (setq left 'r7))) | |
770 ;; Now RRR has the form `(ARG OP RIGHT)'. | |
771 (if (integer-or-char-p right) | |
772 (progn | |
773 (ccl-embed-code 'write-expr-const 0 (ash op 3) left) | |
774 (ccl-embed-data right)) | |
775 (ccl-check-register right rrr) | |
776 (ccl-embed-code 'write-expr-register 0 | |
777 (logior (ash op 3) | |
778 (get right 'ccl-register-number)))))) | |
779 | |
780 (t | |
781 (error "CCL: Invalid argument: %s" cmd)))) | |
782 nil) | |
783 | |
784 ;; Compile CALL statement. | |
785 (defun ccl-compile-call (cmd) | |
786 (if (/= (length cmd) 2) | |
787 (error "CCL: Invalid number of arguments: %s" cmd)) | |
788 (if (not (symbolp (nth 1 cmd))) | |
789 (error "CCL: Subroutine should be a symbol: %s" cmd)) | |
790 (ccl-embed-code 'call 1 0) | |
791 (ccl-embed-symbol (nth 1 cmd) 'ccl-program-idx) | |
792 nil) | |
793 | |
794 ;; Compile END statement. | |
795 (defun ccl-compile-end (cmd) | |
796 (if (/= (length cmd) 1) | |
797 (error "CCL: Invalid number of arguments: %s" cmd)) | |
798 (ccl-embed-code 'end 0 0) | |
799 t) | |
800 | |
801 ;; Compile read-multibyte-character | |
802 (defun ccl-compile-read-multibyte-character (cmd) | |
803 (if (/= (length cmd) 3) | |
804 (error "CCL: Invalid number of arguments: %s" cmd)) | |
805 (let ((RRR (nth 1 cmd)) | |
806 (rrr (nth 2 cmd))) | |
807 (ccl-check-register rrr cmd) | |
808 (ccl-check-register RRR cmd) | |
809 (ccl-embed-extended-command 'read-multibyte-character rrr RRR 0)) | |
810 nil) | |
811 | |
812 ;; Compile write-multibyte-character | |
813 (defun ccl-compile-write-multibyte-character (cmd) | |
814 (if (/= (length cmd) 3) | |
815 (error "CCL: Invalid number of arguments: %s" cmd)) | |
816 (let ((RRR (nth 1 cmd)) | |
817 (rrr (nth 2 cmd))) | |
818 (ccl-check-register rrr cmd) | |
819 (ccl-check-register RRR cmd) | |
820 (ccl-embed-extended-command 'write-multibyte-character rrr RRR 0)) | |
821 nil) | |
822 | |
823 ;; Compile translate-character | |
824 (defun ccl-compile-translate-character (cmd) | |
825 (if (/= (length cmd) 4) | |
826 (error "CCL: Invalid number of arguments: %s" cmd)) | |
827 (let ((Rrr (nth 1 cmd)) | |
828 (RRR (nth 2 cmd)) | |
829 (rrr (nth 3 cmd))) | |
830 (ccl-check-register rrr cmd) | |
831 (ccl-check-register RRR cmd) | |
832 (cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number))) | |
833 (ccl-embed-extended-command 'translate-character-const-tbl | |
834 rrr RRR 0) | |
835 (ccl-embed-symbol Rrr 'translation-table-id)) | |
836 (t | |
837 (ccl-check-register Rrr cmd) | |
838 (ccl-embed-extended-command 'translate-character rrr RRR Rrr)))) | |
839 nil) | |
840 | |
841 ;; Compile mule-to-unicode | |
842 (defun ccl-compile-mule-to-unicode (cmd) | |
843 (if (/= (length cmd) 3) | |
844 (error "CCL: Invalid number of arguments: %s" cmd)) | |
845 (let ((RRR (nth 1 cmd)) | |
846 (rrr (nth 2 cmd))) | |
847 (ccl-check-register RRR cmd) | |
848 (ccl-check-register rrr cmd) | |
849 (ccl-embed-extended-command 'mule-to-unicode RRR rrr 0)) | |
850 nil) | |
851 | |
852 ;; Given a Unicode code point in register rrr, write the charset ID of the | |
853 ;; corresponding character in RRR, and the Mule-CCL form of its code in rrr. | |
854 (defun ccl-compile-unicode-to-mule (cmd) | |
855 (if (/= (length cmd) 3) | |
856 (error "CCL: Invalid number of arguments: %s" cmd)) | |
857 (let ((rrr (nth 1 cmd)) | |
858 (RRR (nth 2 cmd))) | |
859 (ccl-check-register rrr cmd) | |
860 (ccl-check-register RRR cmd) | |
861 (ccl-embed-extended-command 'unicode-to-mule rrr RRR 0)) | |
862 nil) | |
863 | |
864 ;; Compile lookup-integer | |
865 (defun ccl-compile-lookup-integer (cmd) | |
866 (if (/= (length cmd) 4) | |
867 (error "CCL: Invalid number of arguments: %s" cmd)) | |
