Mercurial > hg > xemacs-beta
comparison src/mule-ccl.c @ 412:697ef44129c6 r21-2-14
Import from CVS: tag r21-2-14
author | cvs |
---|---|
date | Mon, 13 Aug 2007 11:20:41 +0200 |
parents | 74fd4e045ea6 |
children | da8ed4261e83 |
comparison
equal
deleted
inserted
replaced
411:12e008d41344 | 412:697ef44129c6 |
---|---|
1 /* CCL (Code Conversion Language) interpreter. | 1 /* CCL (Code Conversion Language) interpreter. |
2 Copyright (C) 1995, 1997, 1998, 1999 Electrotechnical Laboratory, JAPAN. | 2 Copyright (C) 1995, 1997 Electrotechnical Laboratory, JAPAN. |
3 Licensed to the Free Software Foundation. | 3 Licensed to the Free Software Foundation. |
4 | 4 |
5 This file is part of XEmacs. | 5 This file is part of XEmacs. |
6 | 6 |
7 GNU Emacs is free software; you can redistribute it and/or modify | 7 GNU Emacs is free software; you can redistribute it and/or modify |
17 You should have received a copy of the GNU General Public License | 17 You should have received a copy of the GNU General Public License |
18 along with GNU Emacs; see the file COPYING. If not, write to | 18 along with GNU Emacs; see the file COPYING. If not, write to |
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
20 Boston, MA 02111-1307, USA. */ | 20 Boston, MA 02111-1307, USA. */ |
21 | 21 |
22 /* Synched up with : FSF Emacs 20.3.10 without ExCCL | 22 /* Synched up with : FSF Emacs 20.2 */ |
23 * (including {Read|Write}MultibyteChar) */ | |
24 | 23 |
25 #ifdef emacs | 24 #ifdef emacs |
26 | 25 |
27 #include <config.h> | 26 #include <config.h> |
28 | |
29 #if 0 | |
30 #ifdef STDC_HEADERS | |
31 #include <stdlib.h> | |
32 #endif | |
33 #endif | |
34 | |
35 #include "lisp.h" | 27 #include "lisp.h" |
36 #include "buffer.h" | 28 #include "buffer.h" |
37 #include "mule-charset.h" | 29 #include "mule-charset.h" |
38 #include "mule-ccl.h" | 30 #include "mule-ccl.h" |
39 #include "file-coding.h" | 31 #include "file-coding.h" |
43 #include <stdio.h> | 35 #include <stdio.h> |
44 #include "mulelib.h" | 36 #include "mulelib.h" |
45 | 37 |
46 #endif /* not emacs */ | 38 #endif /* not emacs */ |
47 | 39 |
48 /* This contains all code conversion map available to CCL. */ | |
49 /* | |
50 Lisp_Object Vcode_conversion_map_vector; | |
51 */ | |
52 | |
53 /* Alist of fontname patterns vs corresponding CCL program. */ | 40 /* Alist of fontname patterns vs corresponding CCL program. */ |
54 Lisp_Object Vfont_ccl_encoder_alist; | 41 Lisp_Object Vfont_ccl_encoder_alist; |
55 | |
56 /* This symbol is a property which assocates with ccl program vector. | |
57 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */ | |
58 Lisp_Object Qccl_program; | |
59 | |
60 /* These symbols are properties which associate with code conversion | |
61 map and their ID respectively. */ | |
62 /* | |
63 Lisp_Object Qcode_conversion_map; | |
64 Lisp_Object Qcode_conversion_map_id; | |
65 */ | |
66 | |
67 /* Symbols of ccl program have this property, a value of the property | |
68 is an index for Vccl_protram_table. */ | |
69 Lisp_Object Qccl_program_idx; | |
70 | 42 |
71 /* Vector of CCL program names vs corresponding program data. */ | 43 /* Vector of CCL program names vs corresponding program data. */ |
72 Lisp_Object Vccl_program_table; | 44 Lisp_Object Vccl_program_table; |
73 | 45 |
74 /* CCL (Code Conversion Language) is a simple language which has | 46 /* CCL (Code Conversion Language) is a simple language which has |
179 /* Note: If read is suspended, the resumed execution starts from the | 151 /* Note: If read is suspended, the resumed execution starts from the |
180 second code (YYYYY == CCL_ReadJump). */ | 152 second code (YYYYY == CCL_ReadJump). */ |
181 | 153 |
182 #define CCL_WriteConstJump 0x08 /* Write constant and jump: | 154 #define CCL_WriteConstJump 0x08 /* Write constant and jump: |
183 1:A--D--D--R--E--S--S-000XXXXX | 155 1:A--D--D--R--E--S--S-000XXXXX |
184 2:const | 156 2:CONST |
185 ------------------------------ | 157 ------------------------------ |
186 write (const); | 158 write (CONST); |
187 IC += ADDRESS; | 159 IC += ADDRESS; |
188 */ | 160 */ |
189 | 161 |
190 #define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump: | 162 #define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump: |
191 1:A--D--D--R--E--S--S-rrrXXXXX | 163 1:A--D--D--R--E--S--S-rrrXXXXX |
192 2:const | 164 2:CONST |
193 3:A--D--D--R--E--S--S-rrrYYYYY | 165 3:A--D--D--R--E--S--S-rrrYYYYY |
194 ----------------------------- | 166 ----------------------------- |
195 write (const); | 167 write (CONST); |
196 IC += 2; | 168 IC += 2; |
197 read (reg[rrr]); | 169 read (reg[rrr]); |
198 IC += ADDRESS; | 170 IC += ADDRESS; |
199 */ | 171 */ |
200 /* Note: If read is suspended, the resumed execution starts from the | 172 /* Note: If read is suspended, the resumed execution starts from the |
297 1:00000OPERATIONRrrRRR000XXXXX | 269 1:00000OPERATIONRrrRRR000XXXXX |
298 ------------------------------ | 270 ------------------------------ |
299 write (reg[RRR] OPERATION reg[Rrr]); | 271 write (reg[RRR] OPERATION reg[Rrr]); |
300 */ | 272 */ |
301 | 273 |
302 #define CCL_Call 0x13 /* Call the CCL program whose ID is | 274 #define CCL_Call 0x13 /* Write a constant: |
303 (CC..C). | |
304 1:CCCCCCCCCCCCCCCCCCCC000XXXXX | 275 1:CCCCCCCCCCCCCCCCCCCC000XXXXX |
305 ------------------------------ | 276 ------------------------------ |
306 call (CC..C) | 277 call (CC..C) |
307 */ | 278 */ |
308 | 279 |
420 IC += ADDRESS; | 391 IC += ADDRESS; |
421 else | 392 else |
422 IC += 2; | 393 IC += 2; |
423 */ | 394 */ |
424 | 395 |
425 #define CCL_Extension 0x1F /* Extended CCL code | 396 #define CCL_Extention 0x1F /* Extended CCL code |
426 1:ExtendedCOMMNDRrrRRRrrrXXXXX | 397 1:ExtendedCOMMNDRrrRRRrrrXXXXX |
427 2:ARGUEMENT | 398 2:ARGUEMENT |
428 3:... | 399 3:... |
429 ------------------------------ | 400 ------------------------------ |
430 extended_command (rrr,RRR,Rrr,ARGS) | 401 extended_command (rrr,RRR,Rrr,ARGS) |
431 */ | 402 */ |
432 | 403 |
433 /* | |
434 Here after, Extended CCL Instructions. | |
435 Bit length of extended command is 14. | |
436 Therefore, the instruction code range is 0..16384(0x3fff). | |
437 */ | |
438 | |
439 /* Read a multibyte characeter. | |
440 A code point is stored into reg[rrr]. A charset ID is stored into | |
441 reg[RRR]. */ | |
442 | |
443 #define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character | |
444 1:ExtendedCOMMNDRrrRRRrrrXXXXX */ | |
445 | |
446 /* Write a multibyte character. | |
447 Write a character whose code point is reg[rrr] and the charset ID | |
448 is reg[RRR]. */ | |
449 | |
450 #define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character | |
451 1:ExtendedCOMMNDRrrRRRrrrXXXXX */ | |
452 | |
453 #if 0 | |
454 /* Translate a character whose code point is reg[rrr] and the charset | |
455 ID is reg[RRR] by a translation table whose ID is reg[Rrr]. | |
456 | |
457 A translated character is set in reg[rrr] (code point) and reg[RRR] | |
458 (charset ID). */ | |
