comparison src/mule-charset.h @ 428:3ecd8885ac67 r21-2-22

Import from CVS: tag r21-2-22
author cvs
date Mon, 13 Aug 2007 11:28:15 +0200
parents
children 84b14dcb0985
comparison
equal deleted inserted replaced
427:0a0253eac470 428:3ecd8885ac67
1 /* Header for multilingual functions.
2 Copyright (C) 1992, 1995 Free Software Foundation, Inc.
3 Copyright (C) 1995 Sun Microsystems, Inc.
4
5 This file is part of XEmacs.
6
7 XEmacs is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
11
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with XEmacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Synched up with: Mule 2.3. Not in FSF. */
23
24 /* Rewritten by Ben Wing <ben@xemacs.org>. */
25
26 #ifndef _XEMACS_MULE_CHARSET_H
27 #define _XEMACS_MULE_CHARSET_H
28
29 /*
30 1. Character Sets
31 =================
32
33 A character set (or "charset") is an ordered set of characters.
34 A particular character in a charset is indexed using one or
35 more "position codes", which are non-negative integers.
36 The number of position codes needed to identify a particular
37 character in a charset is called the "dimension" of the
38 charset. In XEmacs/Mule, all charsets have 1 or 2 dimensions,
39 and the size of all charsets (except for a few special cases)
40 is either 94, 96, 94 by 94, or 96 by 96. The range of
41 position codes used to index characters from any of these
42 types of character sets is as follows:
43
44 Charset type Position code 1 Position code 2
45 ------------------------------------------------------------
46 94 33 - 126 N/A
47 96 32 - 127 N/A
48 94x94 33 - 126 33 - 126
49 96x96 32 - 127 32 - 127
50
51 Note that in the above cases position codes do not start at
52 an expected value such as 0 or 1. The reason for this will
53 become clear later.
54
55 For example, Latin-1 is a 96-character charset, and JISX0208
56 (the Japanese national character set) is a 94x94-character
57 charset.
58
59 [Note that, although the ranges above define the *valid*
60 position codes for a charset, some of the slots in a particular
61 charset may in fact be empty. This is the case for JISX0208,
62 for example, where (e.g.) all the slots whose first
63 position code is in the range 118 - 127 are empty.]
64
65 There are three charsets that do not follow the above rules.
66 All of them have one dimension, and have ranges of position
67 codes as follows:
68
69 Charset name Position code 1
70 ------------------------------------
71 ASCII 0 - 127
72 Control-1 0 - 31
73 Composite 0 - some large number
74
75 (The upper bound of the position code for composite characters
76 has not yet been determined, but it will probably be at
77 least 16,383).
78
79 ASCII is the union of two subsidiary character sets:
80 Printing-ASCII (the printing ASCII character set,
81 consisting of position codes 33 - 126, like for a standard
82 94-character charset) and Control-ASCII (the non-printing
83 characters that would appear in a binary file with codes 0
84 - 32 and 127).
85
86 Control-1 contains the non-printing characters that would
87 appear in a binary file with codes 128 - 159.
88
89 Composite contains characters that are generated by
90 overstriking one or more characters from other charsets.
91
92 Note that some characters in ASCII, and all characters
93 in Control-1, are "control" (non-printing) characters.
94 These have no printed representation but instead control
95 some other function of the printing (e.g. TAB or 8 moves
96 the current character position to the next tab stop).
97 All other characters in all charsets are "graphic"
98 (printing) characters.
99
100 When a binary file is read in, the bytes in the file are
101 assigned to character sets as follows:
102
103 Bytes Character set Range
104 --------------------------------------------------
105 0 - 127 ASCII 0 - 127
106 128 - 159 Control-1 0 - 31
107 160 - 255 Latin-1 32 - 127
108
109 This is a bit ad-hoc but gets the job done.
110
111 2. Encodings
112 ============
113
114 An "encoding" is a way of numerically representing
115 characters from one or more character sets. If an encoding
116 only encompasses one character set, then the position codes
117 for the characters in that character set could be used
118 directly. This is not possible, however, if more than one
119 character set is to be used in the encoding.
