Mercurial > hg > xemacs-beta
comparison src/unexelfsgi.c @ 371:cc15677e0335 r21-2b1
Import from CVS: tag r21-2b1
author | cvs |
---|---|
date | Mon, 13 Aug 2007 11:03:08 +0200 |
parents | a4f53d9b3154 |
children | 7d59cb494b73 |
comparison
equal
deleted
inserted
replaced
370:bd866891f083 | 371:cc15677e0335 |
---|---|
1 /* Copyright (C) 1985, 1986, 1987, 1988, 1990, 1992, 1999, 2000 | 1 /* Copyright (C) 1985, 1986, 1987, 1988, 1990, 1992 |
2 Free Software Foundation, Inc. | 2 Free Software Foundation, Inc. |
3 | 3 |
4 This file is part of XEmacs. | 4 This file is part of XEmacs. |
5 | 5 |
6 XEmacs is free software; you can redistribute it and/or modify it | 6 XEmacs is free software; you can redistribute it and/or modify it |
7 under the terms of the GNU General Public License as published by | 7 under the terms of the GNU General Public License as published by the |
8 the Free Software Foundation; either version 2, or (at your option) | 8 Free Software Foundation; either version 2, or (at your option) any |
9 any later version. | 9 later version. |
10 | 10 |
11 GNU Emacs is distributed in the hope that it will be useful, but | 11 XEmacs is distributed in the hope that it will be useful, but WITHOUT |
12 WITHOUT ANY WARRANTY; without even the implied warranty of | 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
14 General Public License for more details. | 14 for more details. |
15 | 15 |
16 You should have received a copy of the GNU General Public License | 16 You should have received a copy of the GNU General Public License |
17 along with GNU Emacs; see the file COPYING. If not, write to the | 17 along with XEmacs; see the file COPYING. If not, write to |
18 Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
19 Boston, MA 02111-1307, USA. | 19 Boston, MA 02111-1307, USA. */ |
20 | 20 |
21 In other words, you are welcome to use, share and improve this | 21 /* Synched up with: FSF 19.31. */ |
22 program. You are forbidden to forbid anyone else to use, share and | |
23 improve what you give them. Help stamp out software-hoarding! */ | |
24 | 22 |
25 | 23 |
26 /* | 24 /* |
27 * unexec.c - Convert a running program into an a.out file. | 25 * unexec.c - Convert a running program into an a.out file. |
28 * | 26 * |
31 * University of Utah | 29 * University of Utah |
32 * Date: Tue Mar 2 1982 | 30 * Date: Tue Mar 2 1982 |
33 * Modified heavily since then. | 31 * Modified heavily since then. |
34 * | 32 * |
35 * Synopsis: | 33 * Synopsis: |
36 * void | 34 * unexec (new_name, a_name, data_start, bss_start, entry_address) |
37 * unexec (char *new_name, | 35 * char *new_name, *a_name; |
38 * char *old_name, | 36 * unsigned data_start, bss_start, entry_address; |
39 * uintptr_t data_start, | 37 * |
40 * uintptr_t bss_start, | 38 * Takes a snapshot of the program and makes an a.out format file in the |
41 * uintptr_t entry_address) | 39 * file named by the string argument new_name. |
42 * | 40 * If a_name is non-NULL, the symbol table will be taken from the given file. |
43 * The basic idea is that we start with an ELF file which contains | 41 * On some machines, an existing a_name file is required. |
44 * .bss (uninitialized global data) section which is normally not in | 42 * |
45 * the file. As we load lisp the variables, which were first set to 0, | 43 * The boundaries within the a.out file may be adjusted with the data_start |
46 * will change their values. We want to save those changed values into | 44 * and bss_start arguments. Either or both may be given as 0 for defaults. |
47 * another ELF file, which will become a new xemacs image. To do this, | 45 * |
48 * we need to change several structures in the ELF file. | 46 * Data_start gives the boundary between the text segment and the data |
49 * | 47 * segment of the program. The text segment can contain shared, read-only |
50 * First of all, we need to change the programm header which tells | 48 * program code and literal data, while the data segment is always unshared |
51 * the linker how to load stuff into memory so that data will come | 49 * and unprotected. Data_start gives the lowest unprotected address. |
52 * from the file and not from the /dev/zero. To do this, we find the | 50 * The value you specify may be rounded down to a suitable boundary |
53 * segment, which is marked as loadable (type PT_LOAD) and which | 51 * as required by the machine you are using. |
54 * covers the old .bss section. We will next change the filesz and | 52 * |
55 * memsz for that segment to extend over the new data section. | 53 * Specifying zero for data_start means the boundary between text and data |
56 * | 54 * should not be the same as when the program was loaded. |
57 * Next we have to make sure that section header for the stuff which | 55 * If NO_REMAP is defined, the argument data_start is ignored and the |
58 * used to be uninitialized is changed to be initialized and to come | 56 * segment boundaries are never changed. |
59 * from the file. To do this, we change the size and the type of the old | 57 * |
60 * .bss section (and all other section of the type SHT_NOBITS) to cover the | 58 * Bss_start indicates how much of the data segment is to be saved in the |
61 * new section and to be of type SHT_PROCBITS. | 59 * a.out file and restored when the program is executed. It gives the lowest |
62 * | 60 * unsaved address, and is rounded up to a page boundary. The default when 0 |
63 * We also insert a new SHT_NOBITS section to keep some tools, which expect | 61 * is given assumes that the entire data segment is to be stored, including |
64 * .bss happy. | 62 * the previous data and bss as well as any additional storage allocated with |
65 * | 63 * break (2). |
66 * Finally we need to patch up some references to the section | 64 * |
67 * indexes since we change the order and undo the relocation info to | 65 * The new file is set up to start at entry_address. |
68 * be the same as it was "before" because we actually used the data | 66 * |
69 * from the memory which were changed by the run-time linker. | 67 * If you make improvements I'd like to get them too. |
68 * harpo!utah-cs!thomas, thomas@Utah-20 | |
69 * | |
70 */ | |
71 | |
72 /* Even more heavily modified by james@bigtex.cactus.org of Dell Computer Co. | |
73 * ELF support added. | |
74 * | |
75 * Basic theory: the data space of the running process needs to be | |
76 * dumped to the output file. Normally we would just enlarge the size | |
77 * of .data, scooting everything down. But we can't do that in ELF, | |
78 * because there is often something between the .data space and the | |
79 * .bss space. | |
80 * | |
81 * In the temacs dump below, notice that the Global Offset Table | |
82 * (.got) and the Dynamic link data (.dynamic) come between .data1 and | |
83 * .bss. It does not work to overlap .data with these fields. | |
84 * | |
85 * The solution is to create a new .data segment. This segment is | |
86 * filled with data from the current process. Since the contents of | |
87 * various sections refer to sections by index, the new .data segment | |
88 * is made the last in the table to avoid changing any existing index. | |
89 | |
90 * This is an example of how the section headers are changed. "Addr" | |
91 * is a process virtual address. "Offset" is a file offset. | |
92 | |
93 raid:/nfs/raid/src/dist-18.56/src> dump -h temacs | |