868 (let ((Rrr (nth 1 cmd)) | |
869 (RRR (nth 2 cmd)) | |
870 (rrr (nth 3 cmd))) | |
871 (ccl-check-register RRR cmd) | |
872 (ccl-check-register rrr cmd) | |
873 (cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number))) | |
874 (ccl-embed-extended-command 'lookup-int-const-tbl | |
875 rrr RRR 0) | |
876 (ccl-embed-symbol Rrr 'translation-hash-table-id)) | |
877 (t | |
878 (error "CCL: non-constant table: %s" cmd) | |
879 ;; not implemented: | |
880 (ccl-check-register Rrr cmd) | |
881 (ccl-embed-extended-command 'lookup-int rrr RRR 0)))) | |
882 nil) | |
883 | |
884 ;; Compile lookup-character | |
885 (defun ccl-compile-lookup-character (cmd) | |
886 (if (/= (length cmd) 4) | |
887 (error "CCL: Invalid number of arguments: %s" cmd)) | |
888 (let ((Rrr (nth 1 cmd)) | |
889 (RRR (nth 2 cmd)) | |
890 (rrr (nth 3 cmd))) | |
891 (ccl-check-register RRR cmd) | |
892 (ccl-check-register rrr cmd) | |
893 (cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number))) | |
894 (ccl-embed-extended-command 'lookup-char-const-tbl | |
895 rrr RRR 0) | |
896 (ccl-embed-symbol Rrr 'translation-hash-table-id)) | |
897 (t | |
898 (error "CCL: non-constant table: %s" cmd) | |
899 ;; not implemented: | |
900 (ccl-check-register Rrr cmd) | |
901 (ccl-embed-extended-command 'lookup-char rrr RRR 0)))) | |
902 nil) | |
903 | |
904 (defun ccl-compile-iterate-multiple-map (cmd) | |
905 (ccl-compile-multiple-map-function 'iterate-multiple-map cmd) | |
906 nil) | |
907 | |
908 (defun ccl-compile-map-multiple (cmd) | |
909 (if (/= (length cmd) 4) | |
910 (error "CCL: Invalid number of arguments: %s" cmd)) | |
911 (let (func arg) | |
912 (setq func | |
913 (lambda (arg mp) | |
914 (let ((len 0) result add) | |
915 (while arg | |
916 (if (consp (car arg)) | |
917 (setq add (funcall func (car arg) t) | |
918 result (append result add) | |
919 add (+ (- (car add)) 1)) | |
920 (setq result | |
921 (append result | |
922 (list (car arg))) | |
923 add 1)) | |
924 (setq arg (cdr arg) | |
925 len (+ len add))) | |
926 (if mp | |
927 (cons (- len) result) | |
928 result)))) | |
929 (setq arg (append (list (nth 0 cmd) (nth 1 cmd) (nth 2 cmd)) | |
930 (funcall func (nth 3 cmd) nil))) | |
931 (ccl-compile-multiple-map-function 'map-multiple arg)) | |
932 nil) | |
933 | |
934 (defun ccl-compile-map-single (cmd) | |
935 (if (/= (length cmd) 4) | |
936 (error "CCL: Invalid number of arguments: %s" cmd)) | |
937 (let ((RRR (nth 1 cmd)) | |
938 (rrr (nth 2 cmd)) | |
939 (map (nth 3 cmd))) | |
940 (ccl-check-register rrr cmd) | |
941 (ccl-check-register RRR cmd) | |
942 (ccl-embed-extended-command 'map-single rrr RRR 0) | |
943 (cond ((symbolp map) | |
944 (if (get map 'code-conversion-map) | |
945 (ccl-embed-symbol map 'code-conversion-map-id) | |
946 (error "CCL: Invalid map: %s" map))) | |
947 (t | |
948 (error "CCL: Invalid type of arguments: %s" cmd)))) | |
949 nil) | |
950 | |
951 (defun ccl-compile-multiple-map-function (command cmd) | |
952 (if (< (length cmd) 4) | |
953 (error "CCL: Invalid number of arguments: %s" cmd)) | |
954 (let ((RRR (nth 1 cmd)) | |
955 (rrr (nth 2 cmd)) | |
956 (args (nthcdr 3 cmd)) | |
957 map) | |
958 (ccl-check-register rrr cmd) | |
959 (ccl-check-register RRR cmd) | |
960 (ccl-embed-extended-command command rrr RRR 0) | |
961 (ccl-embed-data (length args)) | |
962 (while args | |
963 (setq map (car args)) | |
964 (cond ((symbolp map) | |
965 (if (get map 'code-conversion-map) | |
966 (ccl-embed-symbol map 'code-conversion-map-id) | |
967 (error "CCL: Invalid map: %s" map))) | |
968 ((numberp map) | |
969 (ccl-embed-data map)) | |
970 (t | |
971 (error "CCL: Invalid type of arguments: %s" cmd))) | |
972 (setq args (cdr args))))) | |
