Mercurial > hg > xemacs-beta
comparison src/mule-ccl.c @ 444:576fb035e263 r21-2-37
Import from CVS: tag r21-2-37
author | cvs |
---|---|
date | Mon, 13 Aug 2007 11:36:19 +0200 |
parents | abe6d1db359e |
children | 98528da0b7fc |
comparison
equal
deleted
inserted
replaced
443:a8296e22da4e | 444:576fb035e263 |
---|---|
1 /* CCL (Code Conversion Language) interpreter. | 1 /* CCL (Code Conversion Language) interpreter. |
2 Copyright (C) 1995, 1997, 1998, 1999 Electrotechnical Laboratory, JAPAN. | 2 Copyright (C) 1995, 1997 Electrotechnical Laboratory, JAPAN. |
3 Licensed to the Free Software Foundation. | 3 Licensed to the Free Software Foundation. |
4 | 4 |
5 This file is part of XEmacs. | 5 This file is part of GNU Emacs. |
6 | 6 |
7 GNU Emacs is free software; you can redistribute it and/or modify | 7 GNU Emacs is free software; you can redistribute it and/or modify |
8 it under the terms of the GNU General Public License as published by | 8 it under the terms of the GNU General Public License as published by |
9 the Free Software Foundation; either version 2, or (at your option) | 9 the Free Software Foundation; either version 2, or (at your option) |
10 any later version. | 10 any later version. |
17 You should have received a copy of the GNU General Public License | 17 You should have received a copy of the GNU General Public License |
18 along with GNU Emacs; see the file COPYING. If not, write to | 18 along with GNU Emacs; see the file COPYING. If not, write to |
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
20 Boston, MA 02111-1307, USA. */ | 20 Boston, MA 02111-1307, USA. */ |
21 | 21 |
22 /* Synched up with : FSF Emacs 20.3.10 without ExCCL | 22 /* Synched up with : FSF Emacs 21.0.90 except TranslateCharacter */ |
23 * (including {Read|Write}MultibyteChar) */ | |
24 | 23 |
25 #ifdef emacs | 24 #ifdef emacs |
26 | |
27 #include <config.h> | 25 #include <config.h> |
28 | |
29 #if 0 | |
30 #ifdef STDC_HEADERS | |
31 #include <stdlib.h> | |
32 #endif | 26 #endif |
33 #endif | 27 |
28 #include <stdio.h> | |
29 | |
30 #ifdef emacs | |
34 | 31 |
35 #include "lisp.h" | 32 #include "lisp.h" |
36 #include "buffer.h" | 33 #include "buffer.h" |
37 #include "mule-charset.h" | 34 #include "mule-charset.h" |
38 #include "mule-ccl.h" | 35 #include "mule-ccl.h" |
39 #include "file-coding.h" | 36 #include "file-coding.h" |
40 | 37 |
41 #else /* not emacs */ | 38 #else /* not emacs */ |
42 | 39 |
43 #include <stdio.h> | |
44 #include "mulelib.h" | 40 #include "mulelib.h" |
45 | 41 |
46 #endif /* not emacs */ | 42 #endif /* not emacs */ |
47 | 43 |
48 /* This contains all code conversion map available to CCL. */ | 44 /* This contains all code conversion map available to CCL. */ |
49 /* | |
50 Lisp_Object Vcode_conversion_map_vector; | 45 Lisp_Object Vcode_conversion_map_vector; |
51 */ | |
52 | 46 |
53 /* Alist of fontname patterns vs corresponding CCL program. */ | 47 /* Alist of fontname patterns vs corresponding CCL program. */ |
54 Lisp_Object Vfont_ccl_encoder_alist; | 48 Lisp_Object Vfont_ccl_encoder_alist; |
55 | 49 |
56 /* This symbol is a property which assocates with ccl program vector. | 50 /* This symbol is a property which associates with ccl program vector. |
57 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */ | 51 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */ |
58 Lisp_Object Qccl_program; | 52 Lisp_Object Qccl_program; |
59 | 53 |
60 /* These symbols are properties which associate with code conversion | 54 /* These symbols are properties which associate with code conversion |
61 map and their ID respectively. */ | 55 map and their ID respectively. */ |
62 /* | |
63 Lisp_Object Qcode_conversion_map; | 56 Lisp_Object Qcode_conversion_map; |
64 Lisp_Object Qcode_conversion_map_id; | 57 Lisp_Object Qcode_conversion_map_id; |
65 */ | |
66 | 58 |
67 /* Symbols of ccl program have this property, a value of the property | 59 /* Symbols of ccl program have this property, a value of the property |
68 is an index for Vccl_protram_table. */ | 60 is an index for Vccl_program_table. */ |
69 Lisp_Object Qccl_program_idx; | 61 Lisp_Object Qccl_program_idx; |
70 | 62 |
71 /* Vector of CCL program names vs corresponding program data. */ | 63 /* Table of registered CCL programs. Each element is a vector of |
64 NAME, CCL_PROG, and RESOLVEDP where NAME (symbol) is the name of | |
65 the program, CCL_PROG (vector) is the compiled code of the program, | |
66 RESOLVEDP (t or nil) is the flag to tell if symbols in CCL_PROG is | |
67 already resolved to index numbers or not. */ | |
72 Lisp_Object Vccl_program_table; | 68 Lisp_Object Vccl_program_table; |
73 | 69 |
74 /* CCL (Code Conversion Language) is a simple language which has | 70 /* CCL (Code Conversion Language) is a simple language which has |
75 operations on one input buffer, one output buffer, and 7 registers. | 71 operations on one input buffer, one output buffer, and 7 registers. |
76 The syntax of CCL is described in `ccl.el'. Emacs Lisp function | 72 The syntax of CCL is described in `ccl.el'. Emacs Lisp function |
179 /* Note: If read is suspended, the resumed execution starts from the | 175 /* Note: If read is suspended, the resumed execution starts from the |
180 second code (YYYYY == CCL_ReadJump). */ | 176 second code (YYYYY == CCL_ReadJump). */ |
181 | 177 |
182 #define CCL_WriteConstJump 0x08 /* Write constant and jump: | 178 #define CCL_WriteConstJump 0x08 /* Write constant and jump: |
183 1:A--D--D--R--E--S--S-000XXXXX | 179 1:A--D--D--R--E--S--S-000XXXXX |
184 2:const | 180 2:CONST |
185 ------------------------------ | 181 ------------------------------ |
186 write (const); | 182 write (CONST); |
187 IC += ADDRESS; | 183 IC += ADDRESS; |
188 */ | 184 */ |
189 | 185 |
190 #define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump: | 186 #define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump: |
191 1:A--D--D--R--E--S--S-rrrXXXXX | 187 1:A--D--D--R--E--S--S-rrrXXXXX |
192 2:const | 188 2:CONST |
193 3:A--D--D--R--E--S--S-rrrYYYYY | 189 3:A--D--D--R--E--S--S-rrrYYYYY |
194 ----------------------------- | 190 ----------------------------- |
195 write (const); | 191 write (CONST); |
196 IC += 2; | 192 IC += 2; |
197 read (reg[rrr]); | 193 read (reg[rrr]); |
198 IC += ADDRESS; | 194 IC += ADDRESS; |
199 */ | 195 */ |
200 /* Note: If read is suspended, the resumed execution starts from the | 196 /* Note: If read is suspended, the resumed execution starts from the |
298 ------------------------------ | 294 ------------------------------ |
299 write (reg[RRR] OPERATION reg[Rrr]); | 295 write (reg[RRR] OPERATION reg[Rrr]); |
300 */ | 296 */ |
301 | 297 |
302 #define CCL_Call 0x13 /* Call the CCL program whose ID is | 298 #define CCL_Call 0x13 /* Call the CCL program whose ID is |
303 (CC..C). | 299 CC..C or cc..c. |
304 1:CCCCCCCCCCCCCCCCCCCC000XXXXX | 300 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX |
305 ------------------------------ | 301 [2:00000000cccccccccccccccccccc] |
306 call (CC..C) | 302 ------------------------------ |
303 if (FFF) | |
304 call (cc..c) | |
305 IC++; | |
306 else | |
307 call (CC..C) | |
307 */ | 308 */ |
308 | 309 |
309 #define CCL_WriteConstString 0x14 /* Write a constant or a string: | 310 #define CCL_WriteConstString 0x14 /* Write a constant or a string: |
310 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX | 311 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX |
311 [2:0000STRIN[0]STRIN[1]STRIN[2]] | 312 [2:0000STRIN[0]STRIN[1]STRIN[2]] |
420 IC += ADDRESS; | 421 IC += ADDRESS; |
421 else | 422 else |
422 IC += 2; | 423 IC += 2; |
423 */ | 424 */ |
424 | 425 |
425 #define CCL_Extension 0x1F /* Extended CCL code | 426 #define CCL_Extention 0x1F /* Extended CCL code |
426 1:ExtendedCOMMNDRrrRRRrrrXXXXX | 427 1:ExtendedCOMMNDRrrRRRrrrXXXXX |
427 2:ARGUEMENT | 428 2:ARGUMENT |
428 3:... | 429 3:... |
429 ------------------------------ | 430 ------------------------------ |
430 extended_command (rrr,RRR,Rrr,ARGS) | 431 extended_command (rrr,RRR,Rrr,ARGS) |
431 */ | 432 */ |
432 | 433 |
448 is reg[RRR]. */ | 449 is reg[RRR]. */ |
449 | 450 |
450 #define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character | 451 #define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character |
451 1:ExtendedCOMMNDRrrRRRrrrXXXXX */ | 452 1:ExtendedCOMMNDRrrRRRrrrXXXXX */ |
452 | 453 |
453 #if 0 | |
454 /* Translate a character whose code point is reg[rrr] and the charset | 454 /* Translate a character whose code point is reg[rrr] and the charset |
455 ID is reg[RRR] by a translation table whose ID is reg[Rrr]. | 455 ID is reg[RRR] by a translation table whose ID is reg[Rrr]. |
456 | 456 |
457 A translated character is set in reg[rrr] (code point) and reg[RRR] | 457 A translated character is set in reg[rrr] (code point) and reg[RRR] |
458 (charset ID). */ | 458 (charset ID). */ |
478 lambda. | 478 lambda. |
479 If the element is nil, ignore the map and proceed to the next map. | 479 If the element is nil, ignore the map and proceed to the next map. |
480 If the element is t or lambda, finish without changing reg[rrr]. | 480 If the element is t or lambda, finish without changing reg[rrr]. |
481 If the element is a number, set reg[rrr] to the number and finish. | 481 If the element is a number, set reg[rrr] to the number and finish. |
482 | 482 |
483 Detail of the map structure is descibed in the comment for | 483 Detail of the map structure is described in the comment for |
484 CCL_MapMultiple below. */ | 484 CCL_MapMultiple below. */ |
485 | 485 |
486 #define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps | 486 #define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps |
487 1:ExtendedCOMMNDXXXRRRrrrXXXXX | 487 1:ExtendedCOMMNDXXXRRRrrrXXXXX |
488 2:NUMBER of MAPs | 488 2:NUMBER of MAPs |
502 (MAP-ID121 MAP-ID122 MAP-ID123) | 502 (MAP-ID121 MAP-ID122 MAP-ID123) |
503 MAP-ID13) | 503 MAP-ID13) |
504 (MAP-ID21 | 504 (MAP-ID21 |
505 (MAP-ID211 (MAP-ID2111) MAP-ID212) | 505 (MAP-ID211 (MAP-ID2111) MAP-ID212) |
506 MAP-ID22)), | 506 MAP-ID22)), |
507 the compiled CCL codes has this sequence: | 507 the compiled CCL code has this sequence: |
508 CCL_MapMultiple (CCL code of this command) | 508 CCL_MapMultiple (CCL code of this command) |
509 16 (total number of MAPs and SEPARATORs) | 509 16 (total number of MAPs and SEPARATORs) |
510 -7 (1st SEPARATOR) | 510 -7 (1st SEPARATOR) |