459 | |
460 #define CCL_TranslateCharacter 0x02 /* Translate a multibyte character | |
461 1:ExtendedCOMMNDRrrRRRrrrXXXXX */ | |
462 | |
463 /* Translate a character whose code point is reg[rrr] and the charset | |
464 ID is reg[RRR] by a translation table whose ID is ARGUMENT. | |
465 | |
466 A translated character is set in reg[rrr] (code point) and reg[RRR] | |
467 (charset ID). */ | |
468 | |
469 #define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character | |
470 1:ExtendedCOMMNDRrrRRRrrrXXXXX | |
471 2:ARGUMENT(Translation Table ID) | |
472 */ | |
473 | |
474 /* Iterate looking up MAPs for reg[rrr] starting from the Nth (N = | |
475 reg[RRR]) MAP until some value is found. | |
476 | |
477 Each MAP is a Lisp vector whose element is number, nil, t, or | |
478 lambda. | |
479 If the element is nil, ignore the map and proceed to the next map. | |
480 If the element is t or lambda, finish without changing reg[rrr]. | |
481 If the element is a number, set reg[rrr] to the number and finish. | |
482 | |
483 Detail of the map structure is descibed in the comment for | |
484 CCL_MapMultiple below. */ | |
485 | |
486 #define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps | |
487 1:ExtendedCOMMNDXXXRRRrrrXXXXX | |
488 2:NUMBER of MAPs | |
489 3:MAP-ID1 | |
490 4:MAP-ID2 | |
491 ... | |
492 */ | |
493 | |
494 /* Map the code in reg[rrr] by MAPs starting from the Nth (N = | |
495 reg[RRR]) map. | |
496 | |
497 MAPs are supplied in the succeeding CCL codes as follows: | |
498 | |
499 When CCL program gives this nested structure of map to this command: | |
500 ((MAP-ID11 | |
501 MAP-ID12 | |
502 (MAP-ID121 MAP-ID122 MAP-ID123) | |
503 MAP-ID13) | |
504 (MAP-ID21 | |
505 (MAP-ID211 (MAP-ID2111) MAP-ID212) | |
506 MAP-ID22)), | |
507 the compiled CCL codes has this sequence: | |
508 CCL_MapMultiple (CCL code of this command) | |
509 16 (total number of MAPs and SEPARATORs) | |
510 -7 (1st SEPARATOR) | |
511 MAP-ID11 | |
512 MAP-ID12 | |
513 -3 (2nd SEPARATOR) | |
514 MAP-ID121 | |
515 MAP-ID122 | |
516 MAP-ID123 | |
517 MAP-ID13 | |
518 -7 (3rd SEPARATOR) | |
519 MAP-ID21 | |
520 -4 (4th SEPARATOR) | |
521 MAP-ID211 | |
522 -1 (5th SEPARATOR) | |
523 MAP_ID2111 | |
524 MAP-ID212 | |
525 MAP-ID22 | |
526 | |
527 A value of each SEPARATOR follows this rule: | |
528 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+ | |
529 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET) | |
530 | |
531 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL. | |
532 | |
533 When some map fails to map (i.e. it doesn't have a value for | |
534 reg[rrr]), the mapping is treated as identity. | |
535 | |
536 The mapping is iterated for all maps in each map set (set of maps | |
537 separated by SEPARATOR) except in the case that lambda is | |
538 encountered. More precisely, the mapping proceeds as below: | |
539 | |
540 At first, VAL0 is set to reg[rrr], and it is translated by the | |
541 first map to VAL1. Then, VAL1 is translated by the next map to | |
542 VAL2. This mapping is iterated until the last map is used. The | |
543 result of the mapping is the last value of VAL?. | |
544 | |
545 But, when VALm is mapped to VALn and VALn is not a number, the | |
546 mapping proceed as below: | |
547 | |
548 If VALn is nil, the lastest map is ignored and the mapping of VALm | |
549 proceed to the next map. | |
550 | |
551 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm | |
552 proceed to the next map. | |
553 | |
554 If VALn is lambda, the whole mapping process terminates, and VALm | |
555 is the result of this mapping. | |
556 | |
557 Each map is a Lisp vector of the following format (a) or (b): | |
558 (a)......[STARTPOINT VAL1 VAL2 ...] | |
559 (b)......[t VAL STARTPOINT ENDPOINT], | |
560 where | |
561 STARTPOINT is an offset to be used for indexing a map, | |
562 ENDPOINT is a maximum index number of a map, | |
563 VAL and VALn is a number, nil, t, or lambda. | |
564 | |
565 Valid index range of a map of type (a) is: | |
566 STARTPOINT <= index < STARTPOINT + map_size - 1 | |
567 Valid index range of a map of type (b) is: | |
568 STARTPOINT <= index < ENDPOINT */ | |
569 | |
570 #define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps | |
571 1:ExtendedCOMMNDXXXRRRrrrXXXXX | |
572 2:N-2 | |
573 3:SEPARATOR_1 (< 0) | |
574 4:MAP-ID_1 | |
575 5:MAP-ID_2 | |
576 ... | |
577 M:SEPARATOR_x (< 0) | |
578 M+1:MAP-ID_y | |
579 ... | |
580 N:SEPARATOR_z (< 0) | |
581 */ | |
582 | |
583 #define MAX_MAP_SET_LEVEL 20 | |
584 | |
585 typedef struct | |
586 { | |
587 int rest_length; | |
588 int orig_val; | |
589 } tr_stack; | |
590 | |
591 static tr_stack mapping_stack[MAX_MAP_SET_LEVEL]; | |
592 static tr_stack *mapping_stack_pointer; | |
593 #endif | |
594 | |
595 #define PUSH_MAPPING_STACK(restlen, orig) \ | |
596 { \ | |
597 mapping_stack_pointer->rest_length = (restlen); \ | |
598 mapping_stack_pointer->orig_val = (orig); \ | |
599 mapping_stack_pointer++; \ | |
600 } | |
601 | |
602 #define POP_MAPPING_STACK(restlen, orig) \ | |
603 { \ | |
604 mapping_stack_pointer--; \ | |
605 (restlen) = mapping_stack_pointer->rest_length; \ | |
606 (orig) = mapping_stack_pointer->orig_val; \ | |
607 } \ | |
608 | |
609 #define CCL_MapSingle 0x12 /* Map by single code conversion map | |
610 1:ExtendedCOMMNDXXXRRRrrrXXXXX | |
611 2:MAP-ID | |
612 ------------------------------ | |
613 Map reg[rrr] by MAP-ID. | |
614 If some valid mapping is found, | |
615 set reg[rrr] to the result, | |
616 else | |
617 set reg[RRR] to -1. | |
618 */ | |
619 | 404 |
620 /* CCL arithmetic/logical operators. */ | 405 /* CCL arithmetic/logical operators. */ |
621 #define CCL_PLUS 0x00 /* X = Y + Z */ | 406 #define CCL_PLUS 0x00 /* X = Y + Z */ |
622 #define CCL_MINUS 0x01 /* X = Y - Z */ | 407 #define CCL_MINUS 0x01 /* X = Y - Z */ |
623 #define CCL_MUL 0x02 /* X = Y * Z */ | 408 #define CCL_MUL 0x02 /* X = Y * Z */ |
636 #define CCL_EQ 0x12 /* X = (X == Y) */ | 421 #define CCL_EQ 0x12 /* X = (X == Y) */ |
637 #define CCL_LE 0x13 /* X = (X <= Y) */ | 422 #define CCL_LE 0x13 /* X = (X <= Y) */ |
638 #define CCL_GE 0x14 /* X = (X >= Y) */ | 423 #define CCL_GE 0x14 /* X = (X >= Y) */ |
639 #define CCL_NE 0x15 /* X = (X != Y) */ | 424 #define CCL_NE 0x15 /* X = (X != Y) */ |
640 | 425 |
641 #define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z)) | 426 #define CCL_ENCODE_SJIS 0x16 /* X = HIGHER_BYTE (SJIS (Y, Z)) |
427 r[7] = LOWER_BYTE (SJIS (Y, Z) */ | |
428 #define CCL_DECODE_SJIS 0x17 /* X = HIGHER_BYTE (DE-SJIS (Y, Z)) | |
642 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */ | 429 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */ |
643 #define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z)) | 430 |
644 r[7] = LOWER_BYTE (SJIS (Y, Z) */ | 431 /* Macros for exit status of CCL program. */ |
645 | 432 #define CCL_STAT_SUCCESS 0 /* Terminated successfully. */ |
646 /* Suspend CCL program because of reading from empty input buffer or | 433 #define CCL_STAT_SUSPEND 1 /* Terminated because of empty input |