94 | |
95 temacs: | |
96 | |
97 **** SECTION HEADER TABLE **** | |
98 [No] Type Flags Addr Offset Size Name | |
99 Link Info Adralgn Entsize | |
100 | |
101 [1] 1 2 0x80480d4 0xd4 0x13 .interp | |
102 0 0 0x1 0 | |
103 | |
104 [2] 5 2 0x80480e8 0xe8 0x388 .hash | |
105 3 0 0x4 0x4 | |
106 | |
107 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym | |
108 4 1 0x4 0x10 | |
109 | |
110 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr | |
111 0 0 0x1 0 | |
112 | |
113 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt | |
114 3 7 0x4 0x8 | |
115 | |
116 [6] 1 6 0x8049348 0x1348 0x3 .init | |
117 0 0 0x4 0 | |
118 | |
119 [7] 1 6 0x804934c 0x134c 0x680 .plt | |
120 0 0 0x4 0x4 | |
121 | |
122 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text | |
123 0 0 0x4 0 | |
124 | |
125 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini | |
126 0 0 0x4 0 | |
127 | |
128 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata | |
129 0 0 0x4 0 | |
130 | |
131 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1 | |
132 0 0 0x4 0 | |
133 | |
134 [12] 1 3 0x8088330 0x3f330 0x20afc .data | |
135 0 0 0x4 0 | |
136 | |
137 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1 | |
138 0 0 0x4 0 | |
139 | |
140 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got | |
141 0 0 0x4 0x4 | |
142 | |
143 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic | |
144 4 0 0x4 0x8 | |
145 | |
146 [16] 8 3 0x80a98f4 0x608f4 0x449c .bss | |
147 0 0 0x4 0 | |
148 | |
149 [17] 2 0 0 0x608f4 0x9b90 .symtab | |
150 18 371 0x4 0x10 | |
151 | |
152 [18] 3 0 0 0x6a484 0x8526 .strtab | |
153 0 0 0x1 0 | |
154 | |
155 [19] 3 0 0 0x729aa 0x93 .shstrtab | |
156 0 0 0x1 0 | |
157 | |
158 [20] 1 0 0 0x72a3d 0x68b7 .comment | |
159 0 0 0x1 0 | |
160 | |
161 raid:/nfs/raid/src/dist-18.56/src> dump -h xemacs | |
162 | |
163 xemacs: | |
164 | |
165 **** SECTION HEADER TABLE **** | |
166 [No] Type Flags Addr Offset Size Name | |
167 Link Info Adralgn Entsize | |
168 | |
169 [1] 1 2 0x80480d4 0xd4 0x13 .interp | |
170 0 0 0x1 0 | |
171 | |
172 [2] 5 2 0x80480e8 0xe8 0x388 .hash | |
173 3 0 0x4 0x4 | |
174 | |
175 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym | |
176 4 1 0x4 0x10 | |
177 | |
178 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr | |
179 0 0 0x1 0 | |
180 | |
181 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt | |
182 3 7 0x4 0x8 | |
183 | |
184 [6] 1 6 0x8049348 0x1348 0x3 .init | |
185 0 0 0x4 0 | |
186 | |
187 [7] 1 6 0x804934c 0x134c 0x680 .plt | |
188 0 0 0x4 0x4 | |
189 | |
190 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text | |
191 0 0 0x4 0 | |
192 | |
193 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini | |
194 0 0 0x4 0 | |
195 | |
196 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata | |
197 0 0 0x4 0 | |
198 | |
199 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1 | |
200 0 0 0x4 0 | |
201 | |
202 [12] 1 3 0x8088330 0x3f330 0x20afc .data | |
203 0 0 0x4 0 | |
204 | |
205 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1 | |
206 0 0 0x4 0 | |
207 | |
208 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got | |
209 0 0 0x4 0x4 | |
210 | |
211 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic | |
212 4 0 0x4 0x8 | |
213 | |
214 [16] 8 3 0x80c6800 0x7d800 0 .bss | |
215 0 0 0x4 0 | |
216 | |
217 [17] 2 0 0 0x7d800 0x9b90 .symtab | |
218 18 371 0x4 0x10 | |
219 | |
220 [18] 3 0 0 0x87390 0x8526 .strtab | |
221 0 0 0x1 0 | |
222 | |
223 [19] 3 0 0 0x8f8b6 0x93 .shstrtab | |
224 0 0 0x1 0 | |
225 | |
226 [20] 1 0 0 0x8f949 0x68b7 .comment | |
227 0 0 0x1 0 | |
228 | |
229 [21] 1 3 0x80a98f4 0x608f4 0x1cf0c .data | |
230 0 0 0x4 0 | |
231 | |
232 * This is an example of how the file header is changed. "Shoff" is | |
233 * the section header offset within the file. Since that table is | |
234 * after the new .data section, it is moved. "Shnum" is the number of | |
235 * sections, which we increment. | |
236 * | |
237 * "Phoff" is the file offset to the program header. "Phentsize" and | |
238 * "Shentsz" are the program and section header entries sizes respectively. | |
239 * These can be larger than the apparent struct sizes. | |
240 | |
241 raid:/nfs/raid/src/dist-18.56/src> dump -f temacs | |
242 | |
243 temacs: | |
244 | |
245 **** ELF HEADER **** | |
246 Class Data Type Machine Version | |
247 Entry Phoff Shoff Flags Ehsize | |
248 Phentsize Phnum Shentsz Shnum Shstrndx | |
249 | |
250 1 1 2 3 1 | |
251 0x80499cc 0x34 0x792f4 0 0x34 | |
252 0x20 5 0x28 21 19 | |
253 | |
254 raid:/nfs/raid/src/dist-18.56/src> dump -f xemacs | |
255 | |
256 xemacs: | |
257 | |
258 **** ELF HEADER **** | |
259 Class Data Type Machine Version | |
260 Entry Phoff Shoff Flags Ehsize | |
261 Phentsize Phnum Shentsz Shnum Shstrndx | |
262 | |
263 1 1 2 3 1 | |
264 0x80499cc 0x34 0x96200 0 0x34 | |
265 0x20 5 0x28 22 19 | |
266 | |
267 * These are the program headers. "Offset" is the file offset to the | |
268 * segment. "Vaddr" is the memory load address. "Filesz" is the | |
269 * segment size as it appears in the file, and "Memsz" is the size in | |
270 * memory. Below, the third segment is the code and the fourth is the | |
271 * data: the difference between Filesz and Memsz is .bss | |
272 | |
273 raid:/nfs/raid/src/dist-18.56/src> dump -o temacs | |
274 | |
275 temacs: | |
276 ***** PROGRAM EXECUTION HEADER ***** | |
277 Type Offset Vaddr Paddr | |
278 Filesz Memsz Flags Align | |
279 | |
280 6 0x34 0x8048034 0 | |
281 0xa0 0xa0 5 0 | |
282 | |
283 3 0xd4 0 0 | |
284 0x13 0 4 0 | |
285 | |
286 1 0x34 0x8048034 0 | |
287 0x3f2f9 0x3f2f9 5 0x1000 | |
288 | |
289 1 0x3f330 0x8088330 0 | |
290 0x215c4 0x25a60 7 0x1000 | |
291 | |
292 2 0x60874 0x80a9874 0 | |
293 0x80 0 7 0 | |
294 | |
295 raid:/nfs/raid/src/dist-18.56/src> dump -o xemacs | |
296 | |
297 xemacs: | |
298 ***** PROGRAM EXECUTION HEADER ***** | |
299 Type Offset Vaddr Paddr | |
300 Filesz Memsz Flags Align | |
301 | |
302 6 0x34 0x8048034 0 | |
303 0xa0 0xa0 5 0 | |
304 | |
305 3 0xd4 0 0 | |
306 0x13 0 4 0 | |
307 | |
308 1 0x34 0x8048034 0 | |
309 0x3f2f9 0x3f2f9 5 0x1000 | |
310 | |
311 1 0x3f330 0x8088330 0 | |
312 0x3e4d0 0x3e4d0 7 0x1000 | |
313 | |
314 2 0x60874 0x80a9874 0 | |
315 0x80 0 7 0 | |
316 | |
317 | |
70 */ | 318 */ |
71 | 319 |
72 #ifndef emacs | 320 /* Modified by wtien@urbana.mcd.mot.com of Motorola Inc. |
73 #define fatal(a, b, c) fprintf (stderr, a, b, c), exit (1) | 321 * |
74 #include <string.h> | 322 * The above mechanism does not work if the unexeced ELF file is being |
75 #else | 323 * re-layout by other applications (such as `strip'). All the applications |
76 #include <config.h> | 324 * that re-layout the internal of ELF will layout all sections in ascending |
77 extern void fatal (const char *, ...); | 325 * order of their file offsets. After the re-layout, the data2 section will |
78 #endif | 326 * still be the LAST section in the section header vector, but its file offset |
79 | 327 * is now being pushed far away down, and causes part of it not to be mapped |
328 * in (ie. not covered by the load segment entry in PHDR vector), therefore | |
329 * causes the new binary to fail. | |
330 * | |
331 * The solution is to modify the unexec algorithm to insert the new data2 | |
332 * section header right before the new bss section header, so their file | |