973 | |
974 | |
975 ;;; CCL dump staffs | |
976 | |
977 ;; To avoid byte-compiler warning. | |
978 (defvar ccl-code) | |
979 | |
980 ;;;###autoload | |
981 (defun ccl-dump (ccl-code) | |
982 "Disassemble compiled CCL-CODE." | |
983 (let ((len (length ccl-code)) | |
984 (buffer-mag (aref ccl-code 0))) | |
985 (cond ((= buffer-mag 0) | |
986 (insert "Don't output anything.\n")) | |
987 ((= buffer-mag 1) | |
988 (insert "Out-buffer must be as large as in-buffer.\n")) | |
989 (t | |
990 (insert | |
991 (format "Out-buffer must be %d times bigger than in-buffer.\n" | |
992 buffer-mag)))) | |
993 (insert "Main-body:\n") | |
994 (setq ccl-current-ic 2) | |
995 (if (> (aref ccl-code 1) 0) | |
996 (progn | |
997 (while (< ccl-current-ic (aref ccl-code 1)) | |
998 (ccl-dump-1)) | |
999 (insert "At EOF:\n"))) | |
1000 (while (< ccl-current-ic len) | |
1001 (ccl-dump-1)) | |
1002 )) | |
1003 | |
1004 ;; Return a CCL code in `ccl-code' at `ccl-current-ic'. | |
1005 (defun ccl-get-next-code () | |
1006 (prog1 | |
1007 (aref ccl-code ccl-current-ic) | |
1008 (setq ccl-current-ic (1+ ccl-current-ic)))) | |
1009 | |
1010 (defun ccl-dump-1 () | |
1011 (let* ((code (ccl-get-next-code)) | |
1012 (cmd (aref ccl-code-table (logand code 31))) | |
1013 (rrr (ash (logand code 255) -5)) | |
1014 (cc (ash code -8))) | |
1015 (insert (format "%5d:[%s] " (1- ccl-current-ic) cmd)) | |
1016 (funcall (get cmd 'ccl-dump-function) rrr cc))) | |
1017 | |
1018 (defun ccl-dump-set-register (rrr cc) | |
1019 (insert (format "r%d = r%d\n" rrr cc))) | |
1020 | |
1021 (defun ccl-dump-set-short-const (rrr cc) | |
1022 (insert (format "r%d = %d\n" rrr cc))) | |
1023 | |
1024 (defun ccl-dump-set-const (rrr ignore) | |
1025 (insert (format "r%d = %d\n" rrr (ccl-get-next-code)))) | |
1026 | |
1027 (defun ccl-dump-set-array (rrr cc) | |
1028 (let ((rrr2 (logand cc 7)) | |
1029 (len (ash cc -3)) | |
1030 (i 0)) | |
1031 (insert (format "r%d = array[r%d] of length %d\n\t" | |
1032 rrr rrr2 len)) | |
1033 (while (< i len) | |
1034 (insert (format "%d " (ccl-get-next-code))) | |
1035 (setq i (1+ i))) | |
1036 (insert "\n"))) | |
1037 | |
1038 (defun ccl-dump-jump (ignore cc &optional address) | |
1039 (insert (format "jump to %d(" (+ (or address ccl-current-ic) cc))) | |
1040 (if (>= cc 0) | |
1041 (insert "+")) | |
1042 (insert (format "%d)\n" (1+ cc)))) | |
1043 | |
1044 (defun ccl-dump-jump-cond (rrr cc) | |
1045 (insert (format "if (r%d == 0), " rrr)) | |
1046 (ccl-dump-jump nil cc)) | |
1047 | |
1048 (defun ccl-dump-write-register-jump (rrr cc) | |
1049 (insert (format "write r%d, " rrr)) | |
1050 (ccl-dump-jump nil cc)) | |
1051 | |
1052 (defun ccl-dump-write-register-read-jump (rrr cc) | |
1053 (insert (format "write r%d, read r%d, " rrr rrr)) | |
1054 (ccl-dump-jump nil cc) | |
1055 (ccl-get-next-code) ; Skip dummy READ-JUMP | |
1056 ) | |
1057 | |
1058 (defun ccl-extract-arith-op (cc) | |
1059 (aref ccl-arith-table (ash cc -6))) | |
1060 | |
1061 (defun ccl-dump-write-expr-const (ignore cc) | |
1062 (insert (format "write (r%d %s %d)\n" | |
1063 (logand cc 7) | |
1064 (ccl-extract-arith-op cc) | |
1065 (ccl-get-next-code)))) | |
1066 | |
1067 (defun ccl-dump-write-expr-register (ignore cc) | |
1068 (insert (format "write (r%d %s r%d)\n" | |
1069 (logand cc 7) | |
1070 (ccl-extract-arith-op cc) | |
1071 (logand (ash cc -3) 7)))) | |
1072 | |
1073 (defun ccl-dump-insert-char (cc) | |
1074 (cond ((= cc ?\t) (insert " \"^I\"")) | |
1075 ((= cc ?\n) (insert " \"^J\"")) | |
1076 (t (insert (format " \"%c\"" cc))))) | |
1077 | |
1078 (defun ccl-dump-write-const-jump (ignore cc) | |
1079 (let ((address ccl-current-ic)) | |
1080 (insert "write char") | |
1081 (ccl-dump-insert-char (ccl-get-next-code)) | |