647 writing to full output buffer. When this program is resumed, the | 434 buffer or full output buffer. */ |
648 same I/O command is executed. The `if (1)' is for warning suppression. */ | 435 #define CCL_STAT_INVALID_CMD 2 /* Terminated because of invalid |
649 #define CCL_SUSPEND(stat) \ | 436 command. */ |
650 do { \ | 437 #define CCL_STAT_QUIT 3 /* Terminated because of quit. */ |
651 ic--; \ | |
652 ccl->status = stat; \ | |
653 if (1) goto ccl_finish; \ | |
654 } while (0) | |
655 | |
656 /* Terminate CCL program because of invalid command. Should not occur | |
657 in the normal case. The `if (1)' is for warning suppression. */ | |
658 #define CCL_INVALID_CMD \ | |
659 do { \ | |
660 ccl->status = CCL_STAT_INVALID_CMD; \ | |
661 if (1) goto ccl_error_handler; \ | |
662 } while (0) | |
663 | 438 |
664 /* Encode one character CH to multibyte form and write to the current | 439 /* Encode one character CH to multibyte form and write to the current |
665 output buffer. If CH is less than 256, CH is written as is. */ | 440 output buffer. If CH is less than 256, CH is written as is. */ |
666 #define CCL_WRITE_CHAR(ch) do { \ | 441 #define CCL_WRITE_CHAR(ch) do { \ |
667 if (!destination) \ | 442 if (!destination) \ |
670 goto ccl_error_handler; \ | 445 goto ccl_error_handler; \ |
671 } \ | 446 } \ |
672 else \ | 447 else \ |
673 { \ | 448 { \ |
674 Bufbyte work[MAX_EMCHAR_LEN]; \ | 449 Bufbyte work[MAX_EMCHAR_LEN]; \ |
675 int len = ( ch < ( conversion_mode == CCL_MODE_ENCODING ? \ | 450 int len = ( ch < 256 ) ? \ |
676 256 : 128 ) ) ? \ | |
677 simple_set_charptr_emchar (work, ch) : \ | 451 simple_set_charptr_emchar (work, ch) : \ |
678 non_ascii_set_charptr_emchar (work, ch); \ | 452 non_ascii_set_charptr_emchar (work, ch); \ |
679 Dynarr_add_many (destination, work, len); \ | 453 Dynarr_add_many (destination, work, len); \ |
680 } \ | 454 } \ |
681 } while (0) | 455 } while (0) |
682 | 456 |
683 /* Write a string at ccl_prog[IC] of length LEN to the current output | 457 /* Write a string at ccl_prog[IC] of length LEN to the current output |
684 buffer. */ | 458 buffer. */ |
685 #define CCL_WRITE_STRING(len) do { \ | 459 #define CCL_WRITE_STRING(len) do { \ |
686 if (!destination) \ | 460 if (!destination) \ |
687 { \ | 461 { \ |
688 ccl->status = CCL_STAT_INVALID_CMD; \ | 462 ccl->status = CCL_STAT_INVALID_CMD; \ |
689 goto ccl_error_handler; \ | 463 goto ccl_error_handler; \ |
690 } \ | 464 } \ |
691 else \ | 465 else \ |
692 { \ | 466 for (i = 0; i < len; i++) \ |
693 Bufbyte work[MAX_EMCHAR_LEN]; \ | 467 Dynarr_add(destination, \ |
694 for (i = 0; i < len; i++) \ | 468 (XINT (ccl_prog[ic + (i / 3)]) \ |
695 { \ | 469 >> ((2 - (i % 3)) * 8)) & 0xFF); \ |
696 int ch = (XINT (ccl_prog[ic + (i / 3)]) \ | |
697 >> ((2 - (i % 3)) * 8)) & 0xFF; \ | |
698 int bytes = \ | |
699 ( ch < ( conversion_mode == CCL_MODE_ENCODING ? \ | |
700 256 : 128 ) ) ? \ | |
701 simple_set_charptr_emchar (work, ch) : \ | |
702 non_ascii_set_charptr_emchar (work, ch); \ | |
703 Dynarr_add_many (destination, work, bytes); \ | |
704 } \ | |
705 } \ | |
706 } while (0) | 470 } while (0) |
707 | 471 |
708 /* Read one byte from the current input buffer into Rth register. */ | 472 /* Read one byte from the current input buffer into Rth register. */ |
709 #define CCL_READ_CHAR(r) do { \ | 473 #define CCL_READ_CHAR(r) do { \ |
710 if (!src && !ccl->last_block) \ | 474 if (!src) \ |
711 { \ | 475 { \ |
712 ccl->status = CCL_STAT_INVALID_CMD; \ | 476 ccl->status = CCL_STAT_INVALID_CMD; \ |
713 goto ccl_error_handler; \ | 477 goto ccl_error_handler; \ |
714 } \ | 478 } \ |
715 else if (src < src_end) \ | 479 else if (src < src_end) \ |
716 r = *src++; \ | 480 r = *src++; \ |
717 else if (ccl->last_block) \ | 481 else if (ccl->last_block) \ |
718 { \ | 482 { \ |
719 ic = ccl->eof_ic; \ | 483 ic = ccl->eof_ic; \ |
720 goto ccl_repeat; \ | 484 goto ccl_finish; \ |
721 } \ | 485 } \ |
722 else \ | 486 else \ |
723 /* Suspend CCL program because of \ | 487 /* Suspend CCL program because of \ |
724 reading from empty input buffer or \ | 488 reading from empty input buffer or \ |
725 writing to full output buffer. \ | 489 writing to full output buffer. \ |
726 When this program is resumed, the \ | 490 When this program is resumed, the \ |
727 same I/O command is executed. */ \ | 491 same I/O command is executed. */ \ |
728 { \ | 492 { \ |
729 ic--; \ | 493 ic--; \ |
730 ccl->status = CCL_STAT_SUSPEND_BY_SRC; \ | 494 ccl->status = CCL_STAT_SUSPEND; \ |
731 goto ccl_finish; \ | 495 goto ccl_finish; \ |
732 } \ | 496 } \ |
733 } while (0) | 497 } while (0) |
734 | 498 |
735 | 499 |
750 { | 514 { |
751 Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */ | 515 Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */ |
752 int ic; /* Instruction Counter. */ | 516 int ic; /* Instruction Counter. */ |
753 }; | 517 }; |
754 | 518 |
755 /* For the moment, we only support depth 256 of stack. */ | |
756 static struct ccl_prog_stack ccl_prog_stack_struct[256]; | |
757 | |
758 int | 519 int |
759 ccl_driver (struct ccl_program *ccl, const unsigned char *source, | 520 ccl_driver (struct ccl_program *ccl, CONST unsigned char *source, unsigned_char_dynarr *destination, int src_bytes, int *consumed) |
760 unsigned_char_dynarr *destination, int src_bytes, | |
761 int *consumed, int conversion_mode) | |
762 { | 521 { |
763 int *reg = ccl->reg; | 522 int *reg = ccl->reg; |
764 int ic = ccl->ic; | 523 int ic = ccl->ic; |
765 int code = -1; /* init to illegal value, */ | 524 int code = -1; /* init to illegal value, */ |
766 int field1, field2; | 525 int field1, field2; |
767 Lisp_Object *ccl_prog = ccl->prog; | 526 Lisp_Object *ccl_prog = ccl->prog; |
768 const unsigned char *src = source, *src_end = src + src_bytes; | 527 CONST unsigned char *src = source, *src_end = src + src_bytes; |
769 int jump_address = 0; /* shut up the compiler */ | 528 int jump_address = 0; /* shut up the compiler */ |
529 | |
770 int i, j, op; | 530 int i, j, op; |
771 int stack_idx = ccl->stack_idx; | 531 int stack_idx = 0; |
772 /* Instruction counter of the current CCL code. */ | 532 /* For the moment, we only support depth 256 of stack. */ |
773 int this_ic = 0; | 533 struct ccl_prog_stack ccl_prog_stack_struct[256]; |
774 | 534 |
775 if (ic >= ccl->eof_ic) | 535 if (ic >= ccl->eof_ic) |
776 ic = CCL_HEADER_MAIN; | 536 ic = CCL_HEADER_MAIN; |
777 | |
778 #if 0 /* not for XEmacs ? */ | |
779 if (ccl->buf_magnification ==0) /* We can't produce any bytes. */ | |
780 dst = NULL; | |
781 #endif | |
782 | 537 |
783 #ifdef CCL_DEBUG | 538 #ifdef CCL_DEBUG |
784 ccl_backtrace_idx = 0; | 539 ccl_backtrace_idx = 0; |
785 #endif | 540 #endif |
786 | 541 |
787 for (;;) | 542 for (;;) |
788 { | 543 { |
789 ccl_repeat: | |
790 #ifdef CCL_DEBUG | 544 #ifdef CCL_DEBUG |
791 ccl_backtrace_table[ccl_backtrace_idx++] = ic; | 545 ccl_backtrace_table[ccl_backtrace_idx++] = ic; |