333 * offsets will be in the ascending order. Since some of the section's (all | |
334 * sections AFTER the bss section) indexes are now changed, we also need to | |
335 * modify some fields to make them point to the right sections. This is done | |
336 * by macro PATCH_INDEX. All the fields that need to be patched are: | |
337 * | |
338 * 1. ELF header e_shstrndx field. | |
339 * 2. section header sh_link and sh_info field. | |
340 * 3. symbol table entry st_shndx field. | |
341 * | |
342 * The above example now should look like: | |
343 | |
344 **** SECTION HEADER TABLE **** | |
345 [No] Type Flags Addr Offset Size Name | |
346 Link Info Adralgn Entsize | |
347 | |
348 [1] 1 2 0x80480d4 0xd4 0x13 .interp | |
349 0 0 0x1 0 | |
350 | |
351 [2] 5 2 0x80480e8 0xe8 0x388 .hash | |
352 3 0 0x4 0x4 | |
353 | |
354 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym | |
355 4 1 0x4 0x10 | |
356 | |
357 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr | |
358 0 0 0x1 0 | |
359 | |
360 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt | |
361 3 7 0x4 0x8 | |
362 | |
363 [6] 1 6 0x8049348 0x1348 0x3 .init | |
364 0 0 0x4 0 | |
365 | |
366 [7] 1 6 0x804934c 0x134c 0x680 .plt | |
367 0 0 0x4 0x4 | |
368 | |
369 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text | |
370 0 0 0x4 0 | |
371 | |
372 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini | |
373 0 0 0x4 0 | |
374 | |
375 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata | |
376 0 0 0x4 0 | |
377 | |
378 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1 | |
379 0 0 0x4 0 | |
380 | |
381 [12] 1 3 0x8088330 0x3f330 0x20afc .data | |
382 0 0 0x4 0 | |
383 | |
384 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1 | |
385 0 0 0x4 0 | |
386 | |
387 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got | |
388 0 0 0x4 0x4 | |
389 | |
390 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic | |
391 4 0 0x4 0x8 | |
392 | |
393 [16] 1 3 0x80a98f4 0x608f4 0x1cf0c .data | |
394 0 0 0x4 0 | |
395 | |
396 [17] 8 3 0x80c6800 0x7d800 0 .bss | |
397 0 0 0x4 0 | |
398 | |
399 [18] 2 0 0 0x7d800 0x9b90 .symtab | |
400 19 371 0x4 0x10 | |
401 | |
402 [19] 3 0 0 0x87390 0x8526 .strtab | |
403 0 0 0x1 0 | |
404 | |
405 [20] 3 0 0 0x8f8b6 0x93 .shstrtab | |
406 0 0 0x1 0 | |
407 | |
408 [21] 1 0 0 0x8f949 0x68b7 .comment | |
409 0 0 0x1 0 | |
410 | |
411 */ | |
412 | |
413 /* More mods, by Jack Repenning <jackr@sgi.com>, Fri Aug 11 15:45:52 1995 | |
414 | |
415 Same algorithm as immediately above. However, the detailed | |
416 calculations of the various locations needed significant | |
417 overhaul. | |
418 | |
419 At the point of the old .bss, the file offsets and the memory | |
420 addresses do distinct, slightly snaky things: | |
421 | |
422 offset of .bss is meaningless and unpredictable | |
423 addr of .bss is meaningful | |
424 alignment of .bss is important to addr, so there may be a small | |
425 gap in address range before start of bss | |
426 offset of next section is rounded up modulo 0x1000 | |
427 the hole so-introduced is zero-filled, so it can be mapped in as | |
428 the first partial-page of bss (the rest of the bss is mapped from | |
429 /dev/zero) | |
430 I suppose you could view this not as a hole, but as the beginning | |
431 of the bss, actually present in the file. But you should not | |
432 push that worldview too far, as the linker still knows that the | |
433 "offset" claimed for the bss is unused, and seems not always | |
434 careful about setting it. | |
435 | |
436 We are doing all our tricks at this same rather complicated | |
437 location (isn't life fun?): | |
438 | |
439 insert a new data section to contain now-initialized old bss and | |
440 heap | |
441 define a zero-length bss just so there is one | |
442 | |
443 The offset of the new data section is dictated by its current | |
444 address (which, of course, we want also to be its addr): the | |
445 loader maps in the whole file region containing old data, rodata, | |
446 got, and new data as a single mapped segment, starting at the | |
447 address of the first chunk; the rest have to be laid out in the | |
448 file such that the map into the right spots. That is: | |
449 | |
450 offset(newdata) == | |
451 addrInRunningMemory(newdata)-aIRM(olddata) | |
452 + offset(oldData) | |
453 | |
454 This would not necessarily match the oldbss offset, even if it | |
455 were carefully calculated! We must compute this. | |
456 | |
457 The linker that built temacs has also already arranged that | |
458 olddata is properly page-aligned (not necessarily beginning on a | |
459 page, but rather that a page's worth of the low bits of addr and | |
460 offset match). We preserve this. | |
461 | |
462 addr(bss) is alignment-constrained from the end of the new data. | |
463 Since we base endof(newdata) on sbrk(), we have a page boundary | |
464 (in both offset and addr) and meet any alignment constraint, | |
465 needing no alignment adjustment of this location and no | |
466 mini-hole. Or, if you like, we've allowed sbrk() to "compute" | |
467 the mini-hole size for us. | |
468 | |
469 That puts newbss beginning on a page boundary, both in offset and | |
470 addr. (offset(bss) is still meaningless, but what the heck, | |
471 we'll fix it up.) | |
472 | |
473 Since newbss has zero length, and its offset (however | |
474 meaningless) is page aligned, we place the next section exactly | |
475 there, with no hole needed to restore page alignment. | |
476 | |
477 So, the shift for all sections beyond the playing field is: | |
478 | |
479 new_bss_addr - roundup(old_bss_addr,0x1000) | |
480 | |
481 */ | |
482 /* Still more mods... Olivier Galibert 19971705 | |
483 - support for .sbss section (automagically changed to data without | |
484 name change) | |
485 - support for 64bits ABI (will need a bunch of fixes in the rest | |
486 of the code before it works | |
487 */ | |
488 | |
80 #include <sys/types.h> | 489 #include <sys/types.h> |
81 #include <stdio.h> | 490 #include <stdio.h> |
82 #include <sys/stat.h> | 491 #include <sys/stat.h> |
83 #include <memory.h> | 492 #include <memory.h> |
493 #include <string.h> | |
84 #include <errno.h> | 494 #include <errno.h> |
85 #include <unistd.h> | 495 #include <unistd.h> |
86 #include <fcntl.h> | 496 #include <fcntl.h> |
87 #include <elf.h> | 497 #include <elf.h> |
498 #include <sym.h> /* for HDRR declaration */ | |
88 #include <sys/mman.h> | 499 #include <sys/mman.h> |
89 #if defined (__sony_news) && defined (_SYSTYPE_SYSV) | 500 #include <config.h> |
90 #include <sys/elf_mips.h> | 501 #include "lisp.h" |
91 #include <sym.h> | 502 |
92 #endif /* __sony_news && _SYSTYPE_SYSV */ | 503 /* in 64bits mode, use 64bits elf */ |
93 #if __sgi | 504 #ifdef _ABI64 |
94 #include <syms.h> /* for HDRR declaration */ | 505 typedef Elf64_Shdr l_Elf_Shdr; |
95 #endif /* __sgi */ | 506 typedef Elf64_Phdr l_Elf_Phdr; |
96 | 507 typedef Elf64_Ehdr l_Elf_Ehdr; |
97 #if __GNU_LIBRARY__ - 0 >= 6 | 508 typedef Elf64_Addr l_Elf_Addr; |
98 # include <link.h> /* get ElfW etc */ | 509 typedef Elf64_Word l_Elf_Word; |
510 typedef Elf64_Off l_Elf_Off; | |
511 typedef Elf64_Sym l_Elf_Sym; | |
512 #else | |
513 typedef Elf32_Shdr l_Elf_Shdr; | |
514 typedef Elf32_Phdr l_Elf_Phdr; | |
515 typedef Elf32_Ehdr l_Elf_Ehdr; | |
516 typedef Elf32_Addr l_Elf_Addr; | |
517 typedef Elf32_Word l_Elf_Word; | |