1082 (insert ", ") | |
1083 (ccl-dump-jump nil cc address))) | |
1084 | |
1085 (defun ccl-dump-write-const-read-jump (rrr cc) | |
1086 (let ((address ccl-current-ic)) | |
1087 (insert "write char") | |
1088 (ccl-dump-insert-char (ccl-get-next-code)) | |
1089 (insert (format ", read r%d, " rrr)) | |
1090 (ccl-dump-jump cc address) | |
1091 (ccl-get-next-code) ; Skip dummy READ-JUMP | |
1092 )) | |
1093 | |
1094 (defun ccl-dump-write-string-jump (ignore cc) | |
1095 (let ((address ccl-current-ic) | |
1096 (len (ccl-get-next-code)) | |
1097 (i 0)) | |
1098 (insert "write \"") | |
1099 (while (< i len) | |
1100 (let ((code (ccl-get-next-code))) | |
1101 (insert (ash code -16)) | |
1102 (if (< (1+ i) len) (insert (logand (ash code -8) 255))) | |
1103 (if (< (+ i 2) len) (insert (logand code 255)))) | |
1104 (setq i (+ i 3))) | |
1105 (insert "\", ") | |
1106 (ccl-dump-jump nil cc address))) | |
1107 | |
1108 (defun ccl-dump-write-array-read-jump (rrr cc) | |
1109 (let ((address ccl-current-ic) | |
1110 (len (ccl-get-next-code)) | |
1111 (i 0)) | |
1112 (insert (format "write array[r%d] of length %d,\n\t" rrr len)) | |
1113 (while (< i len) | |
1114 (ccl-dump-insert-char (ccl-get-next-code)) | |
1115 (setq i (1+ i))) | |
1116 (insert (format "\n\tthen read r%d, " rrr)) | |
1117 (ccl-dump-jump nil cc address) | |
1118 (ccl-get-next-code) ; Skip dummy READ-JUMP. | |
1119 )) | |
1120 | |
1121 (defun ccl-dump-read-jump (rrr cc) | |
1122 (insert (format "read r%d, " rrr)) | |
1123 (ccl-dump-jump nil cc)) | |
1124 | |
1125 (defun ccl-dump-branch (rrr len) | |
1126 (let ((jump-table-head ccl-current-ic) | |
1127 (i 0)) | |
1128 (insert (format "jump to array[r%d] of length %d\n\t" rrr len)) | |
1129 (while (<= i len) | |
1130 (insert (format "%d " (+ jump-table-head (ccl-get-next-code)))) | |
1131 (setq i (1+ i))) | |
1132 (insert "\n"))) | |
1133 | |
1134 (defun ccl-dump-read-register (rrr cc) | |
1135 (insert (format "read r%d (%d remaining)\n" rrr cc))) | |
1136 | |
1137 (defun ccl-dump-read-branch (rrr len) | |
1138 (insert (format "read r%d, " rrr)) | |
1139 (ccl-dump-branch rrr len)) | |
1140 | |
1141 (defun ccl-dump-write-register (rrr cc) | |
1142 (insert (format "write r%d (%d remaining)\n" rrr cc))) | |
1143 | |
1144 (defun ccl-dump-call (ignore cc) | |
1145 (insert (format "call subroutine #%d\n" cc))) | |
1146 | |
1147 (defun ccl-dump-write-const-string (rrr cc) | |
1148 (if (= rrr 0) | |
1149 (progn | |
1150 (insert "write char") | |
1151 (ccl-dump-insert-char cc) | |
1152 (newline)) | |
1153 (let ((len cc) | |
1154 (i 0)) | |
1155 (insert "write \"") | |
1156 (while (< i len) | |
1157 (let ((code (ccl-get-next-code))) | |
1158 (insert (format "%c" (lsh code -16))) | |
1159 (if (< (1+ i) len) | |
1160 (insert (format "%c" (logand (lsh code -8) 255)))) | |
1161 (if (< (+ i 2) len) | |
1162 (insert (format "%c" (logand code 255)))) | |
1163 (setq i (+ i 3)))) | |
1164 (insert "\"\n")))) | |
1165 | |
1166 (defun ccl-dump-write-array (rrr cc) | |
1167 (let ((i 0)) | |
1168 (insert (format "write array[r%d] of length %d\n\t" rrr cc)) | |
1169 (while (< i cc) | |
1170 (ccl-dump-insert-char (ccl-get-next-code)) | |
1171 (setq i (1+ i))) | |
1172 (insert "\n"))) | |
1173 | |
1174 (defun ccl-dump-end (&rest ignore) | |
1175 (insert "end\n")) | |
1176 | |
1177 (defun ccl-dump-set-assign-expr-const (rrr cc) | |
1178 (insert (format "r%d %s= %d\n" | |
1179 rrr | |
1180 (ccl-extract-arith-op cc) | |
1181 (ccl-get-next-code)))) | |
1182 | |
1183 (defun ccl-dump-set-assign-expr-register (rrr cc) | |
1184 (insert (format "r%d %s= r%d\n" | |
1185 rrr | |
1186 (ccl-extract-arith-op cc) | |
1187 (logand cc 7)))) | |
1188 | |