120
121 For example, the conversion detailed above between bytes in
122 a binary file and characters is effectively an encoding
123 that encompasses the three character sets ASCII, Control-1,
124 and Latin-1 in a stream of 8-bit bytes.
125
126 Thus, an encoding can be viewed as a way of encoding
127 characters from a specified group of character sets using a
128 stream of bytes, each of which contains a fixed number of
129 bits (but not necessarily 8, as in the common usage of
130 "byte").
131
132 Here are descriptions of a couple of common
133 encodings:
134
135
136 A. Japanese EUC (Extended Unix Code)
137
138 This encompasses the character sets:
139 - Printing-ASCII,
140 - Katakana-JISX0201 (half-width katakana, the right half of JISX0201).
141 - Japanese-JISX0208
142 - Japanese-JISX0212
143 It uses 8-bit bytes.
144
145 Note that Printing-ASCII and Katakana-JISX0201 are 94-character
146 charsets, while Japanese-JISX0208 is a 94x94-character charset.
147
148 The encoding is as follows:
149
150 Character set Representation (PC == position-code)
151 ------------- --------------
152 Printing-ASCII PC1
153 Japanese-JISX0208 PC1 + 0x80 | PC2 + 0x80
154 Katakana-JISX0201 0x8E | PC1 + 0x80
155
156
157 B. JIS7
158
159 This encompasses the character sets:
160 - Printing-ASCII
161 - Latin-JISX0201 (the left half of JISX0201; this character set is
162 very similar to Printing-ASCII and is a 94-character charset)
163 - Japanese-JISX0208
164 - Katakana-JISX0201
165 It uses 7-bit bytes.
166
167 Unlike Japanese EUC, this is a "modal" encoding, which
168 means that there are multiple states that the encoding can
169 be in, which affect how the bytes are to be interpreted.
170 Special sequences of bytes (called "escape sequences")
171 are used to change states.
172
173 The encoding is as follows:
174
175 Character set Representation
176 ------------- --------------
177 Printing-ASCII PC1
178 Latin-JISX0201 PC1
179 Katakana-JISX0201 PC1
180 Japanese-JISX0208 PC1 | PC2
181
182 Escape sequence ASCII equivalent Meaning
183 --------------- ---------------- -------
184 0x1B 0x28 0x42 ESC ( B invoke Printing-ASCII
185 0x1B 0x28 0x4A ESC ( J invoke Latin-JISX0201
186 0x1B 0x28 0x49 ESC ( I invoke Katakana-JISX0201
187 0x1B 0x24 0x42 ESC $ B invoke Japanese-JISX0208
188
189 Initially, Printing-ASCII is invoked.
190
191 3. Internal Mule Encodings
192 ==========================
193
194 In XEmacs/Mule, each character set is assigned a unique number,
195 called a "leading byte". This is used in the encodings of a
196 character. Leading bytes are in the range 0x80 - 0xFF
197 (except for ASCII, which has a leading byte of 0), although
198 some leading bytes are reserved.
199
200 Charsets whose leading byte is in the range 0x80 - 0x9F are
201 called "official" and are used for built-in charsets.
202 Other charsets are called "private" and have leading bytes
203 in the range 0xA0 - 0xFF; these are user-defined charsets.
204
205 More specifically:
206
207 Character set Leading byte
208 ------------- ------------
209 ASCII 0
210 Composite 0x80
211 Dimension-1 Official 0x81 - 0x8D
212 (0x8E is free)
213 Control 0x8F
214 Dimension-2 Official 0x90 - 0x99
215 (0x9A - 0x9D are free;
216 0x9E and 0x9F are reserved)
217 Dimension-1 Private 0xA0 - 0xEF
218 Dimension-2 Private 0xF0 - 0xFF
219
220 There are two internal encodings for characters in XEmacs/Mule.
221 One is called "string encoding" and is an 8-bit encoding that
222 is used for representing characters in a buffer or string.
223 It uses 1 to 4 bytes per character. The other is called
224 "character encoding" and is a 19-bit encoding that is used
225 for representing characters individually in a variable.
226
227 (In the following descriptions, we'll ignore composite
228 characters for the moment. We also give a general (structural)
229 overview first, followed later by the exact details.)