511 MAP-ID11 | 511 MAP-ID11 |
512 MAP-ID12 | 512 MAP-ID12 |
538 encountered. More precisely, the mapping proceeds as below: | 538 encountered. More precisely, the mapping proceeds as below: |
539 | 539 |
540 At first, VAL0 is set to reg[rrr], and it is translated by the | 540 At first, VAL0 is set to reg[rrr], and it is translated by the |
541 first map to VAL1. Then, VAL1 is translated by the next map to | 541 first map to VAL1. Then, VAL1 is translated by the next map to |
542 VAL2. This mapping is iterated until the last map is used. The | 542 VAL2. This mapping is iterated until the last map is used. The |
543 result of the mapping is the last value of VAL?. | 543 result of the mapping is the last value of VAL?. When the mapping |
544 process reached to the end of the map set, it moves to the next | |
545 map set. If the next does not exit, the mapping process terminates, | |
546 and regard the last value as a result. | |
544 | 547 |
545 But, when VALm is mapped to VALn and VALn is not a number, the | 548 But, when VALm is mapped to VALn and VALn is not a number, the |
546 mapping proceed as below: | 549 mapping proceeds as follows: |
547 | 550 |
548 If VALn is nil, the lastest map is ignored and the mapping of VALm | 551 If VALn is nil, the lastest map is ignored and the mapping of VALm |
549 proceed to the next map. | 552 proceeds to the next map. |
550 | 553 |
551 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm | 554 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm |
552 proceed to the next map. | 555 proceeds to the next map. |
553 | 556 |
554 If VALn is lambda, the whole mapping process terminates, and VALm | 557 If VALn is lambda, move to the next map set like reaching to the |
555 is the result of this mapping. | 558 end of the current map set. |
559 | |
560 If VALn is a symbol, call the CCL program refered by it. | |
561 Then, use reg[rrr] as a mapped value except for -1, -2 and -3. | |
562 Such special values are regarded as nil, t, and lambda respectively. | |
556 | 563 |
557 Each map is a Lisp vector of the following format (a) or (b): | 564 Each map is a Lisp vector of the following format (a) or (b): |
558 (a)......[STARTPOINT VAL1 VAL2 ...] | 565 (a)......[STARTPOINT VAL1 VAL2 ...] |
559 (b)......[t VAL STARTPOINT ENDPOINT], | 566 (b)......[t VAL STARTPOINT ENDPOINT], |
560 where | 567 where |
578 M+1:MAP-ID_y | 585 M+1:MAP-ID_y |
579 ... | 586 ... |
580 N:SEPARATOR_z (< 0) | 587 N:SEPARATOR_z (< 0) |
581 */ | 588 */ |
582 | 589 |
583 #define MAX_MAP_SET_LEVEL 20 | 590 #define MAX_MAP_SET_LEVEL 30 |
584 | 591 |
585 typedef struct | 592 typedef struct |
586 { | 593 { |
587 int rest_length; | 594 int rest_length; |
588 int orig_val; | 595 int orig_val; |
589 } tr_stack; | 596 } tr_stack; |
590 | 597 |
591 static tr_stack mapping_stack[MAX_MAP_SET_LEVEL]; | 598 static tr_stack mapping_stack[MAX_MAP_SET_LEVEL]; |
592 static tr_stack *mapping_stack_pointer; | 599 static tr_stack *mapping_stack_pointer; |
593 #endif | 600 |
594 | 601 /* If this variable is non-zero, it indicates the stack_idx |
595 #define PUSH_MAPPING_STACK(restlen, orig) \ | 602 of immediately called by CCL_MapMultiple. */ |
596 { \ | 603 static int stack_idx_of_map_multiple = 0; |
597 mapping_stack_pointer->rest_length = (restlen); \ | 604 |
598 mapping_stack_pointer->orig_val = (orig); \ | 605 #define PUSH_MAPPING_STACK(restlen, orig) \ |
599 mapping_stack_pointer++; \ | 606 do { \ |
600 } | 607 mapping_stack_pointer->rest_length = (restlen); \ |
601 | 608 mapping_stack_pointer->orig_val = (orig); \ |
602 #define POP_MAPPING_STACK(restlen, orig) \ | 609 mapping_stack_pointer++; \ |
603 { \ | 610 } while (0) |
604 mapping_stack_pointer--; \ | 611 |
605 (restlen) = mapping_stack_pointer->rest_length; \ | 612 #define POP_MAPPING_STACK(restlen, orig) \ |
606 (orig) = mapping_stack_pointer->orig_val; \ | 613 do { \ |
607 } \ | 614 mapping_stack_pointer--; \ |
615 (restlen) = mapping_stack_pointer->rest_length; \ | |
616 (orig) = mapping_stack_pointer->orig_val; \ | |
617 } while (0) | |
618 | |
619 #define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \ | |
620 do { \ | |
621 struct ccl_program called_ccl; \ | |
622 if (stack_idx >= 256 \ | |
623 || (setup_ccl_program (&called_ccl, (symbol)) != 0)) \ | |
624 { \ | |
625 if (stack_idx > 0) \ | |
626 { \ | |
627 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \ | |
628 ic = ccl_prog_stack_struct[0].ic; \ | |
629 } \ | |
630 CCL_INVALID_CMD; \ | |
631 } \ | |
632 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \ | |
633 ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \ | |
634 stack_idx++; \ | |
635 ccl_prog = called_ccl.prog; \ | |
636 ic = CCL_HEADER_MAIN; \ | |
637 goto ccl_repeat; \ | |
638 } while (0) | |
608 | 639 |
609 #define CCL_MapSingle 0x12 /* Map by single code conversion map | 640 #define CCL_MapSingle 0x12 /* Map by single code conversion map |
610 1:ExtendedCOMMNDXXXRRRrrrXXXXX | 641 1:ExtendedCOMMNDXXXRRRrrrXXXXX |
611 2:MAP-ID | 642 2:MAP-ID |
612 ------------------------------ | 643 ------------------------------ |
641 #define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z)) | 672 #define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z)) |
642 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */ | 673 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */ |
643 #define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z)) | 674 #define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z)) |
644 r[7] = LOWER_BYTE (SJIS (Y, Z) */ | 675 r[7] = LOWER_BYTE (SJIS (Y, Z) */ |
645 | 676 |
677 /* Terminate CCL program successfully. */ | |
678 #define CCL_SUCCESS \ | |
679 do { \ | |
680 ccl->status = CCL_STAT_SUCCESS; \ | |
681 goto ccl_finish; \ | |
682 } while (0) | |
683 | |
646 /* Suspend CCL program because of reading from empty input buffer or | 684 /* Suspend CCL program because of reading from empty input buffer or |
647 writing to full output buffer. When this program is resumed, the | 685 writing to full output buffer. When this program is resumed, the |
648 same I/O command is executed. The `if (1)' is for warning suppression. */ | 686 same I/O command is executed. */ |
649 #define CCL_SUSPEND(stat) \ | 687 #define CCL_SUSPEND(stat) \ |
650 do { \ | 688 do { \ |
651 ic--; \ | 689 ic--; \ |
652 ccl->status = stat; \ | 690 ccl->status = stat; \ |
653 if (1) goto ccl_finish; \ | 691 goto ccl_finish; \ |
654 } while (0) | 692 } while (0) |
655 | 693 |
656 /* Terminate CCL program because of invalid command. Should not occur | 694 /* Terminate CCL program because of invalid command. Should not occur |
657 in the normal case. The `if (1)' is for warning suppression. */ | 695 in the normal case. */ |
658 #define CCL_INVALID_CMD \ | 696 #define CCL_INVALID_CMD \ |
659 do { \ | 697 do { \ |
660 ccl->status = CCL_STAT_INVALID_CMD; \ | 698 ccl->status = CCL_STAT_INVALID_CMD; \ |
661 if (1) goto ccl_error_handler; \ | 699 goto ccl_error_handler; \ |
662 } while (0) | 700 } while (0) |
663 | 701 |
664 /* Encode one character CH to multibyte form and write to the current | 702 /* Encode one character CH to multibyte form and write to the current |
665 output buffer. If CH is less than 256, CH is written as is. */ | 703 output buffer. At encoding time, if CH is less than 256, CH is |
666 #define CCL_WRITE_CHAR(ch) do { \ | 704 written as is. At decoding time, if CH cannot be regarded as an |
667 if (!destination) \ | 705 ASCII character, write it in multibyte form. */ |
668 { \ | 706 #define CCL_WRITE_CHAR(ch) \ |
669 ccl->status = CCL_STAT_INVALID_CMD; \ | 707 do { \ |
670 goto ccl_error_handler; \ | 708 if (!destination) \ |
671 } \ | 709 CCL_INVALID_CMD; \ |
672 else \ | 710 if (conversion_mode == CCL_MODE_ENCODING) \ |
673 { \ | 711 { \ |
674 Bufbyte work[MAX_EMCHAR_LEN]; \ | 712 if (ch == '\n') \ |
675 int len = ( ch < ( conversion_mode == CCL_MODE_ENCODING ? \ | 713 { \ |
676 256 : 128 ) ) ? \ | 714 if (ccl->eol_type == CCL_CODING_EOL_CRLF) \ |
677 simple_set_charptr_emchar (work, ch) : \ | 715 { \ |
678 non_ascii_set_charptr_emchar (work, ch); \ | 716 Dynarr_add (destination, '\r'); \ |
679 Dynarr_add_many (destination, work, len); \ | 717 Dynarr_add (destination, '\n'); \ |
680 } \ | 718 } \ |
681 } while (0) | 719 else if (ccl->eol_type == CCL_CODING_EOL_CR) \ |
720 Dynarr_add (destination, '\r'); \ | |
721 else \ | |
722 Dynarr_add (destination, '\n'); \ | |
723 } \ | |
724 else if (ch < 0x100) \ | |
725 { \ | |
726 Dynarr_add (destination, ch); \ | |
727 } \ | |
728 else \ | |
729 { \ | |
730 Bufbyte work[MAX_EMCHAR_LEN]; \ | |
731 int len; \ | |
732 len = non_ascii_set_charptr_emchar (work, ch); \ | |
733 Dynarr_add_many (destination, work, len); \ | |
734 } \ | |
735 } \ | |
736 else \ | |
737 { \ | |
738 if (!CHAR_MULTIBYTE_P(ch)) \ | |
739 { \ | |
740 Dynarr_add (destination, ch); \ | |
741 } \ | |
742 else \ | |
743 { \ | |
744 Bufbyte work[MAX_EMCHAR_LEN]; \ | |
745 int len; \ | |
746 len = non_ascii_set_charptr_emchar (work, ch); \ | |
747 Dynarr_add_many (destination, work, len); \ | |
748 } \ | |
749 } \ | |
750 } while (0) | |
682 | 751 |
683 /* Write a string at ccl_prog[IC] of length LEN to the current output | 752 /* Write a string at ccl_prog[IC] of length LEN to the current output |
684 buffer. */ | 753 buffer. But this macro treat this string as a binary. Therefore, |
685 #define CCL_WRITE_STRING(len) do { \ | 754 cannot handle a multibyte string except for Control-1 characters. */ |
686 if (!destination) \ | 755 #define CCL_WRITE_STRING(len) \ |
687 { \ | 756 do { \ |
688 ccl->status = CCL_STAT_INVALID_CMD; \ | 757 Bufbyte work[MAX_EMCHAR_LEN]; \ |
689 goto ccl_error_handler; \ | 758 int ch, bytes; \ |
690 } \ | 759 if (!destination) \ |
691 else \ | 760 CCL_INVALID_CMD; \ |
692 { \ | 761 else if (conversion_mode == CCL_MODE_ENCODING) \ |
693 Bufbyte work[MAX_EMCHAR_LEN]; \ | 762 { \ |
694 for (i = 0; i < len; i++) \ | 763 for (i = 0; i < len; i++) \ |
695 { \ | 764 { \ |
696 int ch = (XINT (ccl_prog[ic + (i / 3)]) \ | 765 ch = ((XINT (ccl_prog[ic + (i / 3)])) \ |
697 >> ((2 - (i % 3)) * 8)) & 0xFF; \ | 766 >> ((2 - (i % 3)) * 8)) & 0xFF; \ |
698 int bytes = \ | 767 if (ch == '\n') \ |
699 ( ch < ( conversion_mode == CCL_MODE_ENCODING ? \ | 768 { \ |
700 256 : 128 ) ) ? \ | 769 if (ccl->eol_type == CCL_CODING_EOL_CRLF) \ |
701 simple_set_charptr_emchar (work, ch) : \ | 770 { \ |
702 non_ascii_set_charptr_emchar (work, ch); \ | 771 Dynarr_add (destination, '\r'); \ |