1189 (defun ccl-dump-set-expr-const (rrr cc) | |
1190 (insert (format "r%d = r%d %s %d\n" | |
1191 rrr | |
1192 (logand cc 7) | |
1193 (ccl-extract-arith-op cc) | |
1194 (ccl-get-next-code)))) | |
1195 | |
1196 (defun ccl-dump-set-expr-register (rrr cc) | |
1197 (insert (format "r%d = r%d %s r%d\n" | |
1198 rrr | |
1199 (logand cc 7) | |
1200 (ccl-extract-arith-op cc) | |
1201 (logand (ash cc -3) 7)))) | |
1202 | |
1203 (defun ccl-dump-jump-cond-expr-const (rrr cc) | |
1204 (let ((address ccl-current-ic)) | |
1205 (insert (format "if !(r%d %s %d), " | |
1206 rrr | |
1207 (aref ccl-arith-table (ccl-get-next-code)) | |
1208 (ccl-get-next-code))) | |
1209 (ccl-dump-jump nil cc address))) | |
1210 | |
1211 (defun ccl-dump-jump-cond-expr-register (rrr cc) | |
1212 (let ((address ccl-current-ic)) | |
1213 (insert (format "if !(r%d %s r%d), " | |
1214 rrr | |
1215 (aref ccl-arith-table (ccl-get-next-code)) | |
1216 (ccl-get-next-code))) | |
1217 (ccl-dump-jump nil cc address))) | |
1218 | |
1219 (defun ccl-dump-read-jump-cond-expr-const (rrr cc) | |
1220 (insert (format "read r%d, " rrr)) | |
1221 (ccl-dump-jump-cond-expr-const rrr cc)) | |
1222 | |
1223 (defun ccl-dump-read-jump-cond-expr-register (rrr cc) | |
1224 (insert (format "read r%d, " rrr)) | |
1225 (ccl-dump-jump-cond-expr-register rrr cc)) | |
1226 | |
1227 (defun ccl-dump-binary (ccl-code) | |
1228 (let ((len (length ccl-code)) | |
1229 (i 2)) | |
1230 (while (< i len) | |
1231 (let ((code (aref ccl-code i)) | |
1232 (j 27)) | |
1233 (while (>= j 0) | |
1234 (insert (if (= (logand code (ash 1 j)) 0) ?0 ?1)) | |
1235 (setq j (1- j))) | |
1236 (setq code (logand code 31)) | |
1237 (if (< code (length ccl-code-table)) | |
1238 (insert (format ":%s" (aref ccl-code-table code)))) | |
1239 (insert "\n")) | |
1240 (setq i (1+ i))))) | |
1241 | |
1242 (defun ccl-dump-ex-cmd (rrr cc) | |
1243 (let* ((RRR (logand cc #x7)) | |
1244 (Rrr (logand (ash cc -3) #x7)) | |
1245 (ex-op (aref ccl-extended-code-table (logand (ash cc -6) #x3fff)))) | |
1246 (insert (format "<%s> " ex-op)) | |
1247 (funcall (get ex-op 'ccl-dump-function) rrr RRR Rrr))) | |
1248 | |
1249 (defun ccl-dump-read-multibyte-character (rrr RRR Rrr) | |
1250 (insert (format "read-multibyte-character r%d r%d\n" RRR rrr))) | |
1251 | |
1252 (defun ccl-dump-write-multibyte-character (rrr RRR Rrr) | |
1253 (insert (format "write-multibyte-character r%d r%d\n" RRR rrr))) | |
1254 | |
1255 (defun ccl-dump-translate-character (rrr RRR Rrr) | |
1256 (insert (format "translation table(r%d) r%d r%d\n" Rrr RRR rrr))) | |
1257 | |
1258 (defun ccl-dump-translate-character-const-tbl (rrr RRR Rrr) | |
1259 (let ((tbl (ccl-get-next-code))) | |
1260 (insert (format "translation table(%S) r%d r%d\n" tbl RRR rrr)))) | |
1261 | |
1262 (defun ccl-dump-lookup-int-const-tbl (rrr RRR Rrr) | |
1263 (let ((tbl (ccl-get-next-code))) | |
1264 (insert (format "hash table(%S) r%d r%d\n" tbl RRR rrr)))) | |
1265 | |
1266 (defun ccl-dump-lookup-char-const-tbl (rrr RRR Rrr) | |
1267 (let ((tbl (ccl-get-next-code))) | |
1268 (insert (format "hash table(%S) r%d r%d\n" tbl RRR rrr)))) | |
1269 | |
1270 (defun ccl-dump-mule-to-unicode (rrr RRR Rrr) | |
1271 (insert (format "change chars in r%d and r%d to unicode\n" RRR rrr))) | |
1272 | |
1273 (defun ccl-dump-unicode-to-mule (rrr RRR Rrr) | |
1274 (insert (format "converter UCS code %d to a Mule char\n" rrr))) | |
1275 | |
1276 (defun ccl-dump-iterate-multiple-map (rrr RRR Rrr) | |
1277 (let ((notbl (ccl-get-next-code)) | |
1278 (i 0) id) | |
1279 (insert (format "iterate-multiple-map r%d r%d\n" RRR rrr)) | |
1280 (insert (format "\tnumber of maps is %d .\n\t [" notbl)) | |
1281 (while (< i notbl) | |
1282 (setq id (ccl-get-next-code)) | |