792 if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN) | 546 if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN) |
793 ccl_backtrace_idx = 0; | 547 ccl_backtrace_idx = 0; |
794 ccl_backtrace_table[ccl_backtrace_idx] = 0; | 548 ccl_backtrace_table[ccl_backtrace_idx] = 0; |
803 src = source + src_bytes; | 557 src = source + src_bytes; |
804 ccl->status = CCL_STAT_QUIT; | 558 ccl->status = CCL_STAT_QUIT; |
805 break; | 559 break; |
806 } | 560 } |
807 | 561 |
808 this_ic = ic; | |
809 code = XINT (ccl_prog[ic]); ic++; | 562 code = XINT (ccl_prog[ic]); ic++; |
810 field1 = code >> 8; | 563 field1 = code >> 8; |
811 field2 = (code & 0xFF) >> 5; | 564 field2 = (code & 0xFF) >> 5; |
812 | 565 |
813 #define rrr field2 | 566 #define rrr field2 |
814 #define RRR (field1 & 7) | 567 #define RRR (field1 & 7) |
815 #define Rrr ((field1 >> 3) & 7) | 568 #define Rrr ((field1 >> 3) & 7) |
816 #define ADDR field1 | 569 #define ADDR field1 |
817 #define EXCMD (field1 >> 6) | |
818 | 570 |
819 switch (code & 0x1F) | 571 switch (code & 0x1F) |
820 { | 572 { |
821 case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */ | 573 case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */ |
822 reg[rrr] = reg[RRR]; | 574 reg[rrr] = reg[RRR]; |
1002 { | 754 { |
1003 ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog; | 755 ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog; |
1004 ic = ccl_prog_stack_struct[stack_idx].ic; | 756 ic = ccl_prog_stack_struct[stack_idx].ic; |
1005 break; | 757 break; |
1006 } | 758 } |
1007 if (src) | |
1008 src = src_end; | |
1009 /* ccl->ic should points to this command code again to | |
1010 suppress further processing. */ | |
1011 ic--; | |
1012 /* Terminate CCL program successfully. */ | 759 /* Terminate CCL program successfully. */ |
1013 ccl->status = CCL_STAT_SUCCESS; | 760 ccl->status = CCL_STAT_SUCCESS; |
761 ccl->ic = CCL_HEADER_MAIN; | |
1014 goto ccl_finish; | 762 goto ccl_finish; |
1015 | 763 |
1016 case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */ | 764 case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */ |
1017 i = XINT (ccl_prog[ic]); | 765 i = XINT (ccl_prog[ic]); |
1018 ic++; | 766 ic++; |
1106 case CCL_GT: reg[rrr] = i > j; break; | 854 case CCL_GT: reg[rrr] = i > j; break; |
1107 case CCL_EQ: reg[rrr] = i == j; break; | 855 case CCL_EQ: reg[rrr] = i == j; break; |
1108 case CCL_LE: reg[rrr] = i <= j; break; | 856 case CCL_LE: reg[rrr] = i <= j; break; |
1109 case CCL_GE: reg[rrr] = i >= j; break; | 857 case CCL_GE: reg[rrr] = i >= j; break; |
1110 case CCL_NE: reg[rrr] = i != j; break; | 858 case CCL_NE: reg[rrr] = i != j; break; |
859 case CCL_ENCODE_SJIS: ENCODE_SJIS (i, j, reg[rrr], reg[7]); break; | |
1111 case CCL_DECODE_SJIS: DECODE_SJIS (i, j, reg[rrr], reg[7]); break; | 860 case CCL_DECODE_SJIS: DECODE_SJIS (i, j, reg[rrr], reg[7]); break; |
1112 case CCL_ENCODE_SJIS: ENCODE_SJIS (i, j, reg[rrr], reg[7]); break; | |
1113 default: | 861 default: |
1114 ccl->status = CCL_STAT_INVALID_CMD; | 862 ccl->status = CCL_STAT_INVALID_CMD; |
1115 goto ccl_error_handler; | 863 goto ccl_error_handler; |
1116 } | 864 } |
1117 code &= 0x1F; | 865 code &= 0x1F; |
1122 } | 870 } |
1123 else if (!reg[rrr]) | 871 else if (!reg[rrr]) |
1124 ic = jump_address; | 872 ic = jump_address; |
1125 break; | 873 break; |
1126 | 874 |
1127 case CCL_Extension: | |
1128 switch (EXCMD) | |
1129 { | |
1130 case CCL_ReadMultibyteChar2: | |
1131 if (!src) | |
1132 CCL_INVALID_CMD; | |
1133 | |
1134 do { | |
1135 if (src >= src_end) | |
1136 { | |
1137 src++; | |
1138 goto ccl_read_multibyte_character_suspend; | |
1139 } | |
1140 | |
1141 i = *src++; | |
1142 #if 0 | |
1143 if (i == LEADING_CODE_COMPOSITION) | |
1144 { | |
1145 if (src >= src_end) | |
1146 goto ccl_read_multibyte_character_suspend; | |
1147 if (*src == 0xFF) | |
1148 { | |
1149 ccl->private_state = COMPOSING_WITH_RULE_HEAD; | |
1150 src++; | |
1151 } | |
1152 else | |
1153 ccl->private_state = COMPOSING_NO_RULE_HEAD; | |
1154 | |
1155 continue; | |
1156 } | |
1157 if (ccl->private_state != COMPOSING_NO) | |
1158 { | |
1159 /* composite character */ | |
1160 if (i < 0xA0) | |
1161 ccl->private_state = COMPOSING_NO; | |
1162 else | |
1163 { | |
1164 if (COMPOSING_WITH_RULE_RULE == ccl->private_state) | |
1165 { | |
1166 ccl->private_state = COMPOSING_WITH_RULE_HEAD; | |
1167 continue; | |
1168 } | |
1169 else if (COMPOSING_WITH_RULE_HEAD == ccl->private_state) | |
1170 ccl->private_state = COMPOSING_WITH_RULE_RULE; | |
1171 | |
1172 if (i == 0xA0) | |
1173 { | |
1174 if (src >= src_end) | |
1175 goto ccl_read_multibyte_character_suspend; | |
1176 i = *src++ & 0x7F; | |
1177 } | |
1178 else | |
1179 i -= 0x20; | |
1180 } | |
1181 } | |
1182 #endif | |
1183 | |
1184 if (i < 0x80) | |
1185 { | |
1186 /* ASCII */ | |
1187 reg[rrr] = i; | |
1188 reg[RRR] = LEADING_BYTE_ASCII; | |
1189 } | |
1190 else if (i <= MAX_LEADING_BYTE_OFFICIAL_1) | |
1191 { | |
1192 if (src >= src_end) | |
1193 goto ccl_read_multibyte_character_suspend; | |
1194 reg[RRR] = i; | |
1195 reg[rrr] = (*src++ & 0x7F); | |
1196 } | |
1197 else if (i <= MAX_LEADING_BYTE_OFFICIAL_2) | |
1198 { | |
1199 if ((src + 1) >= src_end) | |
1200 goto ccl_read_multibyte_character_suspend; | |
1201 reg[RRR] = i; | |
1202 i = (*src++ & 0x7F); | |
1203 reg[rrr] = ((i << 7) | (*src & 0x7F)); | |
1204 src++; | |
1205 } | |
1206 else if (i == PRE_LEADING_BYTE_PRIVATE_1) | |
1207 { | |
1208 if ((src + 1) >= src_end) | |
1209 goto ccl_read_multibyte_character_suspend; | |
1210 reg[RRR] = *src++; | |
1211 reg[rrr] = (*src++ & 0x7F); | |
1212 } | |
1213 else if (i == PRE_LEADING_BYTE_PRIVATE_2) | |
1214 { | |
1215 if ((src + 2) >= src_end) | |
1216 goto ccl_read_multibyte_character_suspend; | |
1217 reg[RRR] = *src++; | |
1218 i = (*src++ & 0x7F); | |
1219 reg[rrr] = ((i << 7) | (*src & 0x7F)); | |
1220 src++; | |
1221 } | |
1222 else | |
1223 { | |
1224 /* INVALID CODE. Return a single byte character. */ | |
1225 reg[RRR] = LEADING_BYTE_ASCII; | |
1226 reg[rrr] = i; | |
1227 } | |
1228 break; | |
1229 } while (1); | |
1230 break; | |
1231 | |
1232 ccl_read_multibyte_character_suspend: | |
1233 src--; | |
1234 if (ccl->last_block) | |
1235 { | |
1236 ic = ccl->eof_ic; | |
1237 goto ccl_repeat; | |
1238 } | |
1239 else | |
1240 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); | |
1241 | |
1242 break; | |
1243 | |
1244 case CCL_WriteMultibyteChar2: | |
1245 i = reg[RRR]; /* charset */ | |
1246 if (i == LEADING_BYTE_ASCII) | |
1247 i = reg[rrr] & 0xFF; | |
1248 #if 0 | |
1249 else if (i == CHARSET_COMPOSITION) | |
1250 i = MAKE_COMPOSITE_CHAR (reg[rrr]); | |
1251 #endif | |
1252 else if (XCHARSET_DIMENSION (CHARSET_BY_LEADING_BYTE (i)) == 1) | |
1253 i = ((i - FIELD2_TO_OFFICIAL_LEADING_BYTE) << 7) | |
1254 | (reg[rrr] & 0x7F); | |
1255 else if (i < MIN_LEADING_BYTE_OFFICIAL_2) | |
1256 i = ((i - FIELD1_TO_OFFICIAL_LEADING_BYTE) << 14) | reg[rrr]; | |
1257 else | |