703 Dynarr_add_many (destination, work, bytes); \ | 772 Dynarr_add (destination, '\n'); \ |
704 } \ | 773 } \ |
705 } \ | 774 else if (ccl->eol_type == CCL_CODING_EOL_CR) \ |
706 } while (0) | 775 Dynarr_add (destination, '\r'); \ |
776 else \ | |
777 Dynarr_add (destination, '\n'); \ | |
778 } \ | |
779 if (ch < 0x100) \ | |
780 { \ | |
781 Dynarr_add (destination, ch); \ | |
782 } \ | |
783 else \ | |
784 { \ | |
785 bytes = non_ascii_set_charptr_emchar (work, ch); \ | |
786 Dynarr_add_many (destination, work, len); \ | |
787 } \ | |
788 } \ | |
789 } \ | |
790 else \ | |
791 { \ | |
792 for (i = 0; i < len; i++) \ | |
793 { \ | |
794 ch = ((XINT (ccl_prog[ic + (i / 3)])) \ | |
795 >> ((2 - (i % 3)) * 8)) & 0xFF; \ | |
796 if (!CHAR_MULTIBYTE_P(ch)) \ | |
797 { \ | |
798 Dynarr_add (destination, ch); \ | |
799 } \ | |
800 else \ | |
801 { \ | |
802 bytes = non_ascii_set_charptr_emchar (work, ch); \ | |
803 Dynarr_add_many (destination, work, len); \ | |
804 } \ | |
805 } \ | |
806 } \ | |
807 } while (0) | |
707 | 808 |
708 /* Read one byte from the current input buffer into Rth register. */ | 809 /* Read one byte from the current input buffer into Rth register. */ |
709 #define CCL_READ_CHAR(r) do { \ | 810 #define CCL_READ_CHAR(r) \ |
710 if (!src && !ccl->last_block) \ | 811 do { \ |
711 { \ | 812 if (!src) \ |
712 ccl->status = CCL_STAT_INVALID_CMD; \ | 813 CCL_INVALID_CMD; \ |
713 goto ccl_error_handler; \ | 814 if (src < src_end) \ |
714 } \ | 815 r = *src++; \ |
715 else if (src < src_end) \ | 816 else \ |
716 r = *src++; \ | 817 { \ |
717 else if (ccl->last_block) \ | 818 if (ccl->last_block) \ |
718 { \ | 819 { \ |
719 ic = ccl->eof_ic; \ | 820 ic = ccl->eof_ic; \ |
720 goto ccl_repeat; \ | 821 goto ccl_repeat; \ |
721 } \ | 822 } \ |
722 else \ | 823 else \ |
723 /* Suspend CCL program because of \ | 824 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \ |
724 reading from empty input buffer or \ | 825 } \ |
725 writing to full output buffer. \ | 826 } while (0) |
726 When this program is resumed, the \ | 827 |
727 same I/O command is executed. */ \ | 828 |
728 { \ | 829 /* Set C to the character code made from CHARSET and CODE. This is |
729 ic--; \ | 830 like MAKE_CHAR but check the validity of CHARSET and CODE. If they |
730 ccl->status = CCL_STAT_SUSPEND_BY_SRC; \ | 831 are not valid, set C to (CODE & 0xFF) because that is usually the |
731 goto ccl_finish; \ | 832 case that CCL_ReadMultibyteChar2 read an invalid code and it set |
732 } \ | 833 CODE to that invalid byte. */ |
733 } while (0) | 834 |
835 /* On XEmacs, TranslateCharacter is not supported. Thus, this | |
836 macro is not used. */ | |
837 #if 0 | |
838 #define CCL_MAKE_CHAR(charset, code, c) \ | |
839 do { \ | |
840 if (charset == CHARSET_ASCII) \ | |
841 c = code & 0xFF; \ | |
842 else if (CHARSET_DEFINED_P (charset) \ | |
843 && (code & 0x7F) >= 32 \ | |
844 && (code < 256 || ((code >> 7) & 0x7F) >= 32)) \ | |
845 { \ | |
846 int c1 = code & 0x7F, c2 = 0; \ | |
847 \ | |
848 if (code >= 256) \ | |
849 c2 = c1, c1 = (code >> 7) & 0x7F; \ | |
850 c = MAKE_CHAR (charset, c1, c2); \ | |
851 } \ | |
852 else \ | |
853 c = code & 0xFF; \ | |
854 } while (0) | |
855 #endif | |
734 | 856 |
735 | 857 |
736 /* Execute CCL code on SRC_BYTES length text at SOURCE. The resulting | 858 /* Execute CCL code on SRC_BYTES length text at SOURCE. The resulting |
737 text goes to a place pointed by DESTINATION. The bytes actually | 859 text goes to a place pointed by DESTINATION, the length of which |
738 processed is returned as *CONSUMED. The return value is the length | 860 should not exceed DST_BYTES. The bytes actually processed is |
739 of the resulting text. As a side effect, the contents of CCL registers | 861 returned as *CONSUMED. The return value is the length of the |
862 resulting text. As a side effect, the contents of CCL registers | |
740 are updated. If SOURCE or DESTINATION is NULL, only operations on | 863 are updated. If SOURCE or DESTINATION is NULL, only operations on |
741 registers are permitted. */ | 864 registers are permitted. */ |
742 | 865 |
743 #ifdef CCL_DEBUG | 866 #ifdef CCL_DEBUG |
744 #define CCL_DEBUG_BACKTRACE_LEN 256 | 867 #define CCL_DEBUG_BACKTRACE_LEN 256 |
754 | 877 |
755 /* For the moment, we only support depth 256 of stack. */ | 878 /* For the moment, we only support depth 256 of stack. */ |
756 static struct ccl_prog_stack ccl_prog_stack_struct[256]; | 879 static struct ccl_prog_stack ccl_prog_stack_struct[256]; |
757 | 880 |
758 int | 881 int |
759 ccl_driver (struct ccl_program *ccl, const unsigned char *source, | 882 ccl_driver (struct ccl_program *ccl, |
760 unsigned_char_dynarr *destination, int src_bytes, | 883 const unsigned char *source, |
761 int *consumed, int conversion_mode) | 884 unsigned_char_dynarr *destination, |
885 int src_bytes, | |
886 int *consumed, | |
887 int conversion_mode) | |
762 { | 888 { |
763 int *reg = ccl->reg; | 889 register int *reg = ccl->reg; |
764 int ic = ccl->ic; | 890 register int ic = ccl->ic; |
765 int code = -1; /* init to illegal value, */ | 891 register int code = -1; |
766 int field1, field2; | 892 register int field1, field2; |
767 Lisp_Object *ccl_prog = ccl->prog; | 893 register Lisp_Object *ccl_prog = ccl->prog; |
768 const unsigned char *src = source, *src_end = src + src_bytes; | 894 const unsigned char *src = source, *src_end = src + src_bytes; |
769 int jump_address = 0; /* shut up the compiler */ | 895 int jump_address; |
770 int i, j, op; | 896 int i, j, op; |
771 int stack_idx = ccl->stack_idx; | 897 int stack_idx = ccl->stack_idx; |
772 /* Instruction counter of the current CCL code. */ | 898 /* Instruction counter of the current CCL code. */ |
773 int this_ic = 0; | 899 int this_ic = 0; |
774 | 900 |
775 if (ic >= ccl->eof_ic) | 901 if (ic >= ccl->eof_ic) |
776 ic = CCL_HEADER_MAIN; | 902 ic = CCL_HEADER_MAIN; |
777 | 903 |
778 #if 0 /* not for XEmacs ? */ | |
779 if (ccl->buf_magnification ==0) /* We can't produce any bytes. */ | 904 if (ccl->buf_magnification ==0) /* We can't produce any bytes. */ |
780 dst = NULL; | 905 destination = NULL; |
781 #endif | 906 |
907 /* Set mapping stack pointer. */ | |
908 mapping_stack_pointer = mapping_stack; | |
782 | 909 |
783 #ifdef CCL_DEBUG | 910 #ifdef CCL_DEBUG |
784 ccl_backtrace_idx = 0; | 911 ccl_backtrace_idx = 0; |
785 #endif | 912 #endif |
786 | 913 |
925 case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */ | 1052 case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */ |
926 rrr = 7; | 1053 rrr = 7; |
927 i = reg[RRR]; | 1054 i = reg[RRR]; |
928 j = XINT (ccl_prog[ic]); | 1055 j = XINT (ccl_prog[ic]); |
929 op = field1 >> 6; | 1056 op = field1 >> 6; |
930 ic++; | 1057 jump_address = ic + 1; |
931 goto ccl_set_expr; | 1058 goto ccl_set_expr; |
932 | 1059 |
933 case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */ | 1060 case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */ |
934 while (1) | 1061 while (1) |
935 { | 1062 { |
945 case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */ | 1072 case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */ |
946 rrr = 7; | 1073 rrr = 7; |
947 i = reg[RRR]; | 1074 i = reg[RRR]; |
948 j = reg[Rrr]; | 1075 j = reg[Rrr]; |
949 op = field1 >> 6; | 1076 op = field1 >> 6; |
1077 jump_address = ic; | |
950 goto ccl_set_expr; | 1078 goto ccl_set_expr; |
951 | 1079 |
952 case CCL_Call: /* CCCCCCCCCCCCCCCCCCCC000XXXXX */ | 1080 case CCL_Call: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */ |
953 { | 1081 { |
954 Lisp_Object slot; | 1082 Lisp_Object slot; |
1083 int prog_id; | |
1084 | |
1085 /* If FFF is nonzero, the CCL program ID is in the | |
1086 following code. */ | |
1087 if (rrr) | |
1088 { | |
1089 prog_id = XINT (ccl_prog[ic]); | |
1090 ic++; | |
1091 } | |
1092 else | |
1093 prog_id = field1; | |
955 | 1094 |
956 if (stack_idx >= 256 | 1095 if (stack_idx >= 256 |
957 || field1 < 0 | 1096 || prog_id < 0 |
958 || field1 >= XVECTOR_LENGTH (Vccl_program_table) | 1097 || prog_id >= XVECTOR (Vccl_program_table)->size |
959 || (slot = XVECTOR_DATA (Vccl_program_table)[field1], | 1098 || (slot = XVECTOR (Vccl_program_table)->contents[prog_id], |
960 !CONSP (slot)) | 1099 !VECTORP (slot)) |
961 || !VECTORP (XCDR (slot))) | 1100 || !VECTORP (XVECTOR (slot)->contents[1])) |
962 { | 1101 { |
963 if (stack_idx > 0) | 1102 if (stack_idx > 0) |
964 { | 1103 { |
965 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; | 1104 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; |
966 ic = ccl_prog_stack_struct[0].ic; | 1105 ic = ccl_prog_stack_struct[0].ic; |
967 } | 1106 } |
968 ccl->status = CCL_STAT_INVALID_CMD; | 1107 CCL_INVALID_CMD; |
969 goto ccl_error_handler; | |
970 } | 1108 } |
971 | 1109 |
972 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; | 1110 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; |
973 ccl_prog_stack_struct[stack_idx].ic = ic; | 1111 ccl_prog_stack_struct[stack_idx].ic = ic; |
974 stack_idx++; | 1112 stack_idx++; |
975 ccl_prog = XVECTOR_DATA (XCDR (slot)); | 1113 ccl_prog = XVECTOR (XVECTOR (slot)->contents[1])->contents; |
976 ic = CCL_HEADER_MAIN; | 1114 ic = CCL_HEADER_MAIN; |
977 } | 1115 } |
978 break; | 1116 break; |
979 | 1117 |
980 case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */ | 1118 case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */ |
996 } | 1134 } |
997 ic += field1; | 1135 ic += field1; |
998 break; | 1136 break; |
999 | 1137 |
1000 case CCL_End: /* 0000000000000000000000XXXXX */ | 1138 case CCL_End: /* 0000000000000000000000XXXXX */ |
1001 if (stack_idx-- > 0) | 1139 if (stack_idx > 0) |
1002 { | 1140 { |
1141 stack_idx--; | |
1003 ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog; | 1142 ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog; |
1004 ic = ccl_prog_stack_struct[stack_idx].ic; | 1143 ic = ccl_prog_stack_struct[stack_idx].ic; |
1005 break; | 1144 break; |
1006 } | 1145 } |
1007 if (src) | 1146 if (src) |
1008 src = src_end; | 1147 src = src_end; |
1009 /* ccl->ic should points to this command code again to | 1148 /* ccl->ic should points to this command code again to |
1010 suppress further processing. */ | 1149 suppress further processing. */ |
1011 ic--; | 1150 ic--; |
1012 /* Terminate CCL program successfully. */ | 1151 CCL_SUCCESS; |
1013 ccl->status = CCL_STAT_SUCCESS; | |
1014 goto ccl_finish; | |
1015 | 1152 |