518 typedef Elf32_Off l_Elf_Off; | |
519 typedef Elf32_Sym l_Elf_Sym; | |
99 #endif | 520 #endif |
100 | 521 |
101 #ifndef ElfW | |
102 # ifdef __STDC__ | |
103 # define ElfBitsW(bits, type) Elf##bits##_##type | |
104 # else | |
105 # define ElfBitsW(bits, type) Elf/**/bits/**/_/**/type | |
106 # endif | |
107 # ifdef _LP64 | |
108 # define ELFSIZE 64 | |
109 # else | |
110 # define ELFSIZE 32 | |
111 # endif | |
112 /* This macro expands `bits' before invoking ElfBitsW. */ | |
113 # define ElfExpandBitsW(bits, type) ElfBitsW (bits, type) | |
114 # define ElfW(type) ElfExpandBitsW (ELFSIZE, type) | |
115 #endif | |
116 | |
117 #ifndef ELF_BSS_SECTION_NAME | |
118 #define ELF_BSS_SECTION_NAME ".bss" | |
119 #endif | |
120 | 522 |
121 /* Get the address of a particular section or program header entry, | 523 /* Get the address of a particular section or program header entry, |
122 * accounting for the size of the entries. */ | 524 * accounting for the size of the entries. |
525 */ | |
123 | 526 |
124 #define OLD_SECTION_H(n) \ | 527 #define OLD_SECTION_H(n) \ |
125 (*(ElfW(Shdr) *) ((byte *) old_section_h + old_file_h->e_shentsize * (n))) | 528 (*(l_Elf_Shdr *) ((byte *) old_section_h + old_file_h->e_shentsize * (n))) |
126 #define NEW_SECTION_H(n) \ | 529 #define NEW_SECTION_H(n) \ |
127 (*(ElfW(Shdr) *) ((byte *) new_section_h + new_file_h->e_shentsize * (n))) | 530 (*(l_Elf_Shdr *) ((byte *) new_section_h + new_file_h->e_shentsize * (n))) |
128 #define OLD_PROGRAM_H(n) \ | 531 #define OLD_PROGRAM_H(n) \ |
129 (*(ElfW(Phdr) *) ((byte *) old_program_h + old_file_h->e_phentsize * (n))) | 532 (*(l_Elf_Phdr *) ((byte *) old_program_h + old_file_h->e_phentsize * (n))) |
130 #define NEW_PROGRAM_H(n) \ | 533 #define NEW_PROGRAM_H(n) \ |
131 (*(ElfW(Phdr) *) ((byte *) new_program_h + new_file_h->e_phentsize * (n))) | 534 (*(l_Elf_Phdr *) ((byte *) new_program_h + new_file_h->e_phentsize * (n))) |
132 | 535 |
133 #define PATCH_INDEX(n) \ | 536 #define PATCH_INDEX(n) \ |
134 do { \ | 537 do { \ |
135 if ((int) (n) >= growme_index) \ | 538 if ((n) >= old_bss_index) \ |
136 (n)++; } while (0) | 539 (n)++; } while (0) |
137 | |
138 typedef unsigned char byte; | 540 typedef unsigned char byte; |
139 | 541 |
140 /* Round X up to a multiple of Y. */ | 542 /* Round X up to a multiple of Y. */ |
141 | 543 |
142 static ElfW(Addr) | 544 int |
143 round_up (ElfW(Addr) x, ElfW(Addr) y) | 545 round_up (x, y) |
546 int x, y; | |
144 { | 547 { |
145 int rem = x % y; | 548 int rem = x % y; |
146 if (rem == 0) | 549 if (rem == 0) |
147 return x; | 550 return x; |
148 return x - rem + y; | 551 return x - rem + y; |
154 | 557 |
155 If we don't find the section NAME, that is a fatal error | 558 If we don't find the section NAME, that is a fatal error |
156 if NOERROR is 0; we return -1 if NOERROR is nonzero. */ | 559 if NOERROR is 0; we return -1 if NOERROR is nonzero. */ |
157 | 560 |
158 static int | 561 static int |
159 find_section (char *name, | 562 find_section (name, section_names, file_name, old_file_h, old_section_h, noerror) |
160 const char *section_names, | 563 char *name; |
161 char *file_name, | 564 char *section_names; |
162 ElfW(Ehdr) *old_file_h, | 565 char *file_name; |
163 ElfW(Shdr) *old_section_h, | 566 l_Elf_Ehdr *old_file_h; |
164 int noerror) | 567 l_Elf_Shdr *old_section_h; |
568 int noerror; | |
165 { | 569 { |
166 int idx; | 570 int idx; |
167 | 571 |
168 for (idx = 1; idx < old_file_h->e_shnum; idx++) | 572 for (idx = 1; idx < old_file_h->e_shnum; idx++) |
169 { | 573 { |
171 fprintf (stderr, "Looking for %s - found %s\n", name, | 575 fprintf (stderr, "Looking for %s - found %s\n", name, |
172 section_names + OLD_SECTION_H (idx).sh_name); | 576 section_names + OLD_SECTION_H (idx).sh_name); |
173 #endif | 577 #endif |
174 if (!strcmp (section_names + OLD_SECTION_H (idx).sh_name, | 578 if (!strcmp (section_names + OLD_SECTION_H (idx).sh_name, |
175 name)) | 579 name)) |
176 return idx; | 580 break; |
177 } | 581 } |
178 | 582 if (idx == old_file_h->e_shnum) |
179 /* If we're here, we found nothing or return did not work */ | 583 { |
180 if ( ! noerror) | 584 if (noerror) |
181 fatal ("Can't find %s in %s.\n", name, file_name); | 585 return -1; |
182 | 586 else |
183 return -1; | 587 fatal ("Can't find .bss in %s.\n", file_name); |
588 } | |
589 | |
590 return idx; | |
184 } | 591 } |
185 | 592 |
186 /* **************************************************************** | 593 /* **************************************************************** |
187 * unexec | 594 * unexec |
188 * | 595 * |
190 * | 597 * |
191 * In ELF, this works by replacing the old .bss section with a new | 598 * In ELF, this works by replacing the old .bss section with a new |
192 * .data section, and inserting an empty .bss immediately afterwards. | 599 * .data section, and inserting an empty .bss immediately afterwards. |
193 * | 600 * |
194 */ | 601 */ |
195 void | 602 int |
196 unexec (char *new_name, | 603 unexec (new_name, old_name, data_start, bss_start, entry_address) |
197 char *old_name, | 604 char *new_name, *old_name; |
198 uintptr_t data_start, | 605 uintptr_t data_start, bss_start, entry_address; |
199 uintptr_t bss_start, | |
200 uintptr_t entry_address) | |
201 { | 606 { |
202 int old_file; | 607 extern uintptr_t bss_end; |
203 | 608 int new_file, old_file, new_file_size; |
609 | |
610 /* Pointers to the base of the image of the two files. */ | |
611 caddr_t old_base, new_base; | |
612 | |
613 /* Pointers to the file, program and section headers for the old and new | |
614 files. */ | |
615 l_Elf_Ehdr *old_file_h, *new_file_h; | |
616 l_Elf_Phdr *old_program_h, *new_program_h; | |
617 l_Elf_Shdr *old_section_h, *new_section_h; | |
618 | |
619 /* Point to the section name table in the old file. */ | |
620 char *old_section_names; | |
621 | |
622 l_Elf_Addr old_bss_addr, new_bss_addr; | |
623 l_Elf_Addr old_base_addr; | |
624 l_Elf_Word old_bss_size, new_data2_size; | |
625 l_Elf_Off new_data2_offset, new_base_offset; | |
626 l_Elf_Addr new_data2_addr; | |
627 l_Elf_Addr new_offsets_shift; | |
628 | |
629 int n, nn, old_bss_index, old_data_index; | |
630 int old_mdebug_index, old_sbss_index; | |
204 struct stat stat_buf; | 631 struct stat stat_buf; |
205 caddr_t old_base, new_base; | 632 |
206 | 633 /* Open the old file & map it into the address space. */ |
207 ElfW(Ehdr) *old_file_h, * new_file_h; | 634 |
208 ElfW(Phdr) *old_program_h, * new_program_h; | 635 old_file = open (old_name, O_RDONLY); |
209 ElfW(Shdr) *old_section_h, * new_section_h; | 636 |
210 ElfW(Shdr) * growme = NULL, * grown = NULL; | 637 if (old_file < 0) |
211 ElfW(Addr) old_bss_addr = 0, new_data2_addr = 0; | 638 fatal ("Can't open %s for reading: errno %d\n", old_name, errno); |
212 | |
213 int growme_index = -1; | |
214 int n, nn; | |
215 const char *old_section_names; | |
216 int old_mdebug_index, old_data_index; | |
217 int new_bss_addr, new_data2_size, new_data2_offset, new_file, new_file_size; | |
218 | |
219 /* Open the old file */ | |
220 if ( (old_file = open (old_name, O_RDONLY)) < 0 ) | |
221 fatal ("Can't open %s for reading: errno %d\n", old_name, errno); | |
222 | 639 |
223 if (fstat (old_file, &stat_buf) == -1) | 640 if (fstat (old_file, &stat_buf) == -1) |
224 fatal ("Can't fstat (%s): errno %d\n", old_name, errno); | 641 fatal ("Can't fstat(%s): errno %d\n", old_name, errno); |