1258 i = ((i - FIELD1_TO_PRIVATE_LEADING_BYTE) << 14) | reg[rrr]; | |
1259 | |
1260 CCL_WRITE_CHAR (i); | |
1261 | |
1262 break; | |
1263 | |
1264 #if 0 | |
1265 case CCL_TranslateCharacter: | |
1266 i = reg[RRR]; /* charset */ | |
1267 if (i == LEADING_BYTE_ASCII) | |
1268 i = reg[rrr]; | |
1269 else if (i == CHARSET_COMPOSITION) | |
1270 { | |
1271 reg[RRR] = -1; | |
1272 break; | |
1273 } | |
1274 else if (CHARSET_DIMENSION (i) == 1) | |
1275 i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F); | |
1276 else if (i < MIN_LEADING_BYTE_OFFICIAL_2) | |
1277 i = ((i - 0x8F) << 14) | (reg[rrr] & 0x3FFF); | |
1278 else | |
1279 i = ((i - 0xE0) << 14) | (reg[rrr] & 0x3FFF); | |
1280 | |
1281 op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]), | |
1282 i, -1, 0, 0); | |
1283 SPLIT_CHAR (op, reg[RRR], i, j); | |
1284 if (j != -1) | |
1285 i = (i << 7) | j; | |
1286 | |
1287 reg[rrr] = i; | |
1288 break; | |
1289 | |
1290 case CCL_TranslateCharacterConstTbl: | |
1291 op = XINT (ccl_prog[ic]); /* table */ | |
1292 ic++; | |
1293 i = reg[RRR]; /* charset */ | |
1294 if (i == LEADING_BYTE_ASCII) | |
1295 i = reg[rrr]; | |
1296 else if (i == CHARSET_COMPOSITION) | |
1297 { | |
1298 reg[RRR] = -1; | |
1299 break; | |
1300 } | |
1301 else if (CHARSET_DIMENSION (i) == 1) | |
1302 i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F); | |
1303 else if (i < MIN_LEADING_BYTE_OFFICIAL_2) | |
1304 i = ((i - 0x8F) << 14) | (reg[rrr] & 0x3FFF); | |
1305 else | |
1306 i = ((i - 0xE0) << 14) | (reg[rrr] & 0x3FFF); | |
1307 | |
1308 op = translate_char (GET_TRANSLATION_TABLE (op), i, -1, 0, 0); | |
1309 SPLIT_CHAR (op, reg[RRR], i, j); | |
1310 if (j != -1) | |
1311 i = (i << 7) | j; | |
1312 | |
1313 reg[rrr] = i; | |
1314 break; | |
1315 | |
1316 case CCL_IterateMultipleMap: | |
1317 { | |
1318 Lisp_Object map, content, attrib, value; | |
1319 int point, size, fin_ic; | |
1320 | |
1321 j = XINT (ccl_prog[ic++]); /* number of maps. */ | |
1322 fin_ic = ic + j; | |
1323 op = reg[rrr]; | |
1324 if ((j > reg[RRR]) && (j >= 0)) | |
1325 { | |
1326 ic += reg[RRR]; | |
1327 i = reg[RRR]; | |
1328 } | |
1329 else | |
1330 { | |
1331 reg[RRR] = -1; | |
1332 ic = fin_ic; | |
1333 break; | |
1334 } | |
1335 | |
1336 for (;i < j;i++) | |
1337 { | |
1338 | |
1339 size = XVECTOR (Vcode_conversion_map_vector)->size; | |
1340 point = XINT (ccl_prog[ic++]); | |
1341 if (point >= size) continue; | |
1342 map = | |
1343 XVECTOR (Vcode_conversion_map_vector)->contents[point]; | |
1344 | |
1345 /* Check map varidity. */ | |
1346 if (!CONSP (map)) continue; | |
1347 map = XCONS(map)->cdr; | |
1348 if (!VECTORP (map)) continue; | |
1349 size = XVECTOR (map)->size; | |
1350 if (size <= 1) continue; | |
1351 | |
1352 content = XVECTOR (map)->contents[0]; | |
1353 | |
1354 /* check map type, | |
1355 [STARTPOINT VAL1 VAL2 ...] or | |
1356 [t ELELMENT STARTPOINT ENDPOINT] */ | |
1357 if (NUMBERP (content)) | |
1358 { | |
1359 point = XUINT (content); | |
1360 point = op - point + 1; | |
1361 if (!((point >= 1) && (point < size))) continue; | |
1362 content = XVECTOR (map)->contents[point]; | |
1363 } | |
1364 else if (EQ (content, Qt)) | |
1365 { | |
1366 if (size != 4) continue; | |
1367 if ((op >= XUINT (XVECTOR (map)->contents[2])) | |
1368 && (op < XUINT (XVECTOR (map)->contents[3]))) | |
1369 content = XVECTOR (map)->contents[1]; | |
1370 else | |
1371 continue; | |
1372 } | |
1373 else | |
1374 continue; | |
1375 | |
1376 if (NILP (content)) | |
1377 continue; | |
1378 else if (NUMBERP (content)) | |
1379 { | |
1380 reg[RRR] = i; | |
1381 reg[rrr] = XINT(content); | |
1382 break; | |
1383 } | |
1384 else if (EQ (content, Qt) || EQ (content, Qlambda)) | |
1385 { | |
1386 reg[RRR] = i; | |
1387 break; | |
1388 } | |
1389 else if (CONSP (content)) | |
1390 { | |
1391 attrib = XCONS (content)->car; | |
1392 value = XCONS (content)->cdr; | |
1393 if (!NUMBERP (attrib) || !NUMBERP (value)) | |
1394 continue; | |
1395 reg[RRR] = i; | |
1396 reg[rrr] = XUINT (value); | |
1397 break; | |
1398 } | |
1399 } | |
1400 if (i == j) | |
1401 reg[RRR] = -1; | |
1402 ic = fin_ic; | |
1403 } | |
1404 break; | |
1405 | |
1406 case CCL_MapMultiple: | |
1407 { | |
1408 Lisp_Object map, content, attrib, value; | |
1409 int point, size, map_vector_size; | |
1410 int map_set_rest_length, fin_ic; | |
1411 | |
1412 map_set_rest_length = | |
1413 XINT (ccl_prog[ic++]); /* number of maps and separators. */ | |
1414 fin_ic = ic + map_set_rest_length; | |
1415 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0)) | |
1416 { | |
1417 ic += reg[RRR]; | |
1418 i = reg[RRR]; | |
1419 map_set_rest_length -= i; | |
1420 } | |
1421 else | |
1422 { | |
1423 ic = fin_ic; | |
1424 reg[RRR] = -1; | |
1425 break; | |
1426 } | |
1427 mapping_stack_pointer = mapping_stack; | |
1428 op = reg[rrr]; | |
1429 PUSH_MAPPING_STACK (0, op); | |
1430 reg[RRR] = -1; | |
1431 map_vector_size = XVECTOR (Vcode_conversion_map_vector)->size; | |
1432 for (;map_set_rest_length > 0;i++, map_set_rest_length--) | |
1433 { | |
1434 point = XINT(ccl_prog[ic++]); | |
1435 if (point < 0) | |
1436 { | |
1437 point = -point; | |
1438 if (mapping_stack_pointer | |
1439 >= &mapping_stack[MAX_MAP_SET_LEVEL]) | |
1440 { | |
1441 CCL_INVALID_CMD; | |
1442 } | |
1443 PUSH_MAPPING_STACK (map_set_rest_length - point, | |
1444 reg[rrr]); | |
1445 map_set_rest_length = point + 1; | |
1446 reg[rrr] = op; | |
1447 continue; | |
1448 } | |
1449 | |
1450 if (point >= map_vector_size) continue; | |
1451 map = (XVECTOR (Vcode_conversion_map_vector) | |
1452 ->contents[point]); | |
1453 | |
1454 /* Check map varidity. */ | |
1455 if (!CONSP (map)) continue; | |
1456 map = XCONS (map)->cdr; | |
1457 if (!VECTORP (map)) continue; | |
1458 size = XVECTOR (map)->size; | |
1459 if (size <= 1) continue; | |
1460 | |
1461 content = XVECTOR (map)->contents[0]; | |
1462 | |
1463 /* check map type, | |
1464 [STARTPOINT VAL1 VAL2 ...] or | |
1465 [t ELEMENT STARTPOINT ENDPOINT] */ | |
1466 if (NUMBERP (content)) | |
1467 { | |
1468 point = XUINT (content); | |
1469 point = op - point + 1; | |
1470 if (!((point >= 1) && (point < size))) continue; | |
1471 content = XVECTOR (map)->contents[point]; | |
1472 } | |
1473 else if (EQ (content, Qt)) | |
1474 { | |
1475 if (size != 4) continue; | |
1476 if ((op >= XUINT (XVECTOR (map)->contents[2])) && | |
1477 (op < XUINT (XVECTOR (map)->contents[3]))) | |
1478 content = XVECTOR (map)->contents[1]; | |
1479 else | |
1480 continue; | |
1481 } | |
1482 else | |
1483 continue; | |
1484 | |
1485 if (NILP (content)) | |
1486 continue; | |
1487 else if (NUMBERP (content)) | |
1488 { | |
1489 op = XINT (content); | |
1490 reg[RRR] = i; | |
1491 i += map_set_rest_length; | |
1492 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
1493 } | |
1494 else if (CONSP (content)) | |
1495 { | |
1496 attrib = XCONS (content)->car; | |
1497 value = XCONS (content)->cdr; | |
1498 if (!NUMBERP (attrib) || !NUMBERP (value)) | |
1499 continue; | |