1016 case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */ | 1153 case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */ |
1017 i = XINT (ccl_prog[ic]); | 1154 i = XINT (ccl_prog[ic]); |
1018 ic++; | 1155 ic++; |
1019 op = field1 >> 6; | 1156 op = field1 >> 6; |
1043 case CCL_GT: reg[rrr] = reg[rrr] > i; break; | 1180 case CCL_GT: reg[rrr] = reg[rrr] > i; break; |
1044 case CCL_EQ: reg[rrr] = reg[rrr] == i; break; | 1181 case CCL_EQ: reg[rrr] = reg[rrr] == i; break; |
1045 case CCL_LE: reg[rrr] = reg[rrr] <= i; break; | 1182 case CCL_LE: reg[rrr] = reg[rrr] <= i; break; |
1046 case CCL_GE: reg[rrr] = reg[rrr] >= i; break; | 1183 case CCL_GE: reg[rrr] = reg[rrr] >= i; break; |
1047 case CCL_NE: reg[rrr] = reg[rrr] != i; break; | 1184 case CCL_NE: reg[rrr] = reg[rrr] != i; break; |
1048 default: | 1185 default: CCL_INVALID_CMD; |
1049 ccl->status = CCL_STAT_INVALID_CMD; | |
1050 goto ccl_error_handler; | |
1051 } | 1186 } |
1052 break; | 1187 break; |
1053 | 1188 |
1054 case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */ | 1189 case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */ |
1055 i = reg[RRR]; | 1190 i = reg[RRR]; |
1094 case CCL_MUL: reg[rrr] = i * j; break; | 1229 case CCL_MUL: reg[rrr] = i * j; break; |
1095 case CCL_DIV: reg[rrr] = i / j; break; | 1230 case CCL_DIV: reg[rrr] = i / j; break; |
1096 case CCL_MOD: reg[rrr] = i % j; break; | 1231 case CCL_MOD: reg[rrr] = i % j; break; |
1097 case CCL_AND: reg[rrr] = i & j; break; | 1232 case CCL_AND: reg[rrr] = i & j; break; |
1098 case CCL_OR: reg[rrr] = i | j; break; | 1233 case CCL_OR: reg[rrr] = i | j; break; |
1099 case CCL_XOR: reg[rrr] = i ^ j; break; | 1234 case CCL_XOR: reg[rrr] = i ^ j;; break; |
1100 case CCL_LSH: reg[rrr] = i << j; break; | 1235 case CCL_LSH: reg[rrr] = i << j; break; |
1101 case CCL_RSH: reg[rrr] = i >> j; break; | 1236 case CCL_RSH: reg[rrr] = i >> j; break; |
1102 case CCL_LSH8: reg[rrr] = (i << 8) | j; break; | 1237 case CCL_LSH8: reg[rrr] = (i << 8) | j; break; |
1103 case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break; | 1238 case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break; |
1104 case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break; | 1239 case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break; |
1106 case CCL_GT: reg[rrr] = i > j; break; | 1241 case CCL_GT: reg[rrr] = i > j; break; |
1107 case CCL_EQ: reg[rrr] = i == j; break; | 1242 case CCL_EQ: reg[rrr] = i == j; break; |
1108 case CCL_LE: reg[rrr] = i <= j; break; | 1243 case CCL_LE: reg[rrr] = i <= j; break; |
1109 case CCL_GE: reg[rrr] = i >= j; break; | 1244 case CCL_GE: reg[rrr] = i >= j; break; |
1110 case CCL_NE: reg[rrr] = i != j; break; | 1245 case CCL_NE: reg[rrr] = i != j; break; |
1111 case CCL_DECODE_SJIS: DECODE_SJIS (i, j, reg[rrr], reg[7]); break; | 1246 case CCL_DECODE_SJIS: |
1112 case CCL_ENCODE_SJIS: ENCODE_SJIS (i, j, reg[rrr], reg[7]); break; | 1247 /* DECODE_SJIS set MSB for internal format |
1113 default: | 1248 as opposed to Emacs. */ |
1114 ccl->status = CCL_STAT_INVALID_CMD; | 1249 DECODE_SJIS (i, j, reg[rrr], reg[7]); |
1115 goto ccl_error_handler; | 1250 reg[rrr] &= 0x7F; |
1251 reg[7] &= 0x7F; | |
1252 break; | |
1253 case CCL_ENCODE_SJIS: | |
1254 /* ENCODE_SJIS assumes MSB of SJIS-char is set | |
1255 as opposed to Emacs. */ | |
1256 ENCODE_SJIS (i | 0x80, j | 0x80, reg[rrr], reg[7]); | |
1257 break; | |
1258 default: CCL_INVALID_CMD; | |
1116 } | 1259 } |
1117 code &= 0x1F; | 1260 code &= 0x1F; |
1118 if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister) | 1261 if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister) |
1119 { | 1262 { |
1120 i = reg[rrr]; | 1263 i = reg[rrr]; |
1121 CCL_WRITE_CHAR (i); | 1264 CCL_WRITE_CHAR (i); |
1265 ic = jump_address; | |
1122 } | 1266 } |
1123 else if (!reg[rrr]) | 1267 else if (!reg[rrr]) |
1124 ic = jump_address; | 1268 ic = jump_address; |
1125 break; | 1269 break; |
1126 | 1270 |
1127 case CCL_Extension: | 1271 case CCL_Extention: |
1128 switch (EXCMD) | 1272 switch (EXCMD) |
1129 { | 1273 { |
1130 case CCL_ReadMultibyteChar2: | 1274 case CCL_ReadMultibyteChar2: |
1131 if (!src) | 1275 if (!src) |
1132 CCL_INVALID_CMD; | 1276 CCL_INVALID_CMD; |
1137 src++; | 1281 src++; |
1138 goto ccl_read_multibyte_character_suspend; | 1282 goto ccl_read_multibyte_character_suspend; |
1139 } | 1283 } |
1140 | 1284 |
1141 i = *src++; | 1285 i = *src++; |
1142 #if 0 | |
1143 if (i == LEADING_CODE_COMPOSITION) | |
1144 { | |
1145 if (src >= src_end) | |
1146 goto ccl_read_multibyte_character_suspend; | |
1147 if (*src == 0xFF) | |
1148 { | |
1149 ccl->private_state = COMPOSING_WITH_RULE_HEAD; | |
1150 src++; | |
1151 } | |
1152 else | |
1153 ccl->private_state = COMPOSING_NO_RULE_HEAD; | |
1154 | |
1155 continue; | |
1156 } | |
1157 if (ccl->private_state != COMPOSING_NO) | |
1158 { | |
1159 /* composite character */ | |
1160 if (i < 0xA0) | |
1161 ccl->private_state = COMPOSING_NO; | |
1162 else | |
1163 { | |
1164 if (COMPOSING_WITH_RULE_RULE == ccl->private_state) | |
1165 { | |
1166 ccl->private_state = COMPOSING_WITH_RULE_HEAD; | |
1167 continue; | |
1168 } | |
1169 else if (COMPOSING_WITH_RULE_HEAD == ccl->private_state) | |
1170 ccl->private_state = COMPOSING_WITH_RULE_RULE; | |
1171 | |
1172 if (i == 0xA0) | |
1173 { | |
1174 if (src >= src_end) | |
1175 goto ccl_read_multibyte_character_suspend; | |
1176 i = *src++ & 0x7F; | |
1177 } | |
1178 else | |
1179 i -= 0x20; | |
1180 } | |
1181 } | |
1182 #endif | |
1183 | |
1184 if (i < 0x80) | 1286 if (i < 0x80) |
1185 { | 1287 { |
1186 /* ASCII */ | 1288 /* ASCII */ |
1187 reg[rrr] = i; | 1289 reg[rrr] = i; |
1188 reg[RRR] = LEADING_BYTE_ASCII; | 1290 reg[RRR] = LEADING_BYTE_ASCII; |
1243 | 1345 |
1244 case CCL_WriteMultibyteChar2: | 1346 case CCL_WriteMultibyteChar2: |
1245 i = reg[RRR]; /* charset */ | 1347 i = reg[RRR]; /* charset */ |
1246 if (i == LEADING_BYTE_ASCII) | 1348 if (i == LEADING_BYTE_ASCII) |
1247 i = reg[rrr] & 0xFF; | 1349 i = reg[rrr] & 0xFF; |
1248 #if 0 | |
1249 else if (i == CHARSET_COMPOSITION) | |
1250 i = MAKE_COMPOSITE_CHAR (reg[rrr]); | |
1251 #endif | |
1252 else if (XCHARSET_DIMENSION (CHARSET_BY_LEADING_BYTE (i)) == 1) | 1350 else if (XCHARSET_DIMENSION (CHARSET_BY_LEADING_BYTE (i)) == 1) |
1253 i = ((i - FIELD2_TO_OFFICIAL_LEADING_BYTE) << 7) | 1351 i = (((i - FIELD2_TO_OFFICIAL_LEADING_BYTE) << 7) |
1254 | (reg[rrr] & 0x7F); | 1352 | (reg[rrr] & 0x7F)); |
1255 else if (i < MIN_LEADING_BYTE_OFFICIAL_2) | 1353 else if (i < MAX_LEADING_BYTE_OFFICIAL_2) |
1256 i = ((i - FIELD1_TO_OFFICIAL_LEADING_BYTE) << 14) | reg[rrr]; | 1354 i = ((i - FIELD1_TO_OFFICIAL_LEADING_BYTE) << 14) | reg[rrr]; |
1257 else | 1355 else |
1258 i = ((i - FIELD1_TO_PRIVATE_LEADING_BYTE) << 14) | reg[rrr]; | 1356 i = ((i - FIELD1_TO_PRIVATE_LEADING_BYTE) << 14) | reg[rrr]; |
1259 | 1357 |
1260 CCL_WRITE_CHAR (i); | 1358 CCL_WRITE_CHAR (i); |
1261 | 1359 |
1262 break; | 1360 break; |
1263 | 1361 |
1362 case CCL_TranslateCharacter: | |
1264 #if 0 | 1363 #if 0 |
1265 case CCL_TranslateCharacter: | 1364 /* XEmacs does not have translate_char, and its |
1266 i = reg[RRR]; /* charset */ | 1365 equivalent nor. We do nothing on this operation. */ |
1267 if (i == LEADING_BYTE_ASCII) | 1366 CCL_MAKE_CHAR (reg[RRR], reg[rrr], i); |
1268 i = reg[rrr]; | |
1269 else if (i == CHARSET_COMPOSITION) | |
1270 { | |
1271 reg[RRR] = -1; | |
1272 break; | |
1273 } | |
1274 else if (CHARSET_DIMENSION (i) == 1) | |
1275 i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F); | |
1276 else if (i < MIN_LEADING_BYTE_OFFICIAL_2) | |
1277 i = ((i - 0x8F) << 14) | (reg[rrr] & 0x3FFF); | |
1278 else | |
1279 i = ((i - 0xE0) << 14) | (reg[rrr] & 0x3FFF); | |
1280 | |
1281 op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]), | 1367 op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]), |
1282 i, -1, 0, 0); | 1368 i, -1, 0, 0); |
1283 SPLIT_CHAR (op, reg[RRR], i, j); | 1369 SPLIT_CHAR (op, reg[RRR], i, j); |
1284 if (j != -1) | 1370 if (j != -1) |
1285 i = (i << 7) | j; | 1371 i = (i << 7) | j; |
1286 | 1372 |
1287 reg[rrr] = i; | 1373 reg[rrr] = i; |
1374 #endif | |
1288 break; | 1375 break; |
1289 | 1376 |
1290 case CCL_TranslateCharacterConstTbl: | 1377 case CCL_TranslateCharacterConstTbl: |
1378 #if 0 | |
1379 /* XEmacs does not have translate_char, and its | |
1380 equivalent nor. We do nothing on this operation. */ | |
1291 op = XINT (ccl_prog[ic]); /* table */ | 1381 op = XINT (ccl_prog[ic]); /* table */ |
1292 ic++; | 1382 ic++; |
1293 i = reg[RRR]; /* charset */ | 1383 CCL_MAKE_CHAR (reg[RRR], reg[rrr], i); |
1294 if (i == LEADING_BYTE_ASCII) | |
1295 i = reg[rrr]; | |
1296 else if (i == CHARSET_COMPOSITION) | |
1297 { | |
1298 reg[RRR] = -1; | |
1299 break; | |
1300 } | |
1301 else if (CHARSET_DIMENSION (i) == 1) | |
1302 i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F); | |
1303 else if (i < MIN_LEADING_BYTE_OFFICIAL_2) | |
1304 i = ((i - 0x8F) << 14) | (reg[rrr] & 0x3FFF); | |
1305 else | |
1306 i = ((i - 0xE0) << 14) | (reg[rrr] & 0x3FFF); | |
1307 | |
1308 op = translate_char (GET_TRANSLATION_TABLE (op), i, -1, 0, 0); | 1384 op = translate_char (GET_TRANSLATION_TABLE (op), i, -1, 0, 0); |
1309 SPLIT_CHAR (op, reg[RRR], i, j); | 1385 SPLIT_CHAR (op, reg[RRR], i, j); |
1310 if (j != -1) | 1386 if (j != -1) |
1311 i = (i << 7) | j; | 1387 i = (i << 7) | j; |
1312 | 1388 |
1313 reg[rrr] = i; | 1389 reg[rrr] = i; |
1390 #endif | |
1314 break; | 1391 break; |
1315 | 1392 |
1316 case CCL_IterateMultipleMap: | 1393 case CCL_IterateMultipleMap: |
1317 { | 1394 { |
1318 Lisp_Object map, content, attrib, value; | 1395 Lisp_Object map, content, attrib, value; |
1340 point = XINT (ccl_prog[ic++]); | 1417 point = XINT (ccl_prog[ic++]); |
1341 if (point >= size) continue; | 1418 if (point >= size) continue; |
1342 map = | 1419 map = |
1343 XVECTOR (Vcode_conversion_map_vector)->contents[point]; | 1420 XVECTOR (Vcode_conversion_map_vector)->contents[point]; |
1344 | 1421 |
1345 /* Check map varidity. */ | 1422 /* Check map validity. */ |
1346 if (!CONSP (map)) continue; | 1423 if (!CONSP (map)) continue; |
1347 map = XCONS(map)->cdr; | 1424 map = XCDR (map); |
1348 if (!VECTORP (map)) continue; | 1425 if (!VECTORP (map)) continue; |
1349 size = XVECTOR (map)->size; | 1426 size = XVECTOR (map)->size; |
1350 if (size <= 1) continue; | 1427 if (size <= 1) continue; |
1351 | 1428 |