230
231 A. Internal String Encoding
232
233 ASCII characters are encoded using their position code directly.
234 Other characters are encoded using their leading byte followed
235 by their position code(s) with the high bit set. Characters
236 in private character sets have their leading byte prefixed with
237 a "leading byte prefix", which is either 0x9E or 0x9F. (No
238 character sets are ever assigned these leading bytes.) Specifically:
239
240 Character set Encoding (PC == position-code)
241 ------------- -------- (LB == leading-byte)
242 ASCII PC1 |
243 Control-1 LB | PC1 + 0xA0
244 Dimension-1 official LB | PC1 + 0x80
245 Dimension-1 private 0x9E | LB | PC1 + 0x80
246 Dimension-2 official LB | PC1 | PC2 + 0x80
247 Dimension-2 private 0x9F | LB | PC1 + 0x80 | PC2 + 0x80
248
249 The basic characteristic of this encoding is that the first byte
250 of all characters is in the range 0x00 - 0x9F, and the second and
251 following bytes of all characters is in the range 0xA0 - 0xFF.
252 This means that it is impossible to get out of sync, or more
253 specifically:
254
255 1. Given any byte position, the beginning of the character it is
256 within can be determined in constant time.
257 2. Given any byte position at the beginning of a character, the
258 beginning of the next character can be determined in constant
259 time.
260 3. Given any byte position at the beginning of a character, the
261 beginning of the previous character can be determined in constant
262 time.
263 4. Textual searches can simply treat encoded strings as if they
264 were encoded in a one-byte-per-character fashion rather than
265 the actual multi-byte encoding.
266
267 None of the standard non-modal encodings meet all of these
268 conditions. For example, EUC satisfies only (2) and (3), while
269 Shift-JIS and Big5 (not yet described) satisfy only (2). (All
270 non-modal encodings must satisfy (2), in order to be unambiguous.)
271
272 B. Internal Character Encoding
273
274 One 19-bit word represents a single character. The word is
275 separated into three fields:
276
277 Bit number: 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
278 <------------> <------------------> <------------------>
279 Field: 1 2 3
280
281 Note that fields 2 and 3 hold 7 bits each, while field 1 holds 5 bits.
282
283 Character set Field 1 Field 2 Field 3
284 ------------- ------- ------- -------
285 ASCII 0 0 PC1
286 range: (00 - 7F)
287 Control-1 0 1 PC1
288 range: (00 - 1F)
289 Dimension-1 official 0 LB - 0x80 PC1
290 range: (01 - 0D) (20 - 7F)
291 Dimension-1 private 0 LB - 0x80 PC1
292 range: (20 - 6F) (20 - 7F)
293 Dimension-2 official LB - 0x8F PC1 PC2
294 range: (01 - 0A) (20 - 7F) (20 - 7F)
295 Dimension-2 private LB - 0xE1 PC1 PC2
296 range: (0F - 1E) (20 - 7F) (20 - 7F)
297 Composite 0x1F ? ?
298
299 Note that character codes 0 - 255 are the same as the "binary encoding"
300 described above.
301 */
302
303 /*
304 About Unicode support:
305
306 Adding Unicode support is very desirable. Unicode will likely be a
307 very common representation in the future, and thus we should
308 represent Unicode characters using three bytes instead of four.