225 | 642 |
226 /* map old file into the address space. */ | 643 old_base = mmap (0, stat_buf.st_size, PROT_READ, MAP_SHARED, old_file, 0); |
227 old_base = (caddr_t) mmap ((caddr_t) 0, stat_buf.st_size, | 644 |
228 PROT_READ, MAP_SHARED, old_file, 0); | 645 if (old_base == (caddr_t) -1) |
229 if (old_base == (caddr_t) MAP_FAILED) | 646 fatal ("Can't mmap(%s): errno %d\n", old_name, errno); |
230 fatal ("Can't mmap (%s): errno %d\n", old_name, errno); | 647 |
231 | 648 #ifdef DEBUG |
232 old_file_h = (ElfW(Ehdr) *) old_base; | 649 fprintf (stderr, "mmap(%s, %x) -> %x\n", old_name, stat_buf.st_size, |
233 old_program_h = (ElfW(Phdr) *) ((byte *) old_base + old_file_h->e_phoff); | 650 old_base); |
234 old_section_h = (ElfW(Shdr) *) ((byte *) old_base + old_file_h->e_shoff); | 651 #endif |
235 old_section_names = (const char *) old_base | 652 |
236 + OLD_SECTION_H (old_file_h->e_shstrndx).sh_offset; | 653 /* Get pointers to headers & section names. */ |
237 | 654 |
238 /* Find a section which we will grow by looking for the SHT_NOBITS | 655 old_file_h = (l_Elf_Ehdr *) old_base; |
239 * section with ALLOCATE flag and with the biggest address. */ | 656 old_program_h = (l_Elf_Phdr *) ((byte *) old_base + old_file_h->e_phoff); |
240 for (n = 1; n < old_file_h->e_shnum; n++) { | 657 old_section_h = (l_Elf_Shdr *) ((byte *) old_base + old_file_h->e_shoff); |
241 ElfW(Shdr) * sh = & OLD_SECTION_H(n); | 658 old_section_names |
242 | 659 = (char *) old_base + OLD_SECTION_H (old_file_h->e_shstrndx).sh_offset; |
243 if ((sh->sh_type == SHT_NOBITS) && (sh->sh_flags & SHF_ALLOC)) { | 660 |
244 if ( old_bss_addr < sh->sh_addr ) { | 661 /* Find the mdebug section, if any. */ |
245 growme = sh; | 662 |
246 growme_index = n; | 663 old_mdebug_index = find_section (".mdebug", old_section_names, |
247 new_data2_addr = old_bss_addr = sh->sh_addr; | 664 old_name, old_file_h, old_section_h, 1); |
248 } | 665 |
249 } | 666 /* Find the .sbss section, if any. */ |
250 } | 667 |
251 | 668 old_sbss_index = find_section (".sbss", old_section_names, |
252 if (growme == NULL ) | 669 old_name, old_file_h, old_section_h, 1); |
253 fatal ("Can't find a section to grow\n", 0, 0); | 670 |
671 if (old_sbss_index != -1 && (OLD_SECTION_H (old_sbss_index).sh_type == SHT_PROGBITS)) | |
672 old_sbss_index = -1; | |
673 | |
674 /* Find the old .bss section. */ | |
675 | |
676 old_bss_index = find_section (".bss", old_section_names, | |
677 old_name, old_file_h, old_section_h, 0); | |
678 | |
679 /* Find the old .data section. Figure out parameters of | |
680 the new data2 and bss sections. */ | |
254 | 681 |
255 old_data_index = find_section (".data", old_section_names, | 682 old_data_index = find_section (".data", old_section_names, |
256 old_name, old_file_h, old_section_h, 0); | 683 old_name, old_file_h, old_section_h, 0); |
257 | 684 |
258 new_bss_addr = (ElfW(Addr)) sbrk (0); | 685 old_bss_addr = OLD_SECTION_H (old_bss_index).sh_addr; |
259 new_data2_size = new_bss_addr - old_bss_addr; | 686 old_bss_size = OLD_SECTION_H (old_bss_index).sh_size; |
687 old_base_addr = old_sbss_index == -1 ? old_bss_addr : OLD_SECTION_H (old_sbss_index).sh_addr; | |
688 #if defined(emacs) || !defined(DEBUG) | |
689 bss_end = (uintptr_t) sbrk (0); | |
690 new_bss_addr = (l_Elf_Addr) bss_end; | |
691 #else | |
692 new_bss_addr = old_bss_addr + old_bss_size + 0x1234; | |
693 #endif | |
694 new_data2_addr = old_bss_addr; | |
695 new_data2_size = new_bss_addr - old_bss_addr; | |
260 new_data2_offset = OLD_SECTION_H (old_data_index).sh_offset + | 696 new_data2_offset = OLD_SECTION_H (old_data_index).sh_offset + |
261 (new_data2_addr - OLD_SECTION_H (old_data_index).sh_addr); | 697 (new_data2_addr - OLD_SECTION_H (old_data_index).sh_addr); |
262 | 698 new_base_offset = OLD_SECTION_H (old_data_index).sh_offset + |
263 if ( new_bss_addr < old_bss_addr + growme->sh_size ) | 699 (old_base_addr - OLD_SECTION_H (old_data_index).sh_addr); |
264 fatal (".bss shrank when undumping???\n", 0, 0); | 700 new_offsets_shift = new_bss_addr - |
265 | 701 ((old_base_addr & ~0xfff) + ((old_base_addr & 0xfff) ? 0x1000 : 0)); |
266 /* Set the output file to the right size and mmap it. */ | 702 |
267 if ( (new_file = open (new_name, O_RDWR | O_CREAT, 0666)) < 0 ) | 703 #ifdef DEBUG |
268 fatal ("Can't create (%s): errno %d\n", new_name, errno); | 704 fprintf (stderr, "old_bss_index %d\n", old_bss_index); |
269 | 705 fprintf (stderr, "old_bss_addr %x\n", old_bss_addr); |
270 new_file_size = stat_buf.st_size + old_file_h->e_shentsize + new_data2_size; | 706 fprintf (stderr, "old_bss_size %x\n", old_bss_size); |
707 fprintf (stderr, "old_base_addr %x\n", old_base_addr); | |
708 fprintf (stderr, "new_bss_addr %x\n", new_bss_addr); | |
709 fprintf (stderr, "new_data2_addr %x\n", new_data2_addr); | |
710 fprintf (stderr, "new_data2_size %x\n", new_data2_size); | |
711 fprintf (stderr, "new_data2_offset %x\n", new_data2_offset); | |
712 fprintf (stderr, "new_offsets_shift %x\n", new_offsets_shift); | |
713 #endif | |
714 | |
715 if ((unsigned) new_bss_addr < (unsigned) old_bss_addr + old_bss_size) | |
716 fatal (".bss shrank when undumping???\n"); | |
717 | |
718 /* Set the output file to the right size and mmap it. Set | |
719 pointers to various interesting objects. stat_buf still has | |
720 old_file data. */ | |
721 | |
722 new_file = open (new_name, O_RDWR | O_CREAT, 0666); | |
723 if (new_file < 0) | |
724 fatal ("Can't creat (%s): errno %d\n", new_name, errno); | |
725 | |
726 new_file_size = stat_buf.st_size /* old file size */ | |
727 + old_file_h->e_shentsize /* one new section header */ | |
728 + new_offsets_shift; /* trailing section shift */ | |
271 | 729 |
272 if (ftruncate (new_file, new_file_size)) | 730 if (ftruncate (new_file, new_file_size)) |
273 fatal ("Can't ftruncate (%s): errno %d\n", new_name, errno); | 731 fatal ("Can't ftruncate (%s): errno %d\n", new_name, errno); |
274 | 732 |
275 new_base = (caddr_t) mmap ((caddr_t) 0, new_file_size, | 733 new_base = mmap (0, new_file_size, PROT_READ | PROT_WRITE, MAP_SHARED, |
276 PROT_READ | PROT_WRITE, | 734 new_file, 0); |
277 #ifdef UNEXEC_USE_MAP_PRIVATE | |
278 MAP_PRIVATE, | |
279 #else | |
280 MAP_SHARED, | |
281 #endif | |
282 new_file, 0); | |
283 | 735 |
284 if (new_base == (caddr_t) -1) | 736 if (new_base == (caddr_t) -1) |
285 fatal ("Can't mmap (%s): errno %d\n", new_name, errno); | 737 fatal ("Can't mmap (%s): errno %d\n", new_name, errno); |
286 | 738 |
287 new_file_h = (ElfW(Ehdr) *) new_base; | 739 new_file_h = (l_Elf_Ehdr *) new_base; |
288 new_program_h = (ElfW(Phdr) *) ((byte *) new_base + old_file_h->e_phoff); | 740 new_program_h = (l_Elf_Phdr *) ((byte *) new_base + old_file_h->e_phoff); |
289 new_section_h = (ElfW(Shdr) *) ((byte *) new_base + old_file_h->e_shoff + | 741 new_section_h |
290 new_data2_size); | 742 = (l_Elf_Shdr *) ((byte *) new_base + old_file_h->e_shoff |
743 + new_offsets_shift); | |
291 | 744 |
292 /* Make our new file, program and section headers as copies of the | 745 /* Make our new file, program and section headers as copies of the |
293 * originals. */ | 746 originals. */ |
747 | |
294 memcpy (new_file_h, old_file_h, old_file_h->e_ehsize); | 748 memcpy (new_file_h, old_file_h, old_file_h->e_ehsize); |
295 memcpy (new_program_h, old_program_h, | 749 memcpy (new_program_h, old_program_h, |