1352 content = XVECTOR (map)->contents[0]; | 1429 content = XVECTOR (map)->contents[0]; |
1353 | 1430 |
1354 /* check map type, | 1431 /* check map type, |
1355 [STARTPOINT VAL1 VAL2 ...] or | 1432 [STARTPOINT VAL1 VAL2 ...] or |
1356 [t ELELMENT STARTPOINT ENDPOINT] */ | 1433 [t ELEMENT STARTPOINT ENDPOINT] */ |
1357 if (NUMBERP (content)) | 1434 if (INTP (content)) |
1358 { | 1435 { |
1359 point = XUINT (content); | 1436 point = XUINT (content); |
1360 point = op - point + 1; | 1437 point = op - point + 1; |
1361 if (!((point >= 1) && (point < size))) continue; | 1438 if (!((point >= 1) && (point < size))) continue; |
1362 content = XVECTOR (map)->contents[point]; | 1439 content = XVECTOR (map)->contents[point]; |
1373 else | 1450 else |
1374 continue; | 1451 continue; |
1375 | 1452 |
1376 if (NILP (content)) | 1453 if (NILP (content)) |
1377 continue; | 1454 continue; |
1378 else if (NUMBERP (content)) | 1455 else if (INTP (content)) |
1379 { | 1456 { |
1380 reg[RRR] = i; | 1457 reg[RRR] = i; |
1381 reg[rrr] = XINT(content); | 1458 reg[rrr] = XINT(content); |
1382 break; | 1459 break; |
1383 } | 1460 } |
1386 reg[RRR] = i; | 1463 reg[RRR] = i; |
1387 break; | 1464 break; |
1388 } | 1465 } |
1389 else if (CONSP (content)) | 1466 else if (CONSP (content)) |
1390 { | 1467 { |
1391 attrib = XCONS (content)->car; | 1468 attrib = XCAR (content); |
1392 value = XCONS (content)->cdr; | 1469 value = XCDR (content); |
1393 if (!NUMBERP (attrib) || !NUMBERP (value)) | 1470 if (!INTP (attrib) || !INTP (value)) |
1394 continue; | 1471 continue; |
1395 reg[RRR] = i; | 1472 reg[RRR] = i; |
1396 reg[rrr] = XUINT (value); | 1473 reg[rrr] = XUINT (value); |
1397 break; | 1474 break; |
1398 } | 1475 } |
1476 else if (SYMBOLP (content)) | |
1477 CCL_CALL_FOR_MAP_INSTRUCTION (content, fin_ic); | |
1478 else | |
1479 CCL_INVALID_CMD; | |
1399 } | 1480 } |
1400 if (i == j) | 1481 if (i == j) |
1401 reg[RRR] = -1; | 1482 reg[RRR] = -1; |
1402 ic = fin_ic; | 1483 ic = fin_ic; |
1403 } | 1484 } |
1406 case CCL_MapMultiple: | 1487 case CCL_MapMultiple: |
1407 { | 1488 { |
1408 Lisp_Object map, content, attrib, value; | 1489 Lisp_Object map, content, attrib, value; |
1409 int point, size, map_vector_size; | 1490 int point, size, map_vector_size; |
1410 int map_set_rest_length, fin_ic; | 1491 int map_set_rest_length, fin_ic; |
1492 int current_ic = this_ic; | |
1493 | |
1494 /* inhibit recursive call on MapMultiple. */ | |
1495 if (stack_idx_of_map_multiple > 0) | |
1496 { | |
1497 if (stack_idx_of_map_multiple <= stack_idx) | |
1498 { | |
1499 stack_idx_of_map_multiple = 0; | |
1500 mapping_stack_pointer = mapping_stack; | |
1501 CCL_INVALID_CMD; | |
1502 } | |
1503 } | |
1504 else | |
1505 mapping_stack_pointer = mapping_stack; | |
1506 stack_idx_of_map_multiple = 0; | |
1411 | 1507 |
1412 map_set_rest_length = | 1508 map_set_rest_length = |
1413 XINT (ccl_prog[ic++]); /* number of maps and separators. */ | 1509 XINT (ccl_prog[ic++]); /* number of maps and separators. */ |
1414 fin_ic = ic + map_set_rest_length; | 1510 fin_ic = ic + map_set_rest_length; |
1511 op = reg[rrr]; | |
1512 | |
1415 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0)) | 1513 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0)) |
1416 { | 1514 { |
1417 ic += reg[RRR]; | 1515 ic += reg[RRR]; |
1418 i = reg[RRR]; | 1516 i = reg[RRR]; |
1419 map_set_rest_length -= i; | 1517 map_set_rest_length -= i; |
1420 } | 1518 } |
1421 else | 1519 else |
1422 { | 1520 { |
1423 ic = fin_ic; | 1521 ic = fin_ic; |
1424 reg[RRR] = -1; | 1522 reg[RRR] = -1; |
1523 mapping_stack_pointer = mapping_stack; | |
1425 break; | 1524 break; |
1426 } | 1525 } |
1427 mapping_stack_pointer = mapping_stack; | 1526 |
1428 op = reg[rrr]; | 1527 if (mapping_stack_pointer <= (mapping_stack + 1)) |
1429 PUSH_MAPPING_STACK (0, op); | |
1430 reg[RRR] = -1; | |
1431 map_vector_size = XVECTOR (Vcode_conversion_map_vector)->size; | |
1432 for (;map_set_rest_length > 0;i++, map_set_rest_length--) | |
1433 { | 1528 { |
1434 point = XINT(ccl_prog[ic++]); | 1529 /* Set up initial state. */ |
1435 if (point < 0) | 1530 mapping_stack_pointer = mapping_stack; |
1531 PUSH_MAPPING_STACK (0, op); | |
1532 reg[RRR] = -1; | |
1533 } | |
1534 else | |
1535 { | |
1536 /* Recover after calling other ccl program. */ | |
1537 int orig_op; | |
1538 | |
1539 POP_MAPPING_STACK (map_set_rest_length, orig_op); | |
1540 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
1541 switch (op) | |
1436 { | 1542 { |
1437 point = -point; | 1543 case -1: |
1438 if (mapping_stack_pointer | 1544 /* Regard it as Qnil. */ |
1439 >= &mapping_stack[MAX_MAP_SET_LEVEL]) | 1545 op = orig_op; |
1440 { | 1546 i++; |
1441 CCL_INVALID_CMD; | 1547 ic++; |
1442 } | 1548 map_set_rest_length--; |
1443 PUSH_MAPPING_STACK (map_set_rest_length - point, | 1549 break; |
1444 reg[rrr]); | 1550 case -2: |
1445 map_set_rest_length = point + 1; | 1551 /* Regard it as Qt. */ |
1446 reg[rrr] = op; | 1552 op = reg[rrr]; |
1447 continue; | 1553 i++; |
1448 } | 1554 ic++; |
1449 | 1555 map_set_rest_length--; |
1450 if (point >= map_vector_size) continue; | 1556 break; |
1451 map = (XVECTOR (Vcode_conversion_map_vector) | 1557 case -3: |
1452 ->contents[point]); | 1558 /* Regard it as Qlambda. */ |
1453 | 1559 op = orig_op; |
1454 /* Check map varidity. */ | |
1455 if (!CONSP (map)) continue; | |
1456 map = XCONS (map)->cdr; | |
1457 if (!VECTORP (map)) continue; | |
1458 size = XVECTOR (map)->size; | |
1459 if (size <= 1) continue; | |
1460 | |
1461 content = XVECTOR (map)->contents[0]; | |
1462 | |
1463 /* check map type, | |
1464 [STARTPOINT VAL1 VAL2 ...] or | |
1465 [t ELEMENT STARTPOINT ENDPOINT] */ | |
1466 if (NUMBERP (content)) | |
1467 { | |
1468 point = XUINT (content); | |
1469 point = op - point + 1; | |
1470 if (!((point >= 1) && (point < size))) continue; | |
1471 content = XVECTOR (map)->contents[point]; | |
1472 } | |
1473 else if (EQ (content, Qt)) | |
1474 { | |
1475 if (size != 4) continue; | |
1476 if ((op >= XUINT (XVECTOR (map)->contents[2])) && | |
1477 (op < XUINT (XVECTOR (map)->contents[3]))) | |
1478 content = XVECTOR (map)->contents[1]; | |
1479 else | |
1480 continue; | |
1481 } | |
1482 else | |
1483 continue; | |
1484 | |
1485 if (NILP (content)) | |
1486 continue; | |
1487 else if (NUMBERP (content)) | |
1488 { | |
1489 op = XINT (content); | |
1490 reg[RRR] = i; | |
1491 i += map_set_rest_length; | 1560 i += map_set_rest_length; |
1561 ic += map_set_rest_length; | |
1562 map_set_rest_length = 0; | |
1563 break; | |
1564 default: | |
1565 /* Regard it as normal mapping. */ | |
1566 i += map_set_rest_length; | |
1567 ic += map_set_rest_length; | |
1492 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | 1568 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); |
1493 } | |
1494 else if (CONSP (content)) | |
1495 { | |
1496 attrib = XCONS (content)->car; | |
1497 value = XCONS (content)->cdr; | |
1498 if (!NUMBERP (attrib) || !NUMBERP (value)) | |
1499 continue; | |
1500 reg[RRR] = i; | |
1501 op = XUINT (value); | |
1502 i += map_set_rest_length; | |
1503 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
1504 } | |
1505 else if (EQ (content, Qt)) | |
1506 { | |
1507 reg[RRR] = i; | |
1508 op = reg[rrr]; | |
1509 i += map_set_rest_length; | |
1510 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
1511 } | |
1512 else if (EQ (content, Qlambda)) | |
1513 { | |
1514 break; | 1569 break; |
1515 } | 1570 } |
1516 else | |
1517 CCL_INVALID_CMD; | |
1518 } | 1571 } |
1572 map_vector_size = XVECTOR (Vcode_conversion_map_vector)->size; | |
1573 | |
1574 do { | |
1575 for (;map_set_rest_length > 0;i++, ic++, map_set_rest_length--) | |
1576 { | |
1577 point = XINT(ccl_prog[ic]); | |
1578 if (point < 0) | |
1579 { | |
1580 /* +1 is for including separator. */ | |
1581 point = -point + 1; | |
1582 if (mapping_stack_pointer | |
1583 >= &mapping_stack[MAX_MAP_SET_LEVEL]) | |
1584 CCL_INVALID_CMD; | |
1585 PUSH_MAPPING_STACK (map_set_rest_length - point, | |
1586 reg[rrr]); | |
1587 map_set_rest_length = point; | |
1588 reg[rrr] = op; | |
1589 continue; | |
1590 } | |
1591 | |
1592 if (point >= map_vector_size) continue; | |
1593 map = (XVECTOR (Vcode_conversion_map_vector) | |
1594 ->contents[point]); | |
1595 | |
1596 /* Check map validity. */ | |
1597 if (!CONSP (map)) continue; | |
1598 map = XCDR (map); | |
1599 if (!VECTORP (map)) continue; | |
1600 size = XVECTOR (map)->size; | |
1601 if (size <= 1) continue; | |
1602 | |
1603 content = XVECTOR (map)->contents[0]; | |
1604 | |
1605 /* check map type, | |
1606 [STARTPOINT VAL1 VAL2 ...] or | |
1607 [t ELEMENT STARTPOINT ENDPOINT] */ | |
1608 if (INTP (content)) | |
1609 { | |
1610 point = XUINT (content); | |
1611 point = op - point + 1; | |
1612 if (!((point >= 1) && (point < size))) continue; | |
1613 content = XVECTOR (map)->contents[point]; | |
1614 } | |
1615 else if (EQ (content, Qt)) | |
1616 { | |
1617 if (size != 4) continue; | |
1618 if ((op >= XUINT (XVECTOR (map)->contents[2])) && | |
1619 (op < XUINT (XVECTOR (map)->contents[3]))) | |
1620 content = XVECTOR (map)->contents[1]; | |
1621 else | |
1622 continue; | |
1623 } | |
1624 else | |
1625 continue; | |
1626 | |
1627 if (NILP (content)) | |
1628 continue; | |
1629 | |
1630 reg[RRR] = i; | |
1631 if (INTP (content)) | |
1632 { | |
1633 op = XINT (content); | |
1634 i += map_set_rest_length - 1; | |
1635 ic += map_set_rest_length - 1; | |
1636 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
1637 map_set_rest_length++; | |
1638 } | |
1639 else if (CONSP (content)) | |
1640 { | |
1641 attrib = XCAR (content); | |
1642 value = XCDR (content); | |
1643 if (!INTP (attrib) || !INTP (value)) | |
1644 continue; | |
1645 op = XUINT (value); | |
1646 i += map_set_rest_length - 1; | |
1647 ic += map_set_rest_length - 1; | |
1648 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
1649 map_set_rest_length++; | |
1650 } | |
1651 else if (EQ (content, Qt)) | |
1652 { | |
1653 op = reg[rrr]; | |
1654 } | |
1655 else if (EQ (content, Qlambda)) | |
1656 { | |
1657 i += map_set_rest_length; | |
1658 ic += map_set_rest_length; | |
1659 break; | |
1660 } | |
1661 else if (SYMBOLP (content)) | |
1662 { | |
1663 if (mapping_stack_pointer | |
1664 >= &mapping_stack[MAX_MAP_SET_LEVEL]) | |
1665 CCL_INVALID_CMD; | |
1666 PUSH_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
1667 PUSH_MAPPING_STACK (map_set_rest_length, op); | |