309 This means we need to find leading bytes for Unicode. Given that
310 there are 65,536 characters in Unicode and we can attach 96x96 =
311 9,216 characters per leading byte, we need eight leading bytes for
312 Unicode. We currently have four free (0x9A - 0x9D), and with a
313 little bit of rearranging we can get five: ASCII doesn't really
314 need to take up a leading byte. (We could just as well use 0x7F,
315 with a little change to the functions that assume that 0x80 is the
316 lowest leading byte.) This means we still need to dump three
317 leading bytes and move them into private space. The CNS charsets
318 are good candidates since they are rarely used, and
319 JAPANESE_JISX0208_1978 is becoming less and less used and could
320 also be dumped. */
321
322
323 /************************************************************************/
324 /* Definition of leading bytes */
325 /************************************************************************/
326
327 #define MIN_LEADING_BYTE 0x80
328 /* These need special treatment in a string and/or character */
329 #define LEADING_BYTE_ASCII 0x8E /* Omitted in a buffer */
330 #ifdef ENABLE_COMPOSITE_CHARS
331 #endif
332 #define LEADING_BYTE_COMPOSITE 0x80 /* for a composite character */
333 #define LEADING_BYTE_CONTROL_1 0x8F /* represent normal 80-9F */
334
335 /* Note the gap in each official charset can cause core dump
336 as first and last values are used to determine whether
337 charset is defined or not in non_ascii_valid_char_p */
338
339 /** The following are for 1-byte characters in an official charset. **/
340 enum LEADING_BYTE_OFFICIAL_1
341 {
342 LEADING_BYTE_LATIN_ISO8859_1 = 0x81, /* Right half of ISO 8859-1 */
343 LEADING_BYTE_LATIN_ISO8859_2, /* 0x82 Right half of ISO 8859-2 */
344 LEADING_BYTE_LATIN_ISO8859_3, /* 0x83 Right half of ISO 8859-3 */
345 LEADING_BYTE_LATIN_ISO8859_4, /* 0x84 Right half of ISO 8859-4 */
346 LEADING_BYTE_THAI_TIS620, /* 0x85 TIS620-2533 */
347 LEADING_BYTE_GREEK_ISO8859_7, /* 0x86 Right half of ISO 8859-7 */
348 LEADING_BYTE_ARABIC_ISO8859_6, /* 0x87 Right half of ISO 8859-6 */
349 LEADING_BYTE_HEBREW_ISO8859_8, /* 0x88 Right half of ISO 8859-8 */
350 LEADING_BYTE_KATAKANA_JISX0201, /* 0x89 Right half of JIS X0201-1976 */
351 LEADING_BYTE_LATIN_JISX0201, /* 0x8A Left half of JIS X0201-1976 */
352 LEADING_BYTE_CYRILLIC_ISO8859_5,/* 0x8B Right half of ISO 8859-5 */
353 LEADING_BYTE_LATIN_ISO8859_9 /* 0x8C Right half of ISO 8859-9 */
354 /* 0x8D unused */
355 };
356
357 #define MIN_LEADING_BYTE_OFFICIAL_1 LEADING_BYTE_LATIN_ISO8859_1
358 #define MAX_LEADING_BYTE_OFFICIAL_1 LEADING_BYTE_LATIN_ISO8859_9
359
360 /** The following are for 2-byte characters in an official charset. **/
361 enum LEADING_BYTE_OFFICIAL_2
362 {
363 LEADING_BYTE_JAPANESE_JISX0208_1978 = 0x90, /* Japanese JIS X0208-1978 */
364 LEADING_BYTE_CHINESE_GB2312, /* 0x91 Chinese Hanzi GB2312-1980 */
365 LEADING_BYTE_JAPANESE_JISX0208, /* 0x92 Japanese JIS X0208-1983 */
366 LEADING_BYTE_KOREAN_KSC5601, /* 0x93 Hangul KS C5601-1987 */
367 LEADING_BYTE_JAPANESE_JISX0212, /* 0x94 Japanese JIS X0212-1990 */
368 LEADING_BYTE_CHINESE_CNS11643_1, /* 0x95 Chinese CNS11643 Set 1 */
369 LEADING_BYTE_CHINESE_CNS11643_2, /* 0x96 Chinese CNS11643 Set 2 */
370 LEADING_BYTE_CHINESE_BIG5_1, /* 0x97 Big5 Level 1 */
371 LEADING_BYTE_CHINESE_BIG5_2 /* 0x98 Big5 Level 2 */
372 /* 0x99 unused */
373 /* 0x9A unused */
374 /* 0x9B unused */
375 /* 0x9C unused */
376 };
377
378 #define MIN_LEADING_BYTE_OFFICIAL_2 LEADING_BYTE_JAPANESE_JISX0208_1978
379 #define MAX_LEADING_BYTE_OFFICIAL_2 LEADING_BYTE_CHINESE_BIG5_2
380