296 old_file_h->e_phnum * old_file_h->e_phentsize); | 750 old_file_h->e_phnum * old_file_h->e_phentsize); |
297 | 751 |
298 /* Modify the e_shstrndx if necessary. */ | 752 /* Modify the e_shstrndx if necessary. */ |
299 PATCH_INDEX (new_file_h->e_shstrndx); | 753 PATCH_INDEX (new_file_h->e_shstrndx); |
300 | 754 |
301 /* Fix up file header. We'll add one section. Section header is | 755 /* Fix up file header. We'll add one section. Section header is |
302 * further away now. */ | 756 further away now. */ |
303 new_file_h->e_shoff += new_data2_size; | 757 |
758 new_file_h->e_shoff += new_offsets_shift; | |
304 new_file_h->e_shnum += 1; | 759 new_file_h->e_shnum += 1; |
305 | 760 |
306 /* Fix up a new program header by extending the writable data | 761 |
307 * segment so that the bss area is covered too. Find that segment by | |
308 * looking for one that starts before and ends after the .bss and is | |
309 * PT_LOADable. */ | |
310 for (n = new_file_h->e_phnum - 1; n >= 0; n--) { | |
311 ElfW(Phdr) * ph = & NEW_PROGRAM_H(n); | |
312 #ifdef DEBUG | 762 #ifdef DEBUG |
313 printf ("%d @ %0x + %0x against %0x + %0x", | 763 fprintf (stderr, "Old section offset %x\n", old_file_h->e_shoff); |
314 n, ph->p_vaddr, ph->p_memsz,growme->sh_addr, growme->sh_size); | 764 fprintf (stderr, "Old section count %d\n", old_file_h->e_shnum); |
765 fprintf (stderr, "New section offset %x\n", new_file_h->e_shoff); | |
766 fprintf (stderr, "New section count %d\n", new_file_h->e_shnum); | |
315 #endif | 767 #endif |
316 if ((ph->p_type == PT_LOAD) && | 768 |
317 (ph->p_vaddr <= growme->sh_addr) && | 769 /* Fix up a new program header. Extend the writable data segment so |
318 ((ph->p_vaddr+ph->p_memsz) >= (growme->sh_addr + growme->sh_size))) { | 770 that the bss area is covered too. Find that segment by looking |
319 /* Make sure that the size includes any padding before the | 771 for a segment that ends just before the .bss area. Make sure |
320 * old .bss section. */ | 772 that no segments are above the new .data2. Put a loop at the end |
321 ph->p_memsz = ph->p_filesz = new_bss_addr - ph->p_vaddr; | 773 to adjust the offset and address of any segment that is above |
322 #ifdef DEBUG | 774 data2, just in case we decide to allow this later. */ |
323 puts (" That's the one!"); | 775 |
776 for (n = new_file_h->e_phnum - 1; n >= 0; n--) | |
777 { | |
778 /* Compute maximum of all requirements for alignment of section. */ | |
779 int alignment = (NEW_PROGRAM_H (n)).p_align; | |
780 if ((OLD_SECTION_H (old_bss_index)).sh_addralign > alignment) | |
781 alignment = OLD_SECTION_H (old_bss_index).sh_addralign; | |
782 | |
783 /* Supposedly this condition is okay for the SGI. */ | |
784 #if 0 | |
785 if (NEW_PROGRAM_H (n).p_vaddr + NEW_PROGRAM_H (n).p_filesz > old_base_addr) | |
786 fatal ("Program segment above .bss in %s\n", old_name); | |
324 #endif | 787 #endif |
325 break; | 788 |
326 } | 789 if (NEW_PROGRAM_H (n).p_type == PT_LOAD |
327 #ifdef DEBUG | 790 && (round_up ((NEW_PROGRAM_H (n)).p_vaddr |
328 putchar ('\n'); | 791 + (NEW_PROGRAM_H (n)).p_filesz, |
792 alignment) | |
793 == round_up (old_base_addr, alignment))) | |
794 break; | |
795 } | |
796 if (n < 0) | |
797 fatal ("Couldn't find segment next to %s in %s\n", | |
798 old_sbss_index == -1 ? ".sbss" : ".bss", old_name); | |
799 | |
800 NEW_PROGRAM_H (n).p_filesz += new_offsets_shift; | |
801 NEW_PROGRAM_H (n).p_memsz = NEW_PROGRAM_H (n).p_filesz; | |
802 | |
803 #if 1 /* Maybe allow section after data2 - does this ever happen? */ | |
804 for (n = new_file_h->e_phnum - 1; n >= 0; n--) | |
805 { | |
806 if (NEW_PROGRAM_H (n).p_vaddr | |
807 && NEW_PROGRAM_H (n).p_vaddr >= new_data2_addr) | |
808 NEW_PROGRAM_H (n).p_vaddr += new_offsets_shift - old_bss_size; | |
809 | |
810 if (NEW_PROGRAM_H (n).p_offset >= new_data2_offset) | |
811 NEW_PROGRAM_H (n).p_offset += new_offsets_shift; | |
812 } | |
329 #endif | 813 #endif |
330 } | 814 |
331 | 815 /* Fix up section headers based on new .data2 section. Any section |
332 if (n < 0) | 816 whose offset or virtual address is after the new .data2 section |
333 fatal ("Couldn't find segment which covers %s", | 817 gets its value adjusted. .bss size becomes zero and new address |
334 old_section_names + growme->sh_name); | 818 is set. data2 section header gets added by copying the existing |
335 | 819 .data header and modifying the offset, address and size. */ |
336 /* Walk through all section headers, insert the new data2 section | 820 for (old_data_index = 1; old_data_index < old_file_h->e_shnum; |
337 * right before the new bss section. */ | 821 old_data_index++) |
338 for (n = 1, nn = 1; n < (int) old_file_h->e_shnum; n++, nn++) { | 822 if (!strcmp (old_section_names + OLD_SECTION_H (old_data_index).sh_name, |
339 ElfW(Shdr) * nsec = & NEW_SECTION_H(nn); | 823 ".data")) |
340 ElfW(Shdr) * osec = & OLD_SECTION_H(n); | 824 break; |
341 | 825 if (old_data_index == old_file_h->e_shnum) |
342 /* If this is the section we want to grow, insert the new data | 826 fatal ("Can't find .data in %s.\n", old_name); |
343 * section before it. */ | 827 |
344 if ( osec == growme ) { | 828 /* Walk through all section headers, insert the new data2 section right |
345 /* Steal the data section header for this data2 section but | 829 before the new bss section. */ |
346 * use the * 'grow' section's alignment. This * will assure | 830 for (n = 1, nn = 1; n < old_file_h->e_shnum; n++, nn++) |
347 * that the new section * always be placed in the same spot | 831 { |
348 * * as the old section by any other * application. */ | 832 caddr_t src; |
349 ElfW(Shdr) * od = &OLD_SECTION_H(old_data_index); | 833 |
350 | 834 /* XEmacs change: */ |
351 memcpy (nsec, od, new_file_h->e_shentsize); | 835 if (n < old_bss_index) |
352 | 836 { |
353 nsec->sh_addr = new_data2_addr; | 837 memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (n), |
354 nsec->sh_offset = new_data2_offset; | 838 old_file_h->e_shentsize); |
355 nsec->sh_size = new_data2_size; | 839 |
356 nsec->sh_addralign = osec->sh_addralign; | 840 } |
357 | 841 else if (n == old_bss_index) |
358 /* Copy over what we have in memory now. */ | 842 { |
359 memcpy (nsec->sh_offset + new_base, (caddr_t) osec->sh_addr, | 843 |
844 /* If it is bss section, insert the new data2 section before it. */ | |
845 /* Steal the data section header for this data2 section. */ | |
846 memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (old_data_index), | |
847 new_file_h->e_shentsize); | |
848 | |
849 NEW_SECTION_H (nn).sh_addr = new_data2_addr; | |
850 NEW_SECTION_H (nn).sh_offset = new_data2_offset; | |
851 NEW_SECTION_H (nn).sh_size = new_data2_size; | |
852 /* Use the bss section's alignment. This will assure that the | |
853 new data2 section always be placed in the same spot as the old | |
854 bss section by any other application. */ | |
855 NEW_SECTION_H (nn).sh_addralign = OLD_SECTION_H (n).sh_addralign; | |
856 | |
857 /* Now copy over what we have in the memory now. */ | |
858 memcpy (NEW_SECTION_H (nn).sh_offset + new_base, | |
859 (caddr_t) OLD_SECTION_H (n).sh_addr, | |
360 new_data2_size); | 860 new_data2_size); |
361 nn++; | 861 nn++; |
362 grown = nsec++; | 862 memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (n), |
363 } | 863 old_file_h->e_shentsize); |
364 | 864 |