1668 stack_idx_of_map_multiple = stack_idx + 1; | |
1669 CCL_CALL_FOR_MAP_INSTRUCTION (content, current_ic); | |
1670 } | |
1671 else | |
1672 CCL_INVALID_CMD; | |
1673 } | |
1674 if (mapping_stack_pointer <= (mapping_stack + 1)) | |
1675 break; | |
1676 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
1677 i += map_set_rest_length; | |
1678 ic += map_set_rest_length; | |
1679 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
1680 } while (1); | |
1681 | |
1519 ic = fin_ic; | 1682 ic = fin_ic; |
1520 } | 1683 } |
1521 reg[rrr] = op; | 1684 reg[rrr] = op; |
1522 break; | 1685 break; |
1523 | 1686 |
1536 if (!CONSP (map)) | 1699 if (!CONSP (map)) |
1537 { | 1700 { |
1538 reg[RRR] = -1; | 1701 reg[RRR] = -1; |
1539 break; | 1702 break; |
1540 } | 1703 } |
1541 map = XCONS(map)->cdr; | 1704 map = XCDR (map); |
1542 if (!VECTORP (map)) | 1705 if (!VECTORP (map)) |
1543 { | 1706 { |
1544 reg[RRR] = -1; | 1707 reg[RRR] = -1; |
1545 break; | 1708 break; |
1546 } | 1709 } |
1551 if ((size <= 1) || | 1714 if ((size <= 1) || |
1552 (!((point >= 1) && (point < size)))) | 1715 (!((point >= 1) && (point < size)))) |
1553 reg[RRR] = -1; | 1716 reg[RRR] = -1; |
1554 else | 1717 else |
1555 { | 1718 { |
1719 reg[RRR] = 0; | |
1556 content = XVECTOR (map)->contents[point]; | 1720 content = XVECTOR (map)->contents[point]; |
1557 if (NILP (content)) | 1721 if (NILP (content)) |
1558 reg[RRR] = -1; | 1722 reg[RRR] = -1; |
1559 else if (NUMBERP (content)) | 1723 else if (INTP (content)) |
1560 reg[rrr] = XINT (content); | 1724 reg[rrr] = XINT (content); |
1561 else if (EQ (content, Qt)) | 1725 else if (EQ (content, Qt)); |
1562 reg[RRR] = i; | |
1563 else if (CONSP (content)) | 1726 else if (CONSP (content)) |
1564 { | 1727 { |
1565 attrib = XCONS (content)->car; | 1728 attrib = XCAR (content); |
1566 value = XCONS (content)->cdr; | 1729 value = XCDR (content); |
1567 if (!NUMBERP (attrib) || !NUMBERP (value)) | 1730 if (!INTP (attrib) || !INTP (value)) |
1568 continue; | 1731 continue; |
1569 reg[rrr] = XUINT(value); | 1732 reg[rrr] = XUINT(value); |
1570 break; | 1733 break; |
1571 } | 1734 } |
1735 else if (SYMBOLP (content)) | |
1736 CCL_CALL_FOR_MAP_INSTRUCTION (content, ic); | |
1572 else | 1737 else |
1573 reg[RRR] = -1; | 1738 reg[RRR] = -1; |
1574 } | 1739 } |
1575 } | 1740 } |
1576 break; | 1741 break; |
1577 #endif | |
1578 | 1742 |
1579 default: | 1743 default: |
1580 CCL_INVALID_CMD; | 1744 CCL_INVALID_CMD; |
1581 } | 1745 } |
1582 break; | 1746 break; |
1583 | 1747 |
1584 default: | 1748 default: |
1585 ccl->status = CCL_STAT_INVALID_CMD; | 1749 CCL_INVALID_CMD; |
1586 goto ccl_error_handler; | |
1587 } | 1750 } |
1588 } | 1751 } |
1589 | 1752 |
1590 ccl_error_handler: | 1753 ccl_error_handler: |
1591 if (destination) | 1754 if (destination) |
1593 /* We can insert an error message only if DESTINATION is | 1756 /* We can insert an error message only if DESTINATION is |
1594 specified and we still have a room to store the message | 1757 specified and we still have a room to store the message |
1595 there. */ | 1758 there. */ |
1596 char msg[256]; | 1759 char msg[256]; |
1597 | 1760 |
1598 #if 0 /* not for XEmacs ? */ | |
1599 if (!dst) | |
1600 dst = destination; | |
1601 #endif | |
1602 | |
1603 switch (ccl->status) | 1761 switch (ccl->status) |
1604 { | 1762 { |
1605 /* Terminate CCL program because of invalid command. | |
1606 Should not occur in the normal case. */ | |
1607 case CCL_STAT_INVALID_CMD: | 1763 case CCL_STAT_INVALID_CMD: |
1608 sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.", | 1764 sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.", |
1609 code & 0x1F, code, this_ic); | 1765 code & 0x1F, code, this_ic); |
1610 #ifdef CCL_DEBUG | 1766 #ifdef CCL_DEBUG |
1611 { | 1767 { |
1626 } | 1782 } |
1627 #endif | 1783 #endif |
1628 break; | 1784 break; |
1629 | 1785 |
1630 case CCL_STAT_QUIT: | 1786 case CCL_STAT_QUIT: |
1631 sprintf(msg, "\nCCL: Quited."); | 1787 sprintf(msg, "\nCCL: Exited."); |
1632 break; | 1788 break; |
1633 | 1789 |
1634 default: | 1790 default: |
1635 sprintf(msg, "\nCCL: Unknown error type (%d).", ccl->status); | 1791 sprintf(msg, "\nCCL: Unknown error type (%d).", ccl->status); |
1636 } | 1792 } |
1641 ccl_finish: | 1797 ccl_finish: |
1642 ccl->ic = ic; | 1798 ccl->ic = ic; |
1643 ccl->stack_idx = stack_idx; | 1799 ccl->stack_idx = stack_idx; |
1644 ccl->prog = ccl_prog; | 1800 ccl->prog = ccl_prog; |
1645 if (consumed) *consumed = src - source; | 1801 if (consumed) *consumed = src - source; |
1646 if (destination) | 1802 if (!destination) |
1647 return Dynarr_length (destination); | |
1648 else | |
1649 return 0; | 1803 return 0; |
1804 return Dynarr_length (destination); | |
1650 } | 1805 } |
1651 | 1806 |
1807 /* Resolve symbols in the specified CCL code (Lisp vector). This | |
1808 function converts symbols of code conversion maps and character | |
1809 translation tables embedded in the CCL code into their ID numbers. | |
1810 | |
1811 The return value is a vector (CCL itself or a new vector in which | |
1812 all symbols are resolved), Qt if resolving of some symbol failed, | |
1813 or nil if CCL contains invalid data. */ | |
1814 | |
1815 static Lisp_Object | |
1816 resolve_symbol_ccl_program (Lisp_Object ccl) | |
1817 { | |
1818 int i, veclen, unresolved = 0; | |
1819 Lisp_Object result, contents, val; | |
1820 | |
1821 result = ccl; | |
1822 veclen = XVECTOR (result)->size; | |
1823 | |
1824 for (i = 0; i < veclen; i++) | |
1825 { | |
1826 contents = XVECTOR (result)->contents[i]; | |
1827 if (INTP (contents)) | |
1828 continue; | |
1829 else if (CONSP (contents) | |
1830 && SYMBOLP (XCAR (contents)) | |
1831 && SYMBOLP (XCDR (contents))) | |
1832 { | |
1833 /* This is the new style for embedding symbols. The form is | |
1834 (SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give | |
1835 an index number. */ | |
1836 | |
1837 if (EQ (result, ccl)) | |
1838 result = Fcopy_sequence (ccl); | |
1839 | |
1840 val = Fget (XCAR (contents), XCDR (contents), Qnil); | |
1841 if (NATNUMP (val)) | |
1842 XVECTOR (result)->contents[i] = val; | |
1843 else | |
1844 unresolved = 1; | |
1845 continue; | |
1846 } | |
1847 else if (SYMBOLP (contents)) | |
1848 { | |
1849 /* This is the old style for embedding symbols. This style | |
1850 may lead to a bug if, for instance, a translation table | |
1851 and a code conversion map have the same name. */ | |
1852 if (EQ (result, ccl)) | |
1853 result = Fcopy_sequence (ccl); | |
1854 | |
1855 val = Fget (contents, Qcode_conversion_map_id, Qnil); | |
1856 if (NATNUMP (val)) | |
1857 XVECTOR (result)->contents[i] = val; | |
1858 else | |
1859 { | |
1860 val = Fget (contents, Qccl_program_idx, Qnil); | |
1861 if (NATNUMP (val)) | |
1862 XVECTOR (result)->contents[i] = val; | |
1863 else | |
1864 unresolved = 1; | |
1865 } | |
1866 continue; | |
1867 } | |
1868 return Qnil; | |
1869 } | |
1870 | |
1871 return (unresolved ? Qt : result); | |
1872 } | |
1873 | |
1874 /* Return the compiled code (vector) of CCL program CCL_PROG. | |
1875 CCL_PROG is a name (symbol) of the program or already compiled | |
1876 code. If necessary, resolve symbols in the compiled code to index | |
1877 numbers. If we failed to get the compiled code or to resolve | |
1878 symbols, return Qnil. */ | |
1879 | |
1880 static Lisp_Object | |
1881 ccl_get_compiled_code (Lisp_Object ccl_prog) | |
1882 { | |
1883 Lisp_Object val, slot; | |
1884 | |
1885 if (VECTORP (ccl_prog)) | |
1886 { | |
1887 val = resolve_symbol_ccl_program (ccl_prog); | |
1888 return (VECTORP (val) ? val : Qnil); | |
1889 } | |
1890 if (!SYMBOLP (ccl_prog)) | |
1891 return Qnil; | |
1892 | |
1893 val = Fget (ccl_prog, Qccl_program_idx, Qnil); | |
1894 if (! NATNUMP (val) | |
1895 || XINT (val) >= XVECTOR_LENGTH (Vccl_program_table)) | |
1896 return Qnil; | |
1897 slot = XVECTOR_DATA (Vccl_program_table)[XINT (val)]; | |
1898 if (! VECTORP (slot) | |
1899 || XVECTOR (slot)->size != 3 | |
1900 || ! VECTORP (XVECTOR_DATA (slot)[1])) | |
1901 return Qnil; | |
1902 if (NILP (XVECTOR_DATA (slot)[2])) | |
1903 { | |
1904 val = resolve_symbol_ccl_program (XVECTOR_DATA (slot)[1]); | |
1905 if (! VECTORP (val)) | |
1906 return Qnil; | |
1907 XVECTOR_DATA (slot)[1] = val; | |
1908 XVECTOR_DATA (slot)[2] = Qt; | |
1909 } | |
1910 return XVECTOR_DATA (slot)[1]; | |
1911 } | |
1912 | |
1652 /* Setup fields of the structure pointed by CCL appropriately for the | 1913 /* Setup fields of the structure pointed by CCL appropriately for the |
1653 execution of compiled CCL code in VEC (vector of integer). | 1914 execution of CCL program CCL_PROG. CCL_PROG is the name (symbol) |
1654 If VEC is nil, we skip setting ups based on VEC. */ | 1915 of the CCL program or the already compiled code (vector). |
1655 void | 1916 Return 0 if we succeed this setup, else return -1. |
1656 setup_ccl_program (struct ccl_program *ccl, Lisp_Object vec) | 1917 |
1918 If CCL_PROG is nil, we just reset the structure pointed by CCL. */ | |
1919 int | |
1920 setup_ccl_program (struct ccl_program *ccl, Lisp_Object ccl_prog) | |
1657 { | 1921 { |
1658 int i; | 1922 int i; |
1659 | 1923 |
1660 if (VECTORP (vec)) | 1924 if (! NILP (ccl_prog)) |
1661 { | 1925 { |
1662 ccl->size = XVECTOR_LENGTH (vec); | 1926 ccl_prog = ccl_get_compiled_code (ccl_prog); |
1663 ccl->prog = XVECTOR_DATA (vec); | 1927 if (! VECTORP (ccl_prog)) |
1664 ccl->eof_ic = XINT (XVECTOR_DATA (vec)[CCL_HEADER_EOF]); | 1928 return -1; |
1665 ccl->buf_magnification = XINT (XVECTOR_DATA (vec)[CCL_HEADER_BUF_MAG]); | 1929 ccl->size = XVECTOR_LENGTH (ccl_prog); |
1930 ccl->prog = XVECTOR_DATA (ccl_prog); | |
1931 ccl->eof_ic = XINT (XVECTOR_DATA (ccl_prog)[CCL_HEADER_EOF]); | |
1932 ccl->buf_magnification = XINT (XVECTOR_DATA (ccl_prog)[CCL_HEADER_BUF_MAG]); | |
1666 } | 1933 } |
1667 ccl->ic = CCL_HEADER_MAIN; | 1934 ccl->ic = CCL_HEADER_MAIN; |
1668 for (i = 0; i < 8; i++) | 1935 for (i = 0; i < 8; i++) |
1669 ccl->reg[i] = 0; | 1936 ccl->reg[i] = 0; |
1670 ccl->last_block = 0; | 1937 ccl->last_block = 0; |
1671 ccl->private_state = 0; | 1938 ccl->private_state = 0; |
1672 ccl->status = 0; | 1939 ccl->status = 0; |
1673 ccl->stack_idx = 0; | 1940 ccl->stack_idx = 0; |
1941 ccl->eol_type = CCL_CODING_EOL_LF; | |
1942 return 0; | |
1674 } | 1943 } |
1675 | 1944 |
1676 /* Resolve symbols in the specified CCL code (Lisp vector). This | 1945 #ifdef emacs |
1677 function converts symbols of code conversion maps and character | 1946 |