1500 reg[RRR] = i; | |
1501 op = XUINT (value); | |
1502 i += map_set_rest_length; | |
1503 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
1504 } | |
1505 else if (EQ (content, Qt)) | |
1506 { | |
1507 reg[RRR] = i; | |
1508 op = reg[rrr]; | |
1509 i += map_set_rest_length; | |
1510 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
1511 } | |
1512 else if (EQ (content, Qlambda)) | |
1513 { | |
1514 break; | |
1515 } | |
1516 else | |
1517 CCL_INVALID_CMD; | |
1518 } | |
1519 ic = fin_ic; | |
1520 } | |
1521 reg[rrr] = op; | |
1522 break; | |
1523 | |
1524 case CCL_MapSingle: | |
1525 { | |
1526 Lisp_Object map, attrib, value, content; | |
1527 int size, point; | |
1528 j = XINT (ccl_prog[ic++]); /* map_id */ | |
1529 op = reg[rrr]; | |
1530 if (j >= XVECTOR (Vcode_conversion_map_vector)->size) | |
1531 { | |
1532 reg[RRR] = -1; | |
1533 break; | |
1534 } | |
1535 map = XVECTOR (Vcode_conversion_map_vector)->contents[j]; | |
1536 if (!CONSP (map)) | |
1537 { | |
1538 reg[RRR] = -1; | |
1539 break; | |
1540 } | |
1541 map = XCONS(map)->cdr; | |
1542 if (!VECTORP (map)) | |
1543 { | |
1544 reg[RRR] = -1; | |
1545 break; | |
1546 } | |
1547 size = XVECTOR (map)->size; | |
1548 point = XUINT (XVECTOR (map)->contents[0]); | |
1549 point = op - point + 1; | |
1550 reg[RRR] = 0; | |
1551 if ((size <= 1) || | |
1552 (!((point >= 1) && (point < size)))) | |
1553 reg[RRR] = -1; | |
1554 else | |
1555 { | |
1556 content = XVECTOR (map)->contents[point]; | |
1557 if (NILP (content)) | |
1558 reg[RRR] = -1; | |
1559 else if (NUMBERP (content)) | |
1560 reg[rrr] = XINT (content); | |
1561 else if (EQ (content, Qt)) | |
1562 reg[RRR] = i; | |
1563 else if (CONSP (content)) | |
1564 { | |
1565 attrib = XCONS (content)->car; | |
1566 value = XCONS (content)->cdr; | |
1567 if (!NUMBERP (attrib) || !NUMBERP (value)) | |
1568 continue; | |
1569 reg[rrr] = XUINT(value); | |
1570 break; | |
1571 } | |
1572 else | |
1573 reg[RRR] = -1; | |
1574 } | |
1575 } | |
1576 break; | |
1577 #endif | |
1578 | |
1579 default: | |
1580 CCL_INVALID_CMD; | |
1581 } | |
1582 break; | |
1583 | |
1584 default: | 875 default: |
1585 ccl->status = CCL_STAT_INVALID_CMD; | 876 ccl->status = CCL_STAT_INVALID_CMD; |
1586 goto ccl_error_handler; | 877 goto ccl_error_handler; |
1587 } | 878 } |
1588 } | 879 } |
1593 /* We can insert an error message only if DESTINATION is | 884 /* We can insert an error message only if DESTINATION is |
1594 specified and we still have a room to store the message | 885 specified and we still have a room to store the message |
1595 there. */ | 886 there. */ |
1596 char msg[256]; | 887 char msg[256]; |
1597 | 888 |
1598 #if 0 /* not for XEmacs ? */ | |
1599 if (!dst) | |
1600 dst = destination; | |
1601 #endif | |
1602 | |
1603 switch (ccl->status) | 889 switch (ccl->status) |
1604 { | 890 { |
1605 /* Terminate CCL program because of invalid command. | 891 /* Terminate CCL program because of invalid command. |
1606 Should not occur in the normal case. */ | 892 Should not occur in the normal case. */ |
1607 case CCL_STAT_INVALID_CMD: | 893 case CCL_STAT_INVALID_CMD: |
1608 sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.", | 894 sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.", |
1609 code & 0x1F, code, this_ic); | 895 code & 0x1F, code, ic); |
1610 #ifdef CCL_DEBUG | 896 #ifdef CCL_DEBUG |
1611 { | 897 { |
1612 int i = ccl_backtrace_idx - 1; | 898 int i = ccl_backtrace_idx - 1; |
1613 int j; | 899 int j; |
1614 | 900 |
1620 if (ccl_backtrace_table[i] == 0) | 906 if (ccl_backtrace_table[i] == 0) |
1621 break; | 907 break; |
1622 sprintf(msg, " %d", ccl_backtrace_table[i]); | 908 sprintf(msg, " %d", ccl_backtrace_table[i]); |
1623 Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg)); | 909 Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg)); |
1624 } | 910 } |
1625 goto ccl_finish; | |
1626 } | 911 } |
1627 #endif | 912 #endif |
1628 break; | 913 goto ccl_finish; |
1629 | 914 |
1630 case CCL_STAT_QUIT: | 915 case CCL_STAT_QUIT: |
1631 sprintf(msg, "\nCCL: Quited."); | 916 sprintf(msg, "\nCCL: Quited."); |
1632 break; | 917 break; |
1633 | 918 |
1638 Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg)); | 923 Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg)); |
1639 } | 924 } |
1640 | 925 |
1641 ccl_finish: | 926 ccl_finish: |
1642 ccl->ic = ic; | 927 ccl->ic = ic; |
1643 ccl->stack_idx = stack_idx; | |
1644 ccl->prog = ccl_prog; | |
1645 if (consumed) *consumed = src - source; | 928 if (consumed) *consumed = src - source; |
1646 if (destination) | 929 if (destination) |
1647 return Dynarr_length (destination); | 930 return Dynarr_length (destination); |
1648 else | 931 else |
1649 return 0; | 932 return 0; |
1650 } | 933 } |
1651 | 934 |
1652 /* Setup fields of the structure pointed by CCL appropriately for the | 935 /* Setup fields of the structure pointed by CCL appropriately for the |
1653 execution of compiled CCL code in VEC (vector of integer). | 936 execution of compiled CCL code in VEC (vector of integer). */ |
1654 If VEC is nil, we skip setting ups based on VEC. */ | |
1655 void | 937 void |
1656 setup_ccl_program (struct ccl_program *ccl, Lisp_Object vec) | 938 setup_ccl_program (struct ccl_program *ccl, Lisp_Object vec) |
1657 { | 939 { |
1658 int i; | 940 int i; |
1659 | 941 |
1660 if (VECTORP (vec)) | 942 ccl->size = XVECTOR_LENGTH (vec); |
1661 { | 943 ccl->prog = XVECTOR_DATA (vec); |
1662 ccl->size = XVECTOR_LENGTH (vec); | |
1663 ccl->prog = XVECTOR_DATA (vec); | |
1664 ccl->eof_ic = XINT (XVECTOR_DATA (vec)[CCL_HEADER_EOF]); | |
1665 ccl->buf_magnification = XINT (XVECTOR_DATA (vec)[CCL_HEADER_BUF_MAG]); | |
1666 } | |
1667 ccl->ic = CCL_HEADER_MAIN; | 944 ccl->ic = CCL_HEADER_MAIN; |
945 ccl->eof_ic = XINT (XVECTOR_DATA (vec)[CCL_HEADER_EOF]); | |
946 ccl->buf_magnification = XINT (XVECTOR_DATA (vec)[CCL_HEADER_BUF_MAG]); | |
1668 for (i = 0; i < 8; i++) | 947 for (i = 0; i < 8; i++) |
1669 ccl->reg[i] = 0; | 948 ccl->reg[i] = 0; |
1670 ccl->last_block = 0; | 949 ccl->last_block = 0; |
1671 ccl->private_state = 0; | |
1672 ccl->status = 0; | 950 ccl->status = 0; |
1673 ccl->stack_idx = 0; | |
1674 } | 951 } |
1675 | |
1676 /* Resolve symbols in the specified CCL code (Lisp vector). This | |
1677 function converts symbols of code conversion maps and character | |
1678 translation tables embeded in the CCL code into their ID numbers. */ | |
1679 | |
1680 static Lisp_Object | |
1681 resolve_symbol_ccl_program (Lisp_Object ccl) | |
1682 { | |
1683 int i, veclen; | |
1684 Lisp_Object result, contents /*, prop */; | |
1685 | |
1686 result = ccl; | |
1687 veclen = XVECTOR_LENGTH (result); | |
1688 | |
1689 /* Set CCL program's table ID */ | |
1690 for (i = 0; i < veclen; i++) | |
1691 { | |
1692 contents = XVECTOR_DATA (result)[i]; | |
1693 if (SYMBOLP (contents)) | |
1694 { | |
1695 if (EQ(result, ccl)) | |
1696 result = Fcopy_sequence (ccl); | |
1697 | |
1698 #if 0 | |
1699 prop = Fget (contents, Qtranslation_table_id); | |