381 /** The following are for 1- and 2-byte characters in a private charset. **/
382
383 #define PRE_LEADING_BYTE_PRIVATE_1 0x9E /* 1-byte char-set */
384 #define PRE_LEADING_BYTE_PRIVATE_2 0x9F /* 2-byte char-set */
385
386 #define MIN_LEADING_BYTE_PRIVATE_1 0xA0
387 #define MAX_LEADING_BYTE_PRIVATE_1 0xEF
388 #define MIN_LEADING_BYTE_PRIVATE_2 0xF0
389 #define MAX_LEADING_BYTE_PRIVATE_2 0xFF
390
391 #define NUM_LEADING_BYTES 128
392
393
394 /************************************************************************/
395 /* Operations on leading bytes */
396 /************************************************************************/
397
398 /* Is this leading byte for a private charset? */
399
400 #define LEADING_BYTE_PRIVATE_P(lb) ((lb) >= MIN_LEADING_BYTE_PRIVATE_1)
401
402 /* Is this a prefix for a private leading byte? */
403
404 INLINE int LEADING_BYTE_PREFIX_P (unsigned char lb);
405 INLINE int
406 LEADING_BYTE_PREFIX_P (unsigned char lb)
407 {
408 return (lb == PRE_LEADING_BYTE_PRIVATE_1 ||
409 lb == PRE_LEADING_BYTE_PRIVATE_2);
410 }
411
412 /* Given a private leading byte, return the leading byte prefix stored
413 in a string */
414
415 #define PRIVATE_LEADING_BYTE_PREFIX(lb) \
416 ((lb) < MIN_LEADING_BYTE_PRIVATE_2 ? \
417 PRE_LEADING_BYTE_PRIVATE_1 : \
418 PRE_LEADING_BYTE_PRIVATE_2)
419
420
421 /************************************************************************/
422 /* Operations on individual bytes */
423 /* of any format */
424 /************************************************************************/
425
426 /* Argument `c' should be (unsigned int) or (unsigned char). */
427 /* Note that SP and DEL are not included. */
428
429 #define BYTE_ASCII_P(c) ((c) < 0x80)
430 #define BYTE_C0_P(c) ((c) < 0x20)
431 /* Do some forced casting just to make *sure* things are gotten right. */
432 #define BYTE_C1_P(c) ((unsigned int) ((unsigned int) (c) - 0x80) < 0x20)
433
434
435 /************************************************************************/
436 /* Operations on individual bytes */
437 /* in a Mule-formatted string */
438 /************************************************************************/
439
440 /* Does this byte represent the first byte of a character? */
441
442 #define BUFBYTE_FIRST_BYTE_P(c) ((c) < 0xA0)
443
444 /* Does this byte represent the first byte of a multi-byte character? */
445
446 #define BUFBYTE_LEADING_BYTE_P(c) BYTE_C1_P (c)
447
448
449 /************************************************************************/
450 /* Information about a particular character set */
451 /************************************************************************/
452
453 struct Lisp_Charset
454 {
455 struct lcrecord_header header;
456
457 int id;
458 Lisp_Object name;
459 Lisp_Object doc_string, registry, short_name, long_name;
460
461 Lisp_Object reverse_direction_charset;
462
463 Lisp_Object ccl_program;
464
465 /* Final byte of this character set in ISO2022 designating escape sequence */
466 Bufbyte final;
467
468 /* Number of bytes (1 - 4) required in the internal representation
469 for characters in this character set. This is *not* the
470 same as the dimension of the character set). */
471 unsigned int rep_bytes;
472
473 /* Number of columns a character in this charset takes up, on TTY
474 devices. Not used for X devices. */
475 unsigned int columns;
476
477 /* Direction of this character set */
478 unsigned int direction;
479
480 /* Type of this character set (94, 96, 94x94, 96x96) */
481 unsigned int type;
482
483 /* Number of bytes used in encoding of this character set (1 or 2) */
484 unsigned int dimension;
485