365 memcpy (nsec, osec, old_file_h->e_shentsize); | 865 /* The new bss section's size is zero, and its file offset and virtual |
366 | 866 address should be off by NEW_OFFSETS_SHIFT. */ |
367 if ( osec == growme ) { | 867 NEW_SECTION_H (nn).sh_offset += new_offsets_shift; |
368 /* The new bss section's size is zero, and its file offset | 868 NEW_SECTION_H (nn).sh_addr = new_bss_addr; |
369 * and virtual address should be off by NEW_DATA2_SIZE. */ | 869 /* Let the new bss section address alignment be the same as the |
370 nsec->sh_offset = grown->sh_offset + new_data2_size; | 870 section address alignment followed the old bss section, so |
371 nsec->sh_addr = grown->sh_addr + new_data2_size; | 871 this section will be placed in exactly the same place. */ |
372 | 872 NEW_SECTION_H (nn).sh_addralign = OLD_SECTION_H (n).sh_addralign; |
373 /* Let the new bss section address alignment be the same as | 873 NEW_SECTION_H (nn).sh_size = 0; |
374 * the section address alignment followed the old bss | 874 } |
375 * section, so this section will be placed in exactly the | 875 else /* n > old_bss_index */ |
376 * same place. */ | 876 memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (n), |
377 nsec->sh_addralign = osec->sh_addralign; | 877 old_file_h->e_shentsize); |
378 nsec->sh_size = 0; | 878 |
379 } else { | 879 /* Any section that was original placed AFTER the bss |
380 /* Any section that was originally placed AFTER the bss | 880 section must now be adjusted by NEW_OFFSETS_SHIFT. */ |
381 * section should now be off by NEW_DATA2_SIZE. */ | 881 |
382 if ( round_up (nsec->sh_offset, growme->sh_addralign) >= | 882 if (NEW_SECTION_H (nn).sh_offset >= new_base_offset) |
383 new_data2_offset) | 883 NEW_SECTION_H (nn).sh_offset += new_offsets_shift; |
384 nsec->sh_offset += new_data2_size; | 884 |
385 } | |
386 | |
387 /* Any section that was originally placed after the section * | |
388 * header table should now be off by the size of one section | |
389 * header table entry. */ | |
390 if (nsec->sh_offset > new_file_h->e_shoff) | |
391 nsec->sh_offset += new_file_h->e_shentsize; | |
392 | |
393 | |
394 /* If any section hdr refers to the section after the new .data | 885 /* If any section hdr refers to the section after the new .data |
395 * section, make it refer to next one because we have inserted a | 886 section, make it refer to next one because we have inserted |
396 * new section in between. */ | 887 a new section in between. */ |
397 PATCH_INDEX (nsec->sh_link); | 888 |
398 | 889 PATCH_INDEX (NEW_SECTION_H (nn).sh_link); |
399 /* For symbol tables, info is a symbol table index, so don't | 890 /* For symbol tables, info is a symbol table index, |
400 * change it. */ | 891 so don't change it. */ |
401 if (nsec->sh_type != SHT_SYMTAB && nsec->sh_type != SHT_DYNSYM) | 892 if (NEW_SECTION_H (nn).sh_type != SHT_SYMTAB |
402 PATCH_INDEX (nsec->sh_info); | 893 && NEW_SECTION_H (nn).sh_type != SHT_DYNSYM) |
403 | 894 PATCH_INDEX (NEW_SECTION_H (nn).sh_info); |
404 /* Any section which used to be NOBITS will now becomes PROGBITS | 895 |
405 * if it's ALLOC-atable, unless, of cause, it's not the one we | 896 /* Fix the type and alignment for the .sbss section */ |
406 * decided to grow */ | 897 if ((old_sbss_index != -1) && !strcmp (old_section_names + NEW_SECTION_H (nn).sh_name, ".sbss")) |
407 if ( (osec->sh_type == SHT_NOBITS) && (osec->sh_flags & SHF_ALLOC) && | 898 { |
408 (osec != growme ) ) { | 899 NEW_SECTION_H (nn).sh_type = SHT_PROGBITS; |
409 nsec->sh_type = SHT_PROGBITS; | 900 NEW_SECTION_H (nn).sh_offset = round_up (NEW_SECTION_H (nn).sh_offset, |
410 } | 901 NEW_SECTION_H (nn).sh_addralign); |
411 | 902 } |
412 /* Now, start to copy the content of sections */ | 903 |
413 if ( nsec->sh_type != SHT_NULL || nsec->sh_type != SHT_NOBITS ) { | 904 /* Now, start to copy the content of sections. */ |
414 | 905 if (NEW_SECTION_H (nn).sh_type == SHT_NULL |
415 /* Write out the sections. .data and .data1 (and data2, | 906 || NEW_SECTION_H (nn).sh_type == SHT_NOBITS) |
416 * called ".data" in the strings table) get copied from the | 907 continue; |
417 * current process instead of the old file. */ | 908 |
418 caddr_t src = old_base + osec->sh_offset; | 909 /* Write out the sections. .data, .data1 and .sbss (and data2, called |
419 const char * secname = old_section_names + nsec->sh_name; | 910 ".data" in the strings table) get copied from the current process |
420 const char * names[] = { | 911 instead of the old file. */ |
421 ".data",".sdata", ".lit4", ".lit8", ".sdata1", ".data1", | 912 if (!strcmp (old_section_names + NEW_SECTION_H (nn).sh_name, ".data") |
422 ".sbss", NULL}; | 913 || !strcmp (old_section_names + NEW_SECTION_H (nn).sh_name, ".data1") |
423 int i; | 914 || !strcmp (old_section_names + NEW_SECTION_H (nn).sh_name, ".got") |
424 | 915 || !strcmp (old_section_names + NEW_SECTION_H (nn).sh_name, ".sbss")) |
425 for ( i=0; names[i] != NULL; i++ ) { | 916 src = (caddr_t) OLD_SECTION_H (n).sh_addr; |
426 if ( ! strcmp (secname, names[i]) ) { | 917 else |
427 src = (caddr_t) osec->sh_addr; | 918 src = old_base + OLD_SECTION_H (n).sh_offset; |
428 break; | 919 |
429 } | 920 memcpy (NEW_SECTION_H (nn).sh_offset + new_base, src, |
430 } | 921 NEW_SECTION_H (nn).sh_size); |
431 | 922 |
432 memcpy (nsec->sh_offset + new_base, src, nsec->sh_size); | 923 /* Adjust the HDRR offsets in .mdebug and copy the |
433 } | 924 line data if it's in its usual 'hole' in the object. |
434 | 925 Makes the new file debuggable with dbx. |
435 old_mdebug_index = find_section (".mdebug", old_section_names, | 926 patches up two problems: the absolute file offsets |
436 old_name, old_file_h, old_section_h, 1); | 927 in the HDRR record of .mdebug (see /usr/include/syms.h), and |
437 | 928 the ld bug that gets the line table in a hole in the |
438 #if defined (__sony_news) && defined (_SYSTYPE_SYSV) | 929 elf file rather than in the .mdebug section proper. |
439 if (nsec->sh_type == SHT_MIPS_DEBUG && old_mdebug_index != -1) { | 930 David Anderson. davea@sgi.com Jan 16,1994. */ |
440 int diff = nsec->sh_offset-OLD_SECTION_H(old_mdebug_index).sh_offset; | 931 if (n == old_mdebug_index) |
441 HDRR *phdr = (HDRR *)(nsec->sh_offset + new_base); | 932 { |
442 | |
443 if (diff) { | |
444 phdr->cbLineOffset += diff; | |
445 phdr->cbDnOffset += diff; | |
446 phdr->cbPdOffset += diff; | |
447 phdr->cbSymOffset += diff; | |
448 phdr->cbOptOffset += diff; | |
449 phdr->cbAuxOffset += diff; | |
450 phdr->cbSsOffset += diff; | |
451 phdr->cbSsExtOffset += diff; | |
452 phdr->cbFdOffset += diff; | |
453 phdr->cbRfdOffset += diff; | |
454 phdr->cbExtOffset += diff; | |
455 } | |
456 } | |
457 #endif /* __sony_news && _SYSTYPE_SYSV */ | |
458 | |
459 #if __sgi | |
460 /* Adjust the HDRR offsets in .mdebug and copy the line data if | |
461 * it's in its usual 'hole' in the object. Makes the new file | |
462 * debuggable with dbx. patches up two problems: the absolute | |
463 * file offsets in the HDRR record of .mdebug (see | |
464 * /usr/include/syms.h), and the ld bug that gets the line table | |
465 * in a hole in the elf file rather than in the .mdebug section | |
466 * proper. | |
467 * | |
468 * David Anderson. davea@sgi.com Jan 16,1994 */ | |
469 #define MDEBUGADJUST(__ct,__fileaddr) \ | 933 #define MDEBUGADJUST(__ct,__fileaddr) \ |
470 if (n_phdrr->__ct > 0) \ | 934 if (n_phdrr->__ct > 0) \ |