1700 if (NUMBERP (prop)) | |
1701 { | |
1702 XVECTOR_DATA (result)[i] = prop; | |
1703 continue; | |
1704 } | |
1705 prop = Fget (contents, Qcode_conversion_map_id); | |
1706 if (NUMBERP (prop)) | |
1707 { | |
1708 XVECTOR_DATA (result)[i] = prop; | |
1709 continue; | |
1710 } | |
1711 prop = Fget (contents, Qccl_program_idx); | |
1712 if (NUMBERP (prop)) | |
1713 { | |
1714 XVECTOR_DATA (result)[i] = prop; | |
1715 continue; | |
1716 } | |
1717 #endif | |
1718 } | |
1719 } | |
1720 | |
1721 return result; | |
1722 } | |
1723 | |
1724 | 952 |
1725 #ifdef emacs | 953 #ifdef emacs |
1726 | 954 |
1727 DEFUN ("ccl-execute", Fccl_execute, 2, 2, 0, /* | 955 DEFUN ("ccl-execute", Fccl_execute, 2, 2, 0, /* |
1728 Execute CCL-PROGRAM with registers initialized by REGISTERS. | 956 Execute CCL-PROGRAM with registers initialized by REGISTERS. |
1729 | 957 CCL-PROGRAM is a compiled code generated by `ccl-compile', |
1730 CCL-PROGRAM is a symbol registered by register-ccl-program, | 958 no I/O commands should appear in the CCL program. |
1731 or a compiled code generated by `ccl-compile' (for backward compatibility, | |
1732 in this case, the execution is slower). | |
1733 No I/O commands should appear in CCL-PROGRAM. | |
1734 | |
1735 REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value | 959 REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value |
1736 of Nth register. | 960 of Nth register. |
1737 | |
1738 As side effect, each element of REGISTER holds the value of | 961 As side effect, each element of REGISTER holds the value of |
1739 corresponding register after the execution. | 962 corresponding register after the execution. |
1740 */ | 963 */ |
1741 (ccl_prog, reg)) | 964 (ccl_prog, reg)) |
1742 { | 965 { |
1743 struct ccl_program ccl; | 966 struct ccl_program ccl; |
1744 int i; | 967 int i; |
1745 Lisp_Object ccl_id; | 968 |
1746 | 969 CHECK_VECTOR (ccl_prog); |
1747 if (SYMBOLP (ccl_prog) && | |
1748 !NILP (ccl_id = Fget (ccl_prog, Qccl_program_idx, Qnil))) | |
1749 { | |
1750 ccl_prog = XVECTOR_DATA (Vccl_program_table)[XUINT (ccl_id)]; | |
1751 CHECK_LIST (ccl_prog); | |
1752 ccl_prog = XCDR (ccl_prog); | |
1753 CHECK_VECTOR (ccl_prog); | |
1754 } | |
1755 else | |
1756 { | |
1757 CHECK_VECTOR (ccl_prog); | |
1758 ccl_prog = resolve_symbol_ccl_program (ccl_prog); | |
1759 } | |
1760 | |
1761 CHECK_VECTOR (reg); | 970 CHECK_VECTOR (reg); |
1762 if (XVECTOR_LENGTH (reg) != 8) | 971 if (XVECTOR_LENGTH (reg) != 8) |
1763 error ("Invalid length of vector REGISTERS"); | 972 signal_simple_error ("Vector should be of length 8", reg); |
1764 | 973 |
1765 setup_ccl_program (&ccl, ccl_prog); | 974 setup_ccl_program (&ccl, ccl_prog); |
1766 for (i = 0; i < 8; i++) | 975 for (i = 0; i < 8; i++) |
1767 ccl.reg[i] = (INTP (XVECTOR_DATA (reg)[i]) | 976 ccl.reg[i] = (INTP (XVECTOR_DATA (reg)[i]) |
1768 ? XINT (XVECTOR_DATA (reg)[i]) | 977 ? XINT (XVECTOR_DATA (reg)[i]) |
1769 : 0); | 978 : 0); |
1770 | 979 |
1771 ccl_driver (&ccl, (const unsigned char *)0, (unsigned_char_dynarr *)0, | 980 ccl_driver (&ccl, (CONST unsigned char *)0, (unsigned_char_dynarr *)0, |
1772 0, (int *)0, CCL_MODE_ENCODING); | 981 0, (int *)0); |
1773 QUIT; | 982 QUIT; |
1774 if (ccl.status != CCL_STAT_SUCCESS) | 983 if (ccl.status != CCL_STAT_SUCCESS) |
1775 error ("Error in CCL program at %dth code", ccl.ic); | 984 error ("Error in CCL program at %dth code", ccl.ic); |
1776 | 985 |
1777 for (i = 0; i < 8; i++) | 986 for (i = 0; i < 8; i++) |
1779 return Qnil; | 988 return Qnil; |
1780 } | 989 } |
1781 | 990 |
1782 DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, 3, 4, 0, /* | 991 DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, 3, 4, 0, /* |
1783 Execute CCL-PROGRAM with initial STATUS on STRING. | 992 Execute CCL-PROGRAM with initial STATUS on STRING. |
1784 | 993 CCL-PROGRAM is a compiled code generated by `ccl-compile'. |
1785 CCL-PROGRAM is a symbol registered by register-ccl-program, | |
1786 or a compiled code generated by `ccl-compile' (for backward compatibility, | |
1787 in this case, the execution is slower). | |
1788 | |
1789 Read buffer is set to STRING, and write buffer is allocated automatically. | 994 Read buffer is set to STRING, and write buffer is allocated automatically. |
1790 | |
1791 If IC is nil, it is initialized to head of the CCL program.\n\ | |
1792 STATUS is a vector of [R0 R1 ... R7 IC], where | 995 STATUS is a vector of [R0 R1 ... R7 IC], where |
1793 R0..R7 are initial values of corresponding registers, | 996 R0..R7 are initial values of corresponding registers, |
1794 IC is the instruction counter specifying from where to start the program. | 997 IC is the instruction counter specifying from where to start the program. |
1795 If R0..R7 are nil, they are initialized to 0. | 998 If R0..R7 are nil, they are initialized to 0. |
1796 If IC is nil, it is initialized to head of the CCL program. | 999 If IC is nil, it is initialized to head of the CCL program. |
1797 | 1000 Returns the contents of write buffer as a string, |
1001 and as side effect, STATUS is updated. | |
1798 If optional 4th arg CONTINUE is non-nil, keep IC on read operation | 1002 If optional 4th arg CONTINUE is non-nil, keep IC on read operation |
1799 when read buffer is exausted, else, IC is always set to the end of | 1003 when read buffer is exausted, else, IC is always set to the end of |
1800 CCL-PROGRAM on exit. | 1004 CCL-PROGRAM on exit. |
1801 | |
1802 It returns the contents of write buffer as a string, | |
1803 and as side effect, STATUS is updated. | |
1804 */ | 1005 */ |
1805 (ccl_prog, status, str, contin)) | 1006 (ccl_prog, status, str, contin)) |
1806 { | 1007 { |
1807 Lisp_Object val; | 1008 Lisp_Object val; |
1808 struct ccl_program ccl; | 1009 struct ccl_program ccl; |
1809 int i, produced; | 1010 int i, produced; |
1810 unsigned_char_dynarr *outbuf; | 1011 unsigned_char_dynarr *outbuf; |
1811 struct gcpro gcpro1, gcpro2, gcpro3; | 1012 struct gcpro gcpro1, gcpro2, gcpro3; |
1812 Lisp_Object ccl_id; | 1013 |
1813 | 1014 CHECK_VECTOR (ccl_prog); |
1814 if (SYMBOLP (ccl_prog) && | |
1815 !NILP (ccl_id = Fget (ccl_prog, Qccl_program_idx, Qnil))) | |
1816 { | |
1817 ccl_prog = XVECTOR (Vccl_program_table)->contents[XUINT (ccl_id)]; | |
1818 CHECK_LIST (ccl_prog); | |
1819 ccl_prog = XCDR (ccl_prog); | |
1820 CHECK_VECTOR (ccl_prog); | |
1821 } | |
1822 else | |
1823 { | |
1824 CHECK_VECTOR (ccl_prog); | |
1825 ccl_prog = resolve_symbol_ccl_program (ccl_prog); | |
1826 } | |
1827 | |
1828 CHECK_VECTOR (status); | 1015 CHECK_VECTOR (status); |
1829 if (XVECTOR_LENGTH (status) != 9) | 1016 if (XVECTOR_LENGTH (status) != 9) |
1830 signal_simple_error ("Vector should be of length 9", status); | 1017 signal_simple_error ("Vector should be of length 9", status); |
1831 CHECK_STRING (str); | 1018 CHECK_STRING (str); |
1832 GCPRO3 (ccl_prog, status, str); | 1019 GCPRO3 (ccl_prog, status, str); |
1846 ccl.ic = i; | 1033 ccl.ic = i; |