486 /* Number of chars in each dimension (usually 94 or 96) */
487 unsigned int chars;
488
489 /* Which half of font to be used to display this character set */
490 unsigned int graphic;
491 };
492
493 DECLARE_LRECORD (charset, struct Lisp_Charset);
494 #define XCHARSET(x) XRECORD (x, charset, struct Lisp_Charset)
495 #define XSETCHARSET(x, p) XSETRECORD (x, p, charset)
496 #define CHARSETP(x) RECORDP (x, charset)
497 #define CHECK_CHARSET(x) CHECK_RECORD (x, charset)
498 #define CONCHECK_CHARSET(x) CONCHECK_RECORD (x, charset)
499
500 #define CHARSET_TYPE_94 0 /* This charset includes 94 characters. */
501 #define CHARSET_TYPE_96 1 /* This charset includes 96 characters. */
502 #define CHARSET_TYPE_94X94 2 /* This charset includes 94x94 characters. */
503 #define CHARSET_TYPE_96X96 3 /* This charset includes 96x96 characters. */
504
505 #define CHARSET_LEFT_TO_RIGHT 0
506 #define CHARSET_RIGHT_TO_LEFT 1
507
508 /* Leading byte and id have been regrouped. -- OG */
509 #define CHARSET_ID(cs) ((cs)->id)
510 #define CHARSET_LEADING_BYTE(cs) ((Bufbyte) CHARSET_ID(cs))
511 #define CHARSET_NAME(cs) ((cs)->name)
512 #define CHARSET_SHORT_NAME(cs) ((cs)->short_name)
513 #define CHARSET_LONG_NAME(cs) ((cs)->long_name)
514 #define CHARSET_REP_BYTES(cs) ((cs)->rep_bytes)
515 #define CHARSET_COLUMNS(cs) ((cs)->columns)
516 #define CHARSET_GRAPHIC(cs) ((cs)->graphic)
517 #define CHARSET_TYPE(cs) ((cs)->type)
518 #define CHARSET_DIRECTION(cs) ((cs)->direction)
519 #define CHARSET_FINAL(cs) ((cs)->final)
520 #define CHARSET_DOC_STRING(cs) ((cs)->doc_string)
521 #define CHARSET_REGISTRY(cs) ((cs)->registry)
522 #define CHARSET_CCL_PROGRAM(cs) ((cs)->ccl_program)
523 #define CHARSET_DIMENSION(cs) ((cs)->dimension)
524 #define CHARSET_CHARS(cs) ((cs)->chars)
525 #define CHARSET_REVERSE_DIRECTION_CHARSET(cs) ((cs)->reverse_direction_charset)
526
527
528 #define CHARSET_PRIVATE_P(cs) LEADING_BYTE_PRIVATE_P (CHARSET_LEADING_BYTE (cs))
529
530 #define XCHARSET_ID(cs) CHARSET_ID (XCHARSET (cs))
531 #define XCHARSET_NAME(cs) CHARSET_NAME (XCHARSET (cs))
532 #define XCHARSET_SHORT_NAME(cs) CHARSET_SHORT_NAME (XCHARSET (cs))
533 #define XCHARSET_LONG_NAME(cs) CHARSET_LONG_NAME (XCHARSET (cs))
534 #define XCHARSET_REP_BYTES(cs) CHARSET_REP_BYTES (XCHARSET (cs))
535 #define XCHARSET_COLUMNS(cs) CHARSET_COLUMNS (XCHARSET (cs))
536 #define XCHARSET_GRAPHIC(cs) CHARSET_GRAPHIC (XCHARSET (cs))
537 #define XCHARSET_TYPE(cs) CHARSET_TYPE (XCHARSET (cs))
538 #define XCHARSET_DIRECTION(cs) CHARSET_DIRECTION (XCHARSET (cs))
539 #define XCHARSET_FINAL(cs) CHARSET_FINAL (XCHARSET (cs))
540 #define XCHARSET_DOC_STRING(cs) CHARSET_DOC_STRING (XCHARSET (cs))
541 #define XCHARSET_REGISTRY(cs) CHARSET_REGISTRY (XCHARSET (cs))
542 #define XCHARSET_LEADING_BYTE(cs) CHARSET_LEADING_BYTE (XCHARSET (cs))
543 #define XCHARSET_CCL_PROGRAM(cs) CHARSET_CCL_PROGRAM (XCHARSET (cs))
544 #define XCHARSET_DIMENSION(cs) CHARSET_DIMENSION (XCHARSET (cs))
545 #define XCHARSET_CHARS(cs) CHARSET_CHARS (XCHARSET (cs))
546 #define XCHARSET_PRIVATE_P(cs) CHARSET_PRIVATE_P (XCHARSET (cs))
547 #define XCHARSET_REVERSE_DIRECTION_CHARSET(cs) \
548 CHARSET_REVERSE_DIRECTION_CHARSET (XCHARSET (cs))
549
550 struct charset_lookup {
551 /* Table of charsets indexed by leading byte. */
552 Lisp_Object charset_by_leading_byte[128];
553
554 /* Table of charsets indexed by type/final-byte/direction. */
555 Lisp_Object charset_by_attributes[4][128][2];
556 };
557
558 extern struct charset_lookup *chlook;
559
560 /* Table of number of bytes in the string representation of a character
561 indexed by the first byte of that representation.