1283 (insert (format "%S" id)) | |
1284 (setq i (1+ i))) | |
1285 (insert "]\n"))) | |
1286 | |
1287 (defun ccl-dump-map-multiple (rrr RRR Rrr) | |
1288 (let ((notbl (ccl-get-next-code)) | |
1289 (i 0) id) | |
1290 (insert (format "map-multiple r%d r%d\n" RRR rrr)) | |
1291 (insert (format "\tnumber of maps and separators is %d\n\t [" notbl)) | |
1292 (while (< i notbl) | |
1293 (setq id (ccl-get-next-code)) | |
1294 (if (= id -1) | |
1295 (insert "]\n\t [") | |
1296 (insert (format "%S " id))) | |
1297 (setq i (1+ i))) | |
1298 (insert "]\n"))) | |
1299 | |
1300 (defun ccl-dump-map-single (rrr RRR Rrr) | |
1301 (let ((id (ccl-get-next-code))) | |
1302 (insert (format "map-single r%d r%d map(%S)\n" RRR rrr id)))) | |
1303 | |
1304 | |
1305 ;; CCL emulation staffs | |
1306 | |
1307 ;; Not yet implemented. | |
1308 | |
1309 ;; Auto-loaded functions. | |
1310 | |
1311 ;;;###autoload | |
1312 (defmacro declare-ccl-program (name &optional vector) | |
1313 "Declare NAME as a name of CCL program. | |
1314 | |
1315 This macro exists for backward compatibility. In the old version of | |
1316 Emacs, to compile a CCL program which calls another CCL program not | |
1317 yet defined, it must be declared as a CCL program in advance. But, | |
1318 now CCL program names are resolved not at compile time but before | |
1319 execution. | |
1320 | |
1321 Optional arg VECTOR is a compiled CCL code of the CCL program." | |
1322 `(put ',name 'ccl-program-idx (register-ccl-program ',name ,vector))) | |
1323 | |
1324 ;;;###autoload | |
1325 (defmacro define-ccl-program (name ccl-program &optional doc) | |
1326 "Set NAME to be the compiled CCL code of CCL-PROGRAM. | |
1327 | |
1328 CCL-PROGRAM has this form: | |
1329 (BUFFER_MAGNIFICATION | |
1330 CCL_MAIN_CODE | |
1331 [ CCL_EOF_CODE ]) | |
1332 | |
1333 BUFFER_MAGNIFICATION is an integer value specifying the approximate | |
1334 output buffer magnification size compared with the bytes of input data | |
1335 text. If the value is zero, the CCL program can't execute `read' and | |
1336 `write' commands. | |
1337 | |
1338 CCL_MAIN_CODE and CCL_EOF_CODE are CCL program codes. CCL_MAIN_CODE is | |
1339 executed first. If there are no more input data when a `read' command is | |
1340 executed in CCL_MAIN_CODE, CCL_EOF_CODE is executed. If CCL_MAIN_CODE is | |
1341 terminated, CCL_EOF_CODE is not executed. | |
1342 | |
1343 Here's the syntax of CCL program code in BNF notation. The lines starting | |
1344 with two semicolons (and optional leading spaces) describe the semantics. | |
1345 | |
1346 CCL_MAIN_CODE := CCL_BLOCK | |
1347 | |
1348 CCL_EOF_CODE := CCL_BLOCK | |
1349 | |
1350 CCL_BLOCK := STATEMENT | (STATEMENT [STATEMENT ...]) | |
1351 | |
1352 STATEMENT := | |
1353 SET | IF | BRANCH | LOOP | REPEAT | BREAK | READ | WRITE | CALL | |
1354 | TRANSLATE | MAP | LOOKUP | END | |
1355 | |
1356 SET := (REG = EXPRESSION) | |
1357 | (REG ASSIGNMENT_OPERATOR EXPRESSION) | |
1358 ;; The following form is the same as (r0 = INT-OR-CHAR). | |
1359 | INT-OR-CHAR | |
1360 | |
1361 EXPRESSION := ARG | (EXPRESSION OPERATOR ARG) | |
1362 | |
1363 ;; Evaluate EXPRESSION. If the result is nonzero, execute | |
1364 ;; CCL_BLOCK_0. Otherwise, execute CCL_BLOCK_1. | |
1365 IF := (if EXPRESSION CCL_BLOCK_0 [CCL_BLOCK_1]) | |
1366 | |
1367 ;; Evaluate EXPRESSION. Provided that the result is N, execute | |
1368 ;; CCL_BLOCK_N. | |
1369 BRANCH := (branch EXPRESSION CCL_BLOCK_0 [CCL_BLOCK_1 ...]) | |
1370 | |
1371 ;; Execute STATEMENTs until (break) or (end) is executed. | |
1372 LOOP := (loop STATEMENT [STATEMENT ...]) | |
1373 | |
1374 ;; Terminate the innermost loop. | |
1375 BREAK := (break) | |
1376 | |
1377 REPEAT := | |