1847 } | 1034 } |
1848 outbuf = Dynarr_new (unsigned_char); | 1035 outbuf = Dynarr_new (unsigned_char); |
1849 ccl.last_block = NILP (contin); | 1036 ccl.last_block = NILP (contin); |
1850 produced = ccl_driver (&ccl, XSTRING_DATA (str), outbuf, | 1037 produced = ccl_driver (&ccl, XSTRING_DATA (str), outbuf, |
1851 XSTRING_LENGTH (str), (int *)0, CCL_MODE_DECODING); | 1038 XSTRING_LENGTH (str), (int *)0); |
1852 for (i = 0; i < 8; i++) | 1039 for (i = 0; i < 8; i++) |
1853 XVECTOR_DATA (status)[i] = make_int(ccl.reg[i]); | 1040 XVECTOR_DATA (status)[i] = make_int(ccl.reg[i]); |
1854 XSETINT (XVECTOR_DATA (status)[8], ccl.ic); | 1041 XSETINT (XVECTOR_DATA (status)[8], ccl.ic); |
1855 UNGCPRO; | 1042 UNGCPRO; |
1856 | 1043 |
1857 val = make_string (Dynarr_atp (outbuf, 0), produced); | 1044 val = make_string (Dynarr_atp (outbuf, 0), produced); |
1858 Dynarr_free (outbuf); | 1045 Dynarr_free (outbuf); |
1859 QUIT; | 1046 QUIT; |
1860 if (ccl.status != CCL_STAT_SUCCESS | 1047 if (ccl.status != CCL_STAT_SUCCESS |
1861 && ccl.status != CCL_STAT_SUSPEND_BY_SRC | 1048 && ccl.status != CCL_STAT_SUSPEND) |
1862 && ccl.status != CCL_STAT_SUSPEND_BY_DST) | |
1863 error ("Error in CCL program at %dth code", ccl.ic); | 1049 error ("Error in CCL program at %dth code", ccl.ic); |
1864 | 1050 |
1865 return val; | 1051 return val; |
1866 } | 1052 } |
1867 | 1053 |
1875 int len = XVECTOR_LENGTH (Vccl_program_table); | 1061 int len = XVECTOR_LENGTH (Vccl_program_table); |
1876 int i; | 1062 int i; |
1877 | 1063 |
1878 CHECK_SYMBOL (name); | 1064 CHECK_SYMBOL (name); |
1879 if (!NILP (ccl_prog)) | 1065 if (!NILP (ccl_prog)) |
1880 { | 1066 CHECK_VECTOR (ccl_prog); |
1881 CHECK_VECTOR (ccl_prog); | |
1882 ccl_prog = resolve_symbol_ccl_program (ccl_prog); | |
1883 } | |
1884 | 1067 |
1885 for (i = 0; i < len; i++) | 1068 for (i = 0; i < len; i++) |
1886 { | 1069 { |
1887 Lisp_Object slot = XVECTOR_DATA (Vccl_program_table)[i]; | 1070 Lisp_Object slot = XVECTOR_DATA (Vccl_program_table)[i]; |
1888 | 1071 |
1906 = XVECTOR_DATA (Vccl_program_table)[j]; | 1089 = XVECTOR_DATA (Vccl_program_table)[j]; |
1907 Vccl_program_table = new_table; | 1090 Vccl_program_table = new_table; |
1908 } | 1091 } |
1909 | 1092 |
1910 XVECTOR_DATA (Vccl_program_table)[i] = Fcons (name, ccl_prog); | 1093 XVECTOR_DATA (Vccl_program_table)[i] = Fcons (name, ccl_prog); |
1911 Fput (name, Qccl_program_idx, make_int (i)); | |
1912 return make_int (i); | 1094 return make_int (i); |
1913 } | 1095 } |
1914 | |
1915 #if 0 | |
1916 /* Register code conversion map. | |
1917 A code conversion map consists of numbers, Qt, Qnil, and Qlambda. | |
1918 The first element is start code point. | |
1919 The rest elements are mapped numbers. | |
1920 Symbol t means to map to an original number before mapping. | |
1921 Symbol nil means that the corresponding element is empty. | |
1922 Symbol lambda menas to terminate mapping here. | |
1923 */ | |
1924 | |
1925 DEFUN ("register-code-conversion-map", Fregister_code_conversion_map, | |
1926 Sregister_code_conversion_map, | |
1927 2, 2, 0, | |
1928 "Register SYMBOL as code conversion map MAP.\n\ | |
1929 Return index number of the registered map.") | |
1930 (symbol, map) | |
1931 Lisp_Object symbol, map; | |
1932 { | |
1933 int len = XVECTOR (Vcode_conversion_map_vector)->size; | |
1934 int i; | |
1935 Lisp_Object index; | |
1936 | |
1937 CHECK_SYMBOL (symbol, 0); | |
1938 CHECK_VECTOR (map, 1); | |
1939 | |
1940 for (i = 0; i < len; i++) | |
1941 { | |
1942 Lisp_Object slot = XVECTOR (Vcode_conversion_map_vector)->contents[i]; | |
1943 | |
1944 if (!CONSP (slot)) | |
1945 break; | |
1946 | |
1947 if (EQ (symbol, XCONS (slot)->car)) | |
1948 { | |
1949 index = make_int (i); | |
1950 XCONS (slot)->cdr = map; | |
1951 Fput (symbol, Qcode_conversion_map, map); | |
1952 Fput (symbol, Qcode_conversion_map_id, index); | |
1953 return index; | |
1954 } | |
1955 } | |
1956 | |
1957 if (i == len) | |
1958 { | |
1959 Lisp_Object new_vector = Fmake_vector (make_int (len * 2), Qnil); | |
1960 int j; | |
1961 | |
1962 for (j = 0; j < len; j++) | |
1963 XVECTOR (new_vector)->contents[j] | |
1964 = XVECTOR (Vcode_conversion_map_vector)->contents[j]; | |
1965 Vcode_conversion_map_vector = new_vector; | |
1966 } | |
1967 | |
1968 index = make_int (i); | |
1969 Fput (symbol, Qcode_conversion_map, map); | |
1970 Fput (symbol, Qcode_conversion_map_id, index); | |
1971 XVECTOR (Vcode_conversion_map_vector)->contents[i] = Fcons (symbol, map); | |
1972 return index; | |
1973 } | |
1974 #endif | |
1975 | |
1976 | 1096 |
1977 void | 1097 void |
1978 syms_of_mule_ccl (void) | 1098 syms_of_mule_ccl (void) |
1979 { | 1099 { |
1980 DEFSUBR (Fccl_execute); | |
1981 DEFSUBR (Fccl_execute_on_string); | |
1982 DEFSUBR (Fregister_ccl_program); | |
1983 #if 0 | |
1984 DEFSUBR (&Fregister_code_conversion_map); | |
1985 #endif | |
1986 } | |
1987 | |
1988 void | |
1989 vars_of_mule_ccl (void) | |
1990 { | |
1991 staticpro (&Vccl_program_table); | 1100 staticpro (&Vccl_program_table); |
1992 Vccl_program_table = Fmake_vector (make_int (32), Qnil); | 1101 Vccl_program_table = Fmake_vector (make_int (32), Qnil); |
1993 | |
1994 Qccl_program = intern ("ccl-program"); | |
1995 staticpro (&Qccl_program); | |
1996 | |
1997 Qccl_program_idx = intern ("ccl-program-idx"); | |
1998 staticpro (&Qccl_program_idx); | |
1999 | |
2000 #if 0 | |
2001 Qcode_conversion_map = intern ("code-conversion-map"); | |
2002 staticpro (&Qcode_conversion_map); | |
2003 | |
2004 Qcode_conversion_map_id = intern ("code-conversion-map-id"); | |
2005 staticpro (&Qcode_conversion_map_id); | |
2006 | |
2007 DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector /* | |
2008 Vector of code conversion maps.*/ ); | |
2009 Vcode_conversion_map_vector = Fmake_vector (make_int (16), Qnil); | |
2010 #endif | |
2011 | 1102 |
2012 DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist /* | 1103 DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist /* |
2013 Alist of fontname patterns vs corresponding CCL program. | 1104 Alist of fontname patterns vs corresponding CCL program. |
2014 Each element looks like (REGEXP . CCL-CODE), | 1105 Each element looks like (REGEXP . CCL-CODE), |
2015 where CCL-CODE is a compiled CCL program. | 1106 where CCL-CODE is a compiled CCL program. |
2020 The code point in the font is set in CCL registers R1 and R2 | 1111 The code point in the font is set in CCL registers R1 and R2 |
2021 when the execution terminated. | 1112 when the execution terminated. |
2022 If the font is single-byte font, the register R2 is not used. | 1113 If the font is single-byte font, the register R2 is not used. |
2023 */ ); | 1114 */ ); |
2024 Vfont_ccl_encoder_alist = Qnil; | 1115 Vfont_ccl_encoder_alist = Qnil; |
1116 | |
1117 DEFSUBR (Fccl_execute); | |
1118 DEFSUBR (Fccl_execute_on_string); | |
1119 DEFSUBR (Fregister_ccl_program); | |
2025 } | 1120 } |
2026 | 1121 |
2027 #endif /* emacs */ | 1122 #endif /* emacs */ |