1678 translation tables embeded in the CCL code into their ID numbers. */ | 1947 DEFUN ("ccl-program-p", Fccl_program_p, 1, 1, 0, /* |
1679 | 1948 Return t if OBJECT is a CCL program name or a compiled CCL program code. |
1680 static Lisp_Object | 1949 See the documentation of `define-ccl-program' for the detail of CCL program. |
1681 resolve_symbol_ccl_program (Lisp_Object ccl) | 1950 */ |
1951 (object)) | |
1682 { | 1952 { |
1683 int i, veclen; | 1953 Lisp_Object val; |
1684 Lisp_Object result, contents /*, prop */; | 1954 |
1685 | 1955 if (VECTORP (object)) |
1686 result = ccl; | |
1687 veclen = XVECTOR_LENGTH (result); | |
1688 | |
1689 /* Set CCL program's table ID */ | |
1690 for (i = 0; i < veclen; i++) | |
1691 { | 1956 { |
1692 contents = XVECTOR_DATA (result)[i]; | 1957 val = resolve_symbol_ccl_program (object); |
1693 if (SYMBOLP (contents)) | 1958 return (VECTORP (val) ? Qt : Qnil); |
1694 { | |
1695 if (EQ(result, ccl)) | |
1696 result = Fcopy_sequence (ccl); | |
1697 | |
1698 #if 0 | |
1699 prop = Fget (contents, Qtranslation_table_id); | |
1700 if (NUMBERP (prop)) | |
1701 { | |
1702 XVECTOR_DATA (result)[i] = prop; | |
1703 continue; | |
1704 } | |
1705 prop = Fget (contents, Qcode_conversion_map_id); | |
1706 if (NUMBERP (prop)) | |
1707 { | |
1708 XVECTOR_DATA (result)[i] = prop; | |
1709 continue; | |
1710 } | |
1711 prop = Fget (contents, Qccl_program_idx); | |
1712 if (NUMBERP (prop)) | |
1713 { | |
1714 XVECTOR_DATA (result)[i] = prop; | |
1715 continue; | |
1716 } | |
1717 #endif | |
1718 } | |
1719 } | 1959 } |
1720 | 1960 if (!SYMBOLP (object)) |
1721 return result; | 1961 return Qnil; |
1962 | |
1963 val = Fget (object, Qccl_program_idx, Qnil); | |
1964 return ((! NATNUMP (val) | |
1965 || XINT (val) >= XVECTOR_LENGTH (Vccl_program_table)) | |
1966 ? Qnil : Qt); | |
1722 } | 1967 } |
1723 | |
1724 | |
1725 #ifdef emacs | |
1726 | 1968 |
1727 DEFUN ("ccl-execute", Fccl_execute, 2, 2, 0, /* | 1969 DEFUN ("ccl-execute", Fccl_execute, 2, 2, 0, /* |
1728 Execute CCL-PROGRAM with registers initialized by REGISTERS. | 1970 Execute CCL-PROGRAM with registers initialized by REGISTERS. |
1729 | 1971 |
1730 CCL-PROGRAM is a symbol registered by register-ccl-program, | 1972 CCL-PROGRAM is a CCL program name (symbol) |
1731 or a compiled code generated by `ccl-compile' (for backward compatibility, | 1973 or a compiled code generated by `ccl-compile' (for backward compatibility, |
1732 in this case, the execution is slower). | 1974 in this case, the overhead of the execution is bigger than the former case). |
1733 No I/O commands should appear in CCL-PROGRAM. | 1975 No I/O commands should appear in CCL-PROGRAM. |
1734 | 1976 |
1735 REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value | 1977 REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value |
1736 of Nth register. | 1978 of Nth register. |
1737 | 1979 |
1738 As side effect, each element of REGISTER holds the value of | 1980 As side effect, each element of REGISTERS holds the value of |
1739 corresponding register after the execution. | 1981 corresponding register after the execution. |
1982 | |
1983 See the documentation of `define-ccl-program' for the detail of CCL program. | |
1740 */ | 1984 */ |
1741 (ccl_prog, reg)) | 1985 (ccl_prog, reg)) |
1742 { | 1986 { |
1743 struct ccl_program ccl; | 1987 struct ccl_program ccl; |
1744 int i; | 1988 int i; |
1745 Lisp_Object ccl_id; | 1989 |
1746 | 1990 if (setup_ccl_program (&ccl, ccl_prog) < 0) |
1747 if (SYMBOLP (ccl_prog) && | 1991 error ("Invalid CCL program"); |
1748 !NILP (ccl_id = Fget (ccl_prog, Qccl_program_idx, Qnil))) | |
1749 { | |
1750 ccl_prog = XVECTOR_DATA (Vccl_program_table)[XUINT (ccl_id)]; | |
1751 CHECK_LIST (ccl_prog); | |
1752 ccl_prog = XCDR (ccl_prog); | |
1753 CHECK_VECTOR (ccl_prog); | |
1754 } | |
1755 else | |
1756 { | |
1757 CHECK_VECTOR (ccl_prog); | |
1758 ccl_prog = resolve_symbol_ccl_program (ccl_prog); | |
1759 } | |
1760 | 1992 |
1761 CHECK_VECTOR (reg); | 1993 CHECK_VECTOR (reg); |
1762 if (XVECTOR_LENGTH (reg) != 8) | 1994 if (XVECTOR_LENGTH (reg) != 8) |
1763 error ("Invalid length of vector REGISTERS"); | 1995 error ("Length of vector REGISTERS is not 8"); |
1764 | 1996 |
1765 setup_ccl_program (&ccl, ccl_prog); | |
1766 for (i = 0; i < 8; i++) | 1997 for (i = 0; i < 8; i++) |
1767 ccl.reg[i] = (INTP (XVECTOR_DATA (reg)[i]) | 1998 ccl.reg[i] = (INTP (XVECTOR_DATA (reg)[i]) |
1768 ? XINT (XVECTOR_DATA (reg)[i]) | 1999 ? XINT (XVECTOR_DATA (reg)[i]) |
1769 : 0); | 2000 : 0); |
1770 | 2001 |
1771 ccl_driver (&ccl, (const unsigned char *)0, (unsigned_char_dynarr *)0, | 2002 ccl_driver (&ccl, (const unsigned char *)0, |
1772 0, (int *)0, CCL_MODE_ENCODING); | 2003 (unsigned_char_dynarr *)0, 0, (int *)0, |
2004 CCL_MODE_ENCODING); | |
1773 QUIT; | 2005 QUIT; |
1774 if (ccl.status != CCL_STAT_SUCCESS) | 2006 if (ccl.status != CCL_STAT_SUCCESS) |
1775 error ("Error in CCL program at %dth code", ccl.ic); | 2007 error ("Error in CCL program at %dth code", ccl.ic); |
1776 | 2008 |
1777 for (i = 0; i < 8; i++) | 2009 for (i = 0; i < 8; i++) |
1778 XSETINT (XVECTOR_DATA (reg)[i], ccl.reg[i]); | 2010 XSETINT (XVECTOR (reg)->contents[i], ccl.reg[i]); |
1779 return Qnil; | 2011 return Qnil; |
1780 } | 2012 } |
1781 | 2013 |
1782 DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, 3, 4, 0, /* | 2014 DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, |
2015 3, 4, 0, /* | |
1783 Execute CCL-PROGRAM with initial STATUS on STRING. | 2016 Execute CCL-PROGRAM with initial STATUS on STRING. |
1784 | 2017 |
1785 CCL-PROGRAM is a symbol registered by register-ccl-program, | 2018 CCL-PROGRAM is a symbol registered by register-ccl-program, |
1786 or a compiled code generated by `ccl-compile' (for backward compatibility, | 2019 or a compiled code generated by `ccl-compile' (for backward compatibility, |
1787 in this case, the execution is slower). | 2020 in this case, the execution is slower). |
1788 | 2021 |
1789 Read buffer is set to STRING, and write buffer is allocated automatically. | 2022 Read buffer is set to STRING, and write buffer is allocated automatically. |
1790 | 2023 |
1791 If IC is nil, it is initialized to head of the CCL program.\n\ | |
1792 STATUS is a vector of [R0 R1 ... R7 IC], where | 2024 STATUS is a vector of [R0 R1 ... R7 IC], where |
1793 R0..R7 are initial values of corresponding registers, | 2025 R0..R7 are initial values of corresponding registers, |
1794 IC is the instruction counter specifying from where to start the program. | 2026 IC is the instruction counter specifying from where to start the program. |
1795 If R0..R7 are nil, they are initialized to 0. | 2027 If R0..R7 are nil, they are initialized to 0. |
1796 If IC is nil, it is initialized to head of the CCL program. | 2028 If IC is nil, it is initialized to head of the CCL program. |
1797 | 2029 |
1798 If optional 4th arg CONTINUE is non-nil, keep IC on read operation | 2030 If optional 4th arg CONTINUE is non-nil, keep IC on read operation |
1799 when read buffer is exausted, else, IC is always set to the end of | 2031 when read buffer is exhausted, else, IC is always set to the end of |
1800 CCL-PROGRAM on exit. | 2032 CCL-PROGRAM on exit. |
1801 | 2033 |
1802 It returns the contents of write buffer as a string, | 2034 It returns the contents of write buffer as a string, |
1803 and as side effect, STATUS is updated. | 2035 and as side effect, STATUS is updated. |
2036 | |
2037 See the documentation of `define-ccl-program' for the detail of CCL program. | |
1804 */ | 2038 */ |
1805 (ccl_prog, status, str, contin)) | 2039 (ccl_prog, status, string, continue_)) |
1806 { | 2040 { |
1807 Lisp_Object val; | 2041 Lisp_Object val; |
1808 struct ccl_program ccl; | 2042 struct ccl_program ccl; |
1809 int i, produced; | 2043 int i, produced; |
1810 unsigned_char_dynarr *outbuf; | 2044 unsigned_char_dynarr *outbuf; |
1811 struct gcpro gcpro1, gcpro2, gcpro3; | 2045 struct gcpro gcpro1, gcpro2; |
1812 Lisp_Object ccl_id; | 2046 |
1813 | 2047 if (setup_ccl_program (&ccl, ccl_prog) < 0) |
1814 if (SYMBOLP (ccl_prog) && | 2048 error ("Invalid CCL program"); |
1815 !NILP (ccl_id = Fget (ccl_prog, Qccl_program_idx, Qnil))) | |
1816 { | |
1817 ccl_prog = XVECTOR (Vccl_program_table)->contents[XUINT (ccl_id)]; | |
1818 CHECK_LIST (ccl_prog); | |
1819 ccl_prog = XCDR (ccl_prog); | |
1820 CHECK_VECTOR (ccl_prog); | |
1821 } | |
1822 else | |
1823 { | |
1824 CHECK_VECTOR (ccl_prog); | |
1825 ccl_prog = resolve_symbol_ccl_program (ccl_prog); | |
1826 } | |
1827 | 2049 |
1828 CHECK_VECTOR (status); | 2050 CHECK_VECTOR (status); |
1829 if (XVECTOR_LENGTH (status) != 9) | 2051 if (XVECTOR (status)->size != 9) |
1830 signal_simple_error ("Vector should be of length 9", status); | 2052 error ("Length of vector STATUS is not 9"); |
1831 CHECK_STRING (str); | 2053 CHECK_STRING (string); |
1832 GCPRO3 (ccl_prog, status, str); | 2054 |
1833 | 2055 GCPRO2 (status, string); |
1834 setup_ccl_program (&ccl, ccl_prog); | 2056 |
1835 for (i = 0; i < 8; i++) | 2057 for (i = 0; i < 8; i++) |
1836 { | 2058 { |
1837 if (NILP (XVECTOR_DATA (status)[i])) | 2059 if (NILP (XVECTOR_DATA (status)[i])) |
1838 XSETINT (XVECTOR_DATA (status)[i], 0); | 2060 XSETINT (XVECTOR_DATA (status)[i], 0); |
1839 if (INTP (XVECTOR_DATA (status)[i])) | 2061 if (INTP (XVECTOR_DATA (status)[i])) |
1840 ccl.reg[i] = XINT (XVECTOR_DATA (status)[i]); | 2062 ccl.reg[i] = XINT (XVECTOR_DATA (status)[i]); |
1841 } | 2063 } |
1842 if (INTP (XVECTOR_DATA (status)[8])) | 2064 if (INTP (XVECTOR (status)->contents[i])) |
1843 { | 2065 { |
1844 i = XINT (XVECTOR_DATA (status)[8]); | 2066 i = XINT (XVECTOR_DATA (status)[8]); |
1845 if (ccl.ic < i && i < ccl.size) | 2067 if (ccl.ic < i && i < ccl.size) |
1846 ccl.ic = i; | 2068 ccl.ic = i; |
1847 } | 2069 } |
1848 outbuf = Dynarr_new (unsigned_char); | 2070 outbuf = Dynarr_new (unsigned_char); |
1849 ccl.last_block = NILP (contin); | 2071 ccl.last_block = NILP (continue_); |
1850 produced = ccl_driver (&ccl, XSTRING_DATA (str), outbuf, | 2072 produced = ccl_driver (&ccl, XSTRING_DATA (string), outbuf, |
1851 XSTRING_LENGTH (str), (int *)0, CCL_MODE_DECODING); | 2073 XSTRING_LENGTH (string), |
2074 (int *) 0, | |
2075 CCL_MODE_DECODING); | |
1852 for (i = 0; i < 8; i++) | 2076 for (i = 0; i < 8; i++) |
1853 XVECTOR_DATA (status)[i] = make_int(ccl.reg[i]); | 2077 XSETINT (XVECTOR_DATA (status)[i], ccl.reg[i]); |