1378 ;; Jump to the head of the innermost loop. | |
1379 (repeat) | |
1380 ;; Same as: ((write [REG | INT-OR-CHAR | string]) | |
1381 ;; (repeat)) | |
1382 | (write-repeat [REG | INT-OR-CHAR | string]) | |
1383 ;; Same as: ((write REG [ARRAY]) | |
1384 ;; (read REG) | |
1385 ;; (repeat)) | |
1386 | (write-read-repeat REG [ARRAY]) | |
1387 ;; Same as: ((write INT-OR-CHAR) | |
1388 ;; (read REG) | |
1389 ;; (repeat)) | |
1390 | (write-read-repeat REG INT-OR-CHAR) | |
1391 | |
1392 READ := ;; Set REG_0 to a byte read from the input text, set REG_1 | |
1393 ;; to the next byte read, and so on. Note that \"byte\" here means | |
1394 ;; \"some octet from XEmacs' internal representation\", which may | |
1395 ;; not be that useful to you when non-ASCII characters are involved. | |
1396 ;; | |
1397 ;; Yes, this is exactly the opposite of what (write ...) does. | |
1398 (read REG_0 [REG_1 ...]) | |
1399 ;; Same as: ((read REG) | |
1400 ;; (if (REG OPERATOR ARG) CCL_BLOCK_0 CCL_BLOCK_1)) | |
1401 | (read-if (REG OPERATOR ARG) CCL_BLOCK_0 [CCL_BLOCK_1]) | |
1402 ;; Same as: ((read REG) | |
1403 ;; (branch REG CCL_BLOCK_0 [CCL_BLOCK_1 ...])) | |
1404 | (read-branch REG CCL_BLOCK_0 [CCL_BLOCK_1 ...]) | |
1405 ;; Read a character from the input text, splitting it into its | |
1406 ;; multibyte representation. Set REG_0 to the charset ID of the | |
1407 ;; character, and set REG_1 to the code point of the character. If | |
1408 ;; the dimension of charset is two, set REG_1 to ((CODE0 << 7) | | |
1409 ;; CODE1), where CODE0 is the first code point and CODE1 is the | |
1410 ;; second code point. | |
1411 | (read-multibyte-character REG_0 REG_1) | |
1412 | |
1413 WRITE := | |
1414 ;; Write REG_0, REG_1, ... to the output buffer. If REG_N is | |
1415 ;; a multibyte character, write the corresponding multibyte | |
1416 ;; representation. | |
1417 (write REG_0 [REG_1 ...]) | |
1418 ;; Same as: ((r7 = EXPRESSION) | |
1419 ;; (write r7)) | |
1420 | (write EXPRESSION) | |
1421 ;; Write the value of `INT-OR-CHAR' to the output buffer. If it | |
1422 ;; is a multibyte character, write the corresponding multibyte | |
1423 ;; representation. | |
1424 | (write INT-OR-CHAR) | |
1425 ;; Write the byte sequence of `string' as is to the output | |
1426 ;; buffer. It is encoded by binary coding system, thus, | |
1427 ;; by this operation, you cannot write multibyte string | |
1428 ;; as it is. | |
1429 | (write string) | |
1430 ;; Same as: (write string) | |
1431 | string | |
1432 ;; Provided that the value of REG is N, write Nth element of | |
1433 ;; ARRAY to the output buffer. If it is a multibyte | |
1434 ;; character, write the corresponding multibyte | |
1435 ;; representation. | |
1436 | (write REG ARRAY) | |
1437 ;; Write a multibyte representation of a character whose | |
1438 ;; charset ID is REG_0 and code point is REG_1. If the | |
1439 ;; dimension of the charset is two, REG_1 should be ((CODE0 << | |
1440 ;; 7) | CODE1), where CODE0 is the first code point and CODE1 | |
1441 ;; is the second code point of the character. | |
1442 | (write-multibyte-character REG_0 REG_1) | |
1443 | |
1444 ;; Call CCL program whose name is ccl-program-name. | |
1445 CALL := (call ccl-program-name) | |
1446 | |
1447 TRANSLATE := ;; Not implemented under XEmacs, except mule-to-unicode and | |
1448 ;; unicode-to-mule. | |
1449 (translate-character REG(table) REG(charset) REG(codepoint)) | |
1450 | (translate-character SYMBOL REG(charset) REG(codepoint)) | |
1451 | (mule-to-unicode REG(charset) REG(codepoint)) | |
1452 | (unicode-to-mule REG(unicode,code) REG(CHARSET)) | |
1453 | |
1454 LOOKUP := | |
1455 (lookup-character SYMBOL REG(charset) REG(codepoint)) | |