562
563 This value can be derived other ways -- e.g. something like
564
565 (BYTE_ASCII_P (first_byte) ? 1 :
566 XCHARSET_REP_BYTES (CHARSET_BY_LEADING_BYTE (first_byte)))
567
568 but it's faster this way. */
569 extern Bytecount rep_bytes_by_first_byte[0xA0];
570
571 #ifdef ERROR_CHECK_TYPECHECK
572 /* int not Bufbyte even though that is the actual type of a leading byte.
573 This way, out-ot-range values will get caught rather than automatically
574 truncated. */
575 INLINE Lisp_Object CHARSET_BY_LEADING_BYTE (int lb);
576 INLINE Lisp_Object
577 CHARSET_BY_LEADING_BYTE (int lb)
578 {
579 assert (lb >= 0x80 && lb <= 0xFF);
580 return chlook->charset_by_leading_byte[lb - 128];
581 }
582
583 #else
584
585 #define CHARSET_BY_LEADING_BYTE(lb) (chlook->charset_by_leading_byte[(lb) - 128])
586
587 #endif
588
589 #define CHARSET_BY_ATTRIBUTES(type, final, dir) \
590 (chlook->charset_by_attributes[type][final][dir])
591
592 #ifdef ERROR_CHECK_TYPECHECK
593
594 /* Number of bytes in the string representation of a character */
595 INLINE int REP_BYTES_BY_FIRST_BYTE (int fb);
596 INLINE int
597 REP_BYTES_BY_FIRST_BYTE (int fb)
598 {
599 assert (fb >= 0 && fb < 0xA0);
600 return rep_bytes_by_first_byte[fb];
601 }
602
603 #else
604 #define REP_BYTES_BY_FIRST_BYTE(fb) (rep_bytes_by_first_byte[fb])
605 #endif
606
607
608 /************************************************************************/
609 /* Dealing with characters */
610 /************************************************************************/
611
612 /* Is this character represented by more than one byte in a string? */
613
614 #define CHAR_MULTIBYTE_P(c) ((c) >= 0x80)
615
616 #define CHAR_ASCII_P(c) (!CHAR_MULTIBYTE_P (c))
617
618 /* The bit fields of character are divided into 3 parts:
619 FIELD1(5bits):FIELD2(7bits):FIELD3(7bits) */
620
621 #define CHAR_FIELD1_MASK (0x1F << 14)
622 #define CHAR_FIELD2_MASK (0x7F << 7)
623 #define CHAR_FIELD3_MASK 0x7F
624
625 /* Macros to access each field of a character code of C. */
626
627 #define CHAR_FIELD1(c) (((c) & CHAR_FIELD1_MASK) >> 14)
628 #define CHAR_FIELD2(c) (((c) & CHAR_FIELD2_MASK) >> 7)
629 #define CHAR_FIELD3(c) ((c) & CHAR_FIELD3_MASK)
630
631 /* Field 1, if non-zero, usually holds a leading byte for a
632 dimension-2 charset. Field 2, if non-zero, usually holds a leading
633 byte for a dimension-1 charset. */
634
635 /* Converting between field values and leading bytes. */
636
637 #define FIELD2_TO_OFFICIAL_LEADING_BYTE 0x80
638 #define FIELD2_TO_PRIVATE_LEADING_BYTE 0x80
639
640 #define FIELD1_TO_OFFICIAL_LEADING_BYTE 0x8F