471 { \ | 935 { \ |
472 n_phdrr->__fileaddr += movement; \ | 936 n_phdrr->__fileaddr += movement; \ |
473 } | 937 } |
474 | 938 |
475 if (n == old_mdebug_index) { | 939 HDRR * o_phdrr = (HDRR *)((byte *)old_base + OLD_SECTION_H (n).sh_offset); |
476 HDRR * o_phdrr = (HDRR *)((byte *)old_base + osec->sh_offset); | 940 HDRR * n_phdrr = (HDRR *)((byte *)new_base + NEW_SECTION_H (nn).sh_offset); |
477 HDRR * n_phdrr = (HDRR *)((byte *)new_base + nsec->sh_offset); | 941 unsigned movement = new_offsets_shift; |
478 unsigned movement = new_data2_size; | |
479 | 942 |
480 MDEBUGADJUST (idnMax, cbDnOffset); | 943 MDEBUGADJUST (idnMax, cbDnOffset); |
481 MDEBUGADJUST (ipdMax, cbPdOffset); | 944 MDEBUGADJUST (ipdMax, cbPdOffset); |
482 MDEBUGADJUST (isymMax, cbSymOffset); | 945 MDEBUGADJUST (isymMax, cbSymOffset); |
483 MDEBUGADJUST (ioptMax, cbOptOffset); | 946 MDEBUGADJUST (ioptMax, cbOptOffset); |
485 MDEBUGADJUST (issMax, cbSsOffset); | 948 MDEBUGADJUST (issMax, cbSsOffset); |
486 MDEBUGADJUST (issExtMax, cbSsExtOffset); | 949 MDEBUGADJUST (issExtMax, cbSsExtOffset); |
487 MDEBUGADJUST (ifdMax, cbFdOffset); | 950 MDEBUGADJUST (ifdMax, cbFdOffset); |
488 MDEBUGADJUST (crfd, cbRfdOffset); | 951 MDEBUGADJUST (crfd, cbRfdOffset); |
489 MDEBUGADJUST (iextMax, cbExtOffset); | 952 MDEBUGADJUST (iextMax, cbExtOffset); |
490 | 953 /* The Line Section, being possible off in a hole of the object, |
491 /* The Line Section, being possible off in a hole of the | 954 requires special handling. */ |
492 * object, requires special handling. */ | 955 if (n_phdrr->cbLine > 0) |
493 if (n_phdrr->cbLine > 0) { | 956 { |
494 if (o_phdrr->cbLineOffset > | 957 if (o_phdrr->cbLineOffset > (OLD_SECTION_H (n).sh_offset |
495 osec->sh_offset+ osec->sh_size){ | 958 + OLD_SECTION_H (n).sh_size)) |
496 /* line data is in a hole in elf. do special copy | 959 { |
497 * and adjust for this ld mistake. */ | 960 /* line data is in a hole in elf. do special copy and adjust |
961 for this ld mistake. | |
962 */ | |
498 n_phdrr->cbLineOffset += movement; | 963 n_phdrr->cbLineOffset += movement; |
499 | 964 |
500 memcpy (n_phdrr->cbLineOffset + new_base, | 965 memcpy (n_phdrr->cbLineOffset + new_base, |
501 o_phdrr->cbLineOffset + old_base, n_phdrr->cbLine); | 966 o_phdrr->cbLineOffset + old_base, n_phdrr->cbLine); |
502 } else { | 967 } |
503 /* somehow line data is in .mdebug as it is supposed | 968 else |
504 * to be. */ | 969 { |
970 /* somehow line data is in .mdebug as it is supposed to be. */ | |
505 MDEBUGADJUST (cbLine, cbLineOffset); | 971 MDEBUGADJUST (cbLine, cbLineOffset); |
506 } | 972 } |
507 } | 973 } |
508 } | 974 } |
509 #endif /* __sgi */ | 975 |
510 /* If it is the symbol table, its st_shndx field needs to be | 976 /* If it is the symbol table, its st_shndx field needs to be patched. */ |
511 * patched. */ | 977 if (NEW_SECTION_H (nn).sh_type == SHT_SYMTAB |
512 if (nsec->sh_type == SHT_SYMTAB || nsec->sh_type == SHT_DYNSYM) { | 978 || NEW_SECTION_H (nn).sh_type == SHT_DYNSYM) |
513 unsigned int num = nsec->sh_size / nsec->sh_entsize; | 979 { |
514 ElfW(Sym) * sym = (ElfW(Sym) *)(nsec->sh_offset + new_base); | 980 l_Elf_Shdr *spt = &NEW_SECTION_H (nn); |
515 byte *symnames = ((byte *) new_base + | 981 unsigned int num = spt->sh_size / spt->sh_entsize; |
516 NEW_SECTION_H (nsec->sh_link).sh_offset); | 982 l_Elf_Sym * sym = (l_Elf_Sym *) (NEW_SECTION_H (nn).sh_offset |
517 | 983 + new_base); |
518 for (; num--; sym++) { | 984 for (; num--; sym++) |
519 const char * symnam = (char *) (symnames + sym->st_name); | 985 { |
520 | 986 if (sym->st_shndx == SHN_UNDEF |
521 /* Update the symbol values of _edata and _end. */ | 987 || sym->st_shndx == SHN_ABS |
522 if (strcmp (symnam, "_end") == 0 | 988 || sym->st_shndx == SHN_COMMON) |
523 || strcmp (symnam, "end") == 0 | 989 continue; |
524 || strcmp (symnam, "_edata") == 0 | 990 |
525 || strcmp (symnam, "edata") == 0) | |
526 memcpy (&sym->st_value, &new_bss_addr,sizeof (new_bss_addr)); | |
527 | |
528 | |
529 if ((sym->st_shndx == SHN_UNDEF) || (sym->st_shndx == SHN_ABS) | |
530 || (sym->st_shndx == SHN_COMMON) | |
531 || (sym->st_shndx >= SHN_LOPROC && | |
532 sym->st_shndx <= SHN_HIPROC)) | |
533 continue; | |
534 | |
535 PATCH_INDEX (sym->st_shndx); | 991 PATCH_INDEX (sym->st_shndx); |
536 } | 992 } |
537 } | 993 } |
538 } | 994 } |
539 | |
540 /* This loop seeks out relocation sections for the data section, so | |
541 * that it can undo relocations performed by the runtime linker. */ | |
542 for (n = new_file_h->e_shnum - 1; n; n--) { | |
543 ElfW(Shdr) section = NEW_SECTION_H (n); | |
544 | |
545 if ( section.sh_type == SHT_REL || section.sh_type == SHT_RELA ) { | |
546 /* This code handles two different size structs, but there | |
547 * should be no harm in that provided that r_offset is | |
548 * always the first member. */ | |
549 ElfW(Shdr) * info = & NEW_SECTION_H(section.sh_info); | |
550 const char * nm = old_section_names + info->sh_name; | |
551 | |
552 if (!strcmp (nm, ".data") || !strcmp (nm, ".sdata") | |
553 || !strcmp (nm, ".lit4") || !strcmp (nm, ".lit8") | |
554 || !strcmp (nm, ".sdata1") || !strcmp (nm, ".data1")) { | |
555 ElfW(Addr) offset = info->sh_addr - info->sh_offset; | |
556 caddr_t end, reloc = old_base + section.sh_offset; | |
557 | |
558 for (end = reloc + section.sh_size; reloc < end; | |
559 reloc += section.sh_entsize) { | |
560 ElfW(Addr) addr = ((ElfW(Rel) *) reloc)->r_offset - offset; | |
561 #ifdef __alpha__ | |
562 /* The Alpha ELF binutils currently have a bug that | |
563 * sometimes results in relocs that contain all | |
564 * zeroes. Work around this for now... */ | |
565 if (((ElfW(Rel) *) reloc)->r_offset == 0) | |
566 continue; | |
567 #endif | |
568 memcpy (new_base + addr, old_base + addr, | |
569 sizeof(ElfW(Addr))); | |
570 } | |
571 } | |
572 } | |
573 } | |
574 | |
575 #ifdef UNEXEC_USE_MAP_PRIVATE | |
576 if (lseek (new_file, 0, SEEK_SET) == -1) | |
577 fatal ("Can't rewind (%s): errno %d\n", new_name, errno); | |
578 | |
579 if (write (new_file, new_base, new_file_size) != new_file_size) | |
580 fatal ("Can't write (%s): errno %d\n", new_name, errno); | |
581 #endif | |
582 | 995 |
583 /* Close the files and make the new file executable. */ | 996 /* Close the files and make the new file executable. */ |
997 | |
584 if (close (old_file)) | 998 if (close (old_file)) |
585 fatal ("Can't close (%s): errno %d\n", old_name, errno); | 999 fatal ("Can't close (%s): errno %d\n", old_name, errno); |
586 | 1000 |
587 if (close (new_file)) | 1001 if (close (new_file)) |
588 fatal ("Can't close (%s): errno %d\n", new_name, errno); | 1002 fatal ("Can't close (%s): errno %d\n", new_name, errno); |
589 | 1003 |
590 if (stat (new_name, &stat_buf) == -1) | 1004 if (stat (new_name, &stat_buf) == -1) |
591 fatal ("Can't stat (%s): errno %d\n", new_name, errno); | 1005 fatal ("Can't stat (%s): errno %d\n", new_name, errno); |
592 | 1006 |
593 n = umask (777); | 1007 n = umask (777); |
594 umask (n); | 1008 umask (n); |
595 stat_buf.st_mode |= 0111 & ~n; | 1009 stat_buf.st_mode |= 0111 & ~n; |
596 if (chmod (new_name, stat_buf.st_mode) == -1) | 1010 if (chmod (new_name, stat_buf.st_mode) == -1) |
597 fatal ("Can't chmod (%s): errno %d\n", new_name, errno); | 1011 fatal ("Can't chmod (%s): errno %d\n", new_name, errno); |
1012 | |
1013 return 0; | |
598 } | 1014 } |