1854 XSETINT (XVECTOR_DATA (status)[8], ccl.ic); | 2078 XSETINT (XVECTOR_DATA (status)[8], ccl.ic); |
1855 UNGCPRO; | 2079 UNGCPRO; |
1856 | 2080 |
1857 val = make_string (Dynarr_atp (outbuf, 0), produced); | 2081 val = make_string (Dynarr_atp (outbuf, 0), produced); |
1858 Dynarr_free (outbuf); | 2082 Dynarr_free (outbuf); |
1859 QUIT; | 2083 QUIT; |
2084 if (ccl.status == CCL_STAT_SUSPEND_BY_DST) | |
2085 error ("Output buffer for the CCL programs overflow"); | |
1860 if (ccl.status != CCL_STAT_SUCCESS | 2086 if (ccl.status != CCL_STAT_SUCCESS |
1861 && ccl.status != CCL_STAT_SUSPEND_BY_SRC | 2087 && ccl.status != CCL_STAT_SUSPEND_BY_SRC) |
1862 && ccl.status != CCL_STAT_SUSPEND_BY_DST) | |
1863 error ("Error in CCL program at %dth code", ccl.ic); | 2088 error ("Error in CCL program at %dth code", ccl.ic); |
1864 | 2089 |
1865 return val; | 2090 return val; |
1866 } | 2091 } |
1867 | 2092 |
1868 DEFUN ("register-ccl-program", Fregister_ccl_program, 2, 2, 0, /* | 2093 DEFUN ("register-ccl-program", Fregister_ccl_program, |
1869 Register CCL program PROGRAM of NAME in `ccl-program-table'. | 2094 2, 2, 0, /* |
1870 PROGRAM should be a compiled code of CCL program, or nil. | 2095 Register CCL program CCL-PROG as NAME in `ccl-program-table'. |
2096 CCL-PROG should be a compiled CCL program (vector), or nil. | |
2097 If it is nil, just reserve NAME as a CCL program name. | |
1871 Return index number of the registered CCL program. | 2098 Return index number of the registered CCL program. |
1872 */ | 2099 */ |
1873 (name, ccl_prog)) | 2100 (name, ccl_prog)) |
1874 { | 2101 { |
1875 int len = XVECTOR_LENGTH (Vccl_program_table); | 2102 int len = XVECTOR_LENGTH (Vccl_program_table); |
1876 int i; | 2103 int idx; |
2104 Lisp_Object resolved; | |
1877 | 2105 |
1878 CHECK_SYMBOL (name); | 2106 CHECK_SYMBOL (name); |
2107 resolved = Qnil; | |
1879 if (!NILP (ccl_prog)) | 2108 if (!NILP (ccl_prog)) |
1880 { | 2109 { |
1881 CHECK_VECTOR (ccl_prog); | 2110 CHECK_VECTOR (ccl_prog); |
1882 ccl_prog = resolve_symbol_ccl_program (ccl_prog); | 2111 resolved = resolve_symbol_ccl_program (ccl_prog); |
1883 } | 2112 if (! NILP (resolved)) |
1884 | |
1885 for (i = 0; i < len; i++) | |
1886 { | |
1887 Lisp_Object slot = XVECTOR_DATA (Vccl_program_table)[i]; | |
1888 | |
1889 if (!CONSP (slot)) | |
1890 break; | |
1891 | |
1892 if (EQ (name, XCAR (slot))) | |
1893 { | 2113 { |
1894 XCDR (slot) = ccl_prog; | 2114 ccl_prog = resolved; |
1895 return make_int (i); | 2115 resolved = Qt; |
1896 } | 2116 } |
1897 } | 2117 } |
1898 | 2118 |
1899 if (i == len) | 2119 for (idx = 0; idx < len; idx++) |
1900 { | 2120 { |
1901 Lisp_Object new_table = Fmake_vector (make_int (len * 2), Qnil); | 2121 Lisp_Object slot; |
2122 | |
2123 slot = XVECTOR_DATA (Vccl_program_table)[idx]; | |
2124 if (!VECTORP (slot)) | |
2125 /* This is the first unused slot. Register NAME here. */ | |
2126 break; | |
2127 | |
2128 if (EQ (name, XVECTOR_DATA (slot)[0])) | |
2129 { | |
2130 /* Update this slot. */ | |
2131 XVECTOR_DATA (slot)[1] = ccl_prog; | |
2132 XVECTOR_DATA (slot)[2] = resolved; | |
2133 return make_int (idx); | |
2134 } | |
2135 } | |
2136 | |
2137 if (idx == len) | |
2138 { | |
2139 /* Extend the table. */ | |
2140 Lisp_Object new_table; | |
1902 int j; | 2141 int j; |
1903 | 2142 |
2143 new_table = Fmake_vector (make_int (len * 2), Qnil); | |
1904 for (j = 0; j < len; j++) | 2144 for (j = 0; j < len; j++) |
1905 XVECTOR_DATA (new_table)[j] | 2145 XVECTOR_DATA (new_table)[j] |
1906 = XVECTOR_DATA (Vccl_program_table)[j]; | 2146 = XVECTOR_DATA (Vccl_program_table)[j]; |
1907 Vccl_program_table = new_table; | 2147 Vccl_program_table = new_table; |
1908 } | 2148 } |
1909 | 2149 |
1910 XVECTOR_DATA (Vccl_program_table)[i] = Fcons (name, ccl_prog); | 2150 { |
1911 Fput (name, Qccl_program_idx, make_int (i)); | 2151 Lisp_Object elt; |
1912 return make_int (i); | 2152 |
2153 elt = Fmake_vector (make_int (3), Qnil); | |
2154 XVECTOR_DATA (elt)[0] = name; | |
2155 XVECTOR_DATA (elt)[1] = ccl_prog; | |
2156 XVECTOR_DATA (elt)[2] = resolved; | |
2157 XVECTOR_DATA (Vccl_program_table)[idx] = elt; | |
2158 } | |
2159 | |
2160 Fput (name, Qccl_program_idx, make_int (idx)); | |
2161 return make_int (idx); | |
1913 } | 2162 } |
1914 | 2163 |
1915 #if 0 | |
1916 /* Register code conversion map. | 2164 /* Register code conversion map. |
1917 A code conversion map consists of numbers, Qt, Qnil, and Qlambda. | 2165 A code conversion map consists of numbers, Qt, Qnil, and Qlambda. |
1918 The first element is start code point. | 2166 The first element is start code point. |
1919 The rest elements are mapped numbers. | 2167 The rest elements are mapped numbers. |
1920 Symbol t means to map to an original number before mapping. | 2168 Symbol t means to map to an original number before mapping. |
1921 Symbol nil means that the corresponding element is empty. | 2169 Symbol nil means that the corresponding element is empty. |
1922 Symbol lambda means to terminate mapping here. | 2170 Symbol lambda means to terminate mapping here. |
1923 */ | 2171 */ |
1924 | 2172 |
1925 DEFUN ("register-code-conversion-map", Fregister_code_conversion_map, | 2173 DEFUN ("register-code-conversion-map", Fregister_code_conversion_map, |
1926 Sregister_code_conversion_map, | 2174 2, 2, 0, /* |
1927 2, 2, 0, | 2175 Register SYMBOL as code conversion map MAP. |
1928 "Register SYMBOL as code conversion map MAP.\n\ | 2176 Return index number of the registered map. |
1929 Return index number of the registered map.") | 2177 */ |
1930 (symbol, map) | 2178 (symbol, map)) |
1931 Lisp_Object symbol, map; | |
1932 { | 2179 { |
1933 int len = XVECTOR (Vcode_conversion_map_vector)->size; | 2180 int len = XVECTOR_LENGTH (Vcode_conversion_map_vector); |
1934 int i; | 2181 int i; |
1935 Lisp_Object index; | 2182 Lisp_Object idx; |
1936 | 2183 |
1937 CHECK_SYMBOL (symbol, 0); | 2184 CHECK_SYMBOL (symbol); |
1938 CHECK_VECTOR (map, 1); | 2185 CHECK_VECTOR (map); |
1939 | 2186 |
1940 for (i = 0; i < len; i++) | 2187 for (i = 0; i < len; i++) |
1941 { | 2188 { |
1942 Lisp_Object slot = XVECTOR (Vcode_conversion_map_vector)->contents[i]; | 2189 Lisp_Object slot = XVECTOR_DATA (Vcode_conversion_map_vector)[i]; |
1943 | 2190 |
1944 if (!CONSP (slot)) | 2191 if (!CONSP (slot)) |
1945 break; | 2192 break; |
1946 | 2193 |
1947 if (EQ (symbol, XCONS (slot)->car)) | 2194 if (EQ (symbol, XCAR (slot))) |
1948 { | 2195 { |
1949 index = make_int (i); | 2196 idx = make_int (i); |
1950 XCONS (slot)->cdr = map; | 2197 XCDR (slot) = map; |
1951 Fput (symbol, Qcode_conversion_map, map); | 2198 Fput (symbol, Qcode_conversion_map, map); |
1952 Fput (symbol, Qcode_conversion_map_id, index); | 2199 Fput (symbol, Qcode_conversion_map_id, idx); |
1953 return index; | 2200 return idx; |
1954 } | 2201 } |
1955 } | 2202 } |
1956 | 2203 |
1957 if (i == len) | 2204 if (i == len) |
1958 { | 2205 { |
1959 Lisp_Object new_vector = Fmake_vector (make_int (len * 2), Qnil); | 2206 Lisp_Object new_vector = Fmake_vector (make_int (len * 2), Qnil); |
1960 int j; | 2207 int j; |
1961 | 2208 |
1962 for (j = 0; j < len; j++) | 2209 for (j = 0; j < len; j++) |
1963 XVECTOR (new_vector)->contents[j] | 2210 XVECTOR_DATA (new_vector)[j] |
1964 = XVECTOR (Vcode_conversion_map_vector)->contents[j]; | 2211 = XVECTOR_DATA (Vcode_conversion_map_vector)[j]; |
1965 Vcode_conversion_map_vector = new_vector; | 2212 Vcode_conversion_map_vector = new_vector; |
1966 } | 2213 } |
1967 | 2214 |
1968 index = make_int (i); | 2215 idx = make_int (i); |
1969 Fput (symbol, Qcode_conversion_map, map); | 2216 Fput (symbol, Qcode_conversion_map, map); |
1970 Fput (symbol, Qcode_conversion_map_id, index); | 2217 Fput (symbol, Qcode_conversion_map_id, idx); |
1971 XVECTOR (Vcode_conversion_map_vector)->contents[i] = Fcons (symbol, map); | 2218 XVECTOR_DATA (Vcode_conversion_map_vector)[i] = Fcons (symbol, map); |
1972 return index; | 2219 return idx; |
1973 } | 2220 } |
1974 #endif | |
1975 | 2221 |
1976 | 2222 |
1977 void | 2223 void |
1978 syms_of_mule_ccl (void) | 2224 syms_of_mule_ccl (void) |
1979 { | 2225 { |
2226 DEFSUBR (Fccl_program_p); | |
1980 DEFSUBR (Fccl_execute); | 2227 DEFSUBR (Fccl_execute); |
1981 DEFSUBR (Fccl_execute_on_string); | 2228 DEFSUBR (Fccl_execute_on_string); |
1982 DEFSUBR (Fregister_ccl_program); | 2229 DEFSUBR (Fregister_ccl_program); |
1983 #if 0 | 2230 DEFSUBR (Fregister_code_conversion_map); |
1984 DEFSUBR (&Fregister_code_conversion_map); | |
1985 #endif | |
1986 } | 2231 } |
1987 | 2232 |
1988 void | 2233 void |
1989 vars_of_mule_ccl (void) | 2234 vars_of_mule_ccl (void) |
1990 { | 2235 { |
1991 staticpro (&Vccl_program_table); | 2236 staticpro (&Vccl_program_table); |
1992 Vccl_program_table = Fmake_vector (make_int (32), Qnil); | 2237 Vccl_program_table = Fmake_vector (make_int (32), Qnil); |
1993 | 2238 |
1994 Qccl_program = intern ("ccl-program"); | 2239 defsymbol (&Qccl_program, "ccl-program"); |
1995 staticpro (&Qccl_program); | 2240 defsymbol (&Qccl_program_idx, "ccl-program-idx"); |
1996 | 2241 defsymbol (&Qcode_conversion_map, "code-conversion-map"); |
1997 Qccl_program_idx = intern ("ccl-program-idx"); | 2242 defsymbol (&Qcode_conversion_map_id, "code-conversion-map-id"); |
1998 staticpro (&Qccl_program_idx); | |
1999 | |
2000 #if 0 | |
2001 Qcode_conversion_map = intern ("code-conversion-map"); | |
2002 staticpro (&Qcode_conversion_map); | |
2003 | |
2004 Qcode_conversion_map_id = intern ("code-conversion-map-id"); | |
2005 staticpro (&Qcode_conversion_map_id); | |
2006 | 2243 |
2007 DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector /* | 2244 DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector /* |
2008 Vector of code conversion maps.*/ ); | 2245 Vector of code conversion maps. |
2246 */ ); | |
2009 Vcode_conversion_map_vector = Fmake_vector (make_int (16), Qnil); | 2247 Vcode_conversion_map_vector = Fmake_vector (make_int (16), Qnil); |
2010 #endif | |
2011 | 2248 |
2012 DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist /* | 2249 DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist /* |
2013 Alist of fontname patterns vs corresponding CCL program. | 2250 Alist of fontname patterns vs corresponding CCL program. |
2014 Each element looks like (REGEXP . CCL-CODE), | 2251 Each element looks like (REGEXP . CCL-CODE), |
2015 where CCL-CODE is a compiled CCL program. | 2252 where CCL-CODE is a compiled CCL program. |