1456 | (lookup-integer SYMBOL REG(integer)) | |
1457 ;; SYMBOL refers to a table defined by `define-hash-translation-table'. | |
1458 | |
1459 MAP := | |
1460 (iterate-multiple-map REG REG MAP-IDs) | |
1461 | (map-multiple REG REG (MAP-SET)) | |
1462 | (map-single REG REG MAP-ID) | |
1463 MAP-IDs := MAP-ID ... | |
1464 MAP-SET := MAP-IDs | (MAP-IDs) MAP-SET | |
1465 MAP-ID := INT-OR-CHAR | |
1466 | |
1467 ;; Terminate the CCL program. | |
1468 END := (end) | |
1469 | |
1470 ;; CCL registers. These can contain any integer value. As r7 is used by the | |
1471 ;; CCL interpreter itself, its value can change unexpectedly. | |
1472 REG := r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7 | |
1473 | |
1474 ARG := REG | INT-OR-CHAR | |
1475 | |
1476 OPERATOR := | |
1477 ;; Normal arithmetical operators (same meaning as C code). | |
1478 + | - | * | / | % | |
1479 | |
1480 ;; Bitwise operators (same meaning as C code) | |
1481 | & | `|' | ^ | |
1482 | |
1483 ;; Shifting operators (same meaning as C code) | |
1484 | << | >> | |
1485 | |
1486 ;; (REG = ARG_0 <8 ARG_1) means: | |
1487 ;; (REG = ((ARG_0 << 8) | ARG_1)) | |
1488 | <8 | |
1489 | |
1490 ;; (REG = ARG_0 >8 ARG_1) means: | |
1491 ;; ((REG = (ARG_0 >> 8)) | |
1492 ;; (r7 = (ARG_0 & 255))) | |
1493 | >8 | |
1494 | |
1495 ;; (REG = ARG_0 // ARG_1) means: | |
1496 ;; ((REG = (ARG_0 / ARG_1)) | |
1497 ;; (r7 = (ARG_0 % ARG_1))) | |
1498 | // | |
1499 | |
1500 ;; Normal comparing operators (same meaning as C code) | |
1501 | < | > | == | <= | >= | != | |
1502 | |
1503 ;; If ARG_0 and ARG_1 are higher and lower byte of Shift-JIS | |
1504 ;; code, and CHAR is the corresponding JISX0208 character, | |
1505 ;; (REG = ARG_0 de-sjis ARG_1) means: | |
1506 ;; ((REG = CODE0) | |
1507 ;; (r7 = CODE1)) | |
1508 ;; where CODE0 is the first code point of CHAR, CODE1 is the | |
1509 ;; second code point of CHAR. | |
1510 | de-sjis | |
1511 | |
1512 ;; If ARG_0 and ARG_1 are the first and second code point of | |
1513 ;; JISX0208 character CHAR, and SJIS is the correponding | |
1514 ;; Shift-JIS code, | |
1515 ;; (REG = ARG_0 en-sjis ARG_1) means: | |
1516 ;; ((REG = HIGH) | |
1517 ;; (r7 = LOW)) | |
1518 ;; where HIGH is the higher byte of SJIS, LOW is the lower | |
1519 ;; byte of SJIS. | |
1520 | en-sjis | |
1521 | |
1522 ASSIGNMENT_OPERATOR := | |
1523 ;; Same meaning as C code | |
1524 += | -= | *= | /= | %= | &= | `|=' | ^= | <<= | >>= | |
1525 | |
1526 ;; (REG <8= ARG) is the same as: | |
1527 ;; ((REG <<= 8) | |
1528 ;; (REG |= ARG)) | |
1529 | <8= | |
1530 | |
1531 ;; (REG >8= ARG) is the same as: | |
1532 ;; ((r7 = (REG & 255)) | |
1533 ;; (REG >>= 8)) | |
1534 | |
1535 ;; (REG //= ARG) is the same as: | |
1536 ;; ((r7 = (REG % ARG)) | |
1537 ;; (REG /= ARG)) | |
1538 | //= | |
1539 | |
1540 ARRAY := `[' INT-OR-CHAR ... `]' | |
1541 | |
1542 INT-OR-CHAR := integer | character | |
1543 " | |
1544 `(let ((prog ,(ccl-compile (eval ccl-program)))) | |
1545 (defconst ,name prog ,doc) | |
1546 (put ',name 'ccl-program-idx (register-ccl-program ',name prog)) | |
1547 nil)) | |
1548 | |
1549 ;;;###autoload | |
1550 (defmacro check-ccl-program (ccl-program &optional name) | |
1551 "Check validity of CCL-PROGRAM. | |
1552 If CCL-PROGRAM is a symbol denoting a CCL program, return | |
1553 CCL-PROGRAM, else return nil. | |
1554 If CCL-PROGRAM is a vector and optional arg NAME (symbol) is supplied, | |
1555 register CCL-PROGRAM by name NAME, and return NAME." | |
1556 `(if (ccl-program-p ,ccl-program) | |
1557 (if (vectorp ,ccl-program) | |
1558 (progn | |
1559 (register-ccl-program ,name ,ccl-program) | |
1560 ,name) | |
1561 ,ccl-program))) | |
1562 | |
1563 (provide 'ccl) | |
1564 | |
1565 ;; ccl.el ends here |