641 #define FIELD1_TO_PRIVATE_LEADING_BYTE 0xE1
642
643 /* Minimum and maximum allowed values for the fields. */
644
645 #define MIN_CHAR_FIELD2_OFFICIAL \
646 (MIN_LEADING_BYTE_OFFICIAL_1 - FIELD2_TO_OFFICIAL_LEADING_BYTE)
647 #define MAX_CHAR_FIELD2_OFFICIAL \
648 (MAX_LEADING_BYTE_OFFICIAL_1 - FIELD2_TO_OFFICIAL_LEADING_BYTE)
649
650 #define MIN_CHAR_FIELD1_OFFICIAL \
651 (MIN_LEADING_BYTE_OFFICIAL_2 - FIELD1_TO_OFFICIAL_LEADING_BYTE)
652 #define MAX_CHAR_FIELD1_OFFICIAL \
653 (MAX_LEADING_BYTE_OFFICIAL_2 - FIELD1_TO_OFFICIAL_LEADING_BYTE)
654
655 #define MIN_CHAR_FIELD2_PRIVATE \
656 (MIN_LEADING_BYTE_PRIVATE_1 - FIELD2_TO_PRIVATE_LEADING_BYTE)
657 #define MAX_CHAR_FIELD2_PRIVATE \
658 (MAX_LEADING_BYTE_PRIVATE_1 - FIELD2_TO_PRIVATE_LEADING_BYTE)
659
660 #define MIN_CHAR_FIELD1_PRIVATE \
661 (MIN_LEADING_BYTE_PRIVATE_2 - FIELD1_TO_PRIVATE_LEADING_BYTE)
662 #define MAX_CHAR_FIELD1_PRIVATE \
663 (MAX_LEADING_BYTE_PRIVATE_2 - FIELD1_TO_PRIVATE_LEADING_BYTE)
664
665 /* Minimum character code of each <type> character. */
666
667 #define MIN_CHAR_OFFICIAL_TYPE9N (MIN_CHAR_FIELD2_OFFICIAL << 7)
668 #define MIN_CHAR_PRIVATE_TYPE9N (MIN_CHAR_FIELD2_PRIVATE << 7)
669 #define MIN_CHAR_OFFICIAL_TYPE9NX9N (MIN_CHAR_FIELD1_OFFICIAL << 14)
670 #define MIN_CHAR_PRIVATE_TYPE9NX9N (MIN_CHAR_FIELD1_PRIVATE << 14)
671 #define MIN_CHAR_COMPOSITION (0x1F << 14)
672
673 /* Leading byte of a character.
674
675 NOTE: This takes advantage of the fact that
676 FIELD2_TO_OFFICIAL_LEADING_BYTE and
677 FIELD2_TO_PRIVATE_LEADING_BYTE are the same.
678 */
679
680 INLINE Bufbyte CHAR_LEADING_BYTE (Emchar c);
681 INLINE Bufbyte
682 CHAR_LEADING_BYTE (Emchar c)
683 {
684 if (CHAR_ASCII_P (c))
685 return LEADING_BYTE_ASCII;
686 else if (c < 0xA0)
687 return LEADING_BYTE_CONTROL_1;
688 else if (c < MIN_CHAR_OFFICIAL_TYPE9NX9N)
689 return CHAR_FIELD2 (c) + FIELD2_TO_OFFICIAL_LEADING_BYTE;
690 else if (c < MIN_CHAR_PRIVATE_TYPE9NX9N)
691 return CHAR_FIELD1 (c) + FIELD1_TO_OFFICIAL_LEADING_BYTE;
692 else if (c < MIN_CHAR_COMPOSITION)
693 return CHAR_FIELD1 (c) + FIELD1_TO_PRIVATE_LEADING_BYTE;
694 else
695 {
696 #ifdef ENABLE_COMPOSITE_CHARS
697 return LEADING_BYTE_COMPOSITE;
698 #else
699 abort();
700 return 0;
701 #endif /* ENABLE_COMPOSITE_CHARS */
702 }
703 }
704
705 #define CHAR_CHARSET(c) CHARSET_BY_LEADING_BYTE (CHAR_LEADING_BYTE (c))
706
707 /* Return a character whose charset is CHARSET and position-codes
708 are C1 and C2. TYPE9N character ignores C2.
709
710 NOTE: This takes advantage of the fact that
711 FIELD2_TO_OFFICIAL_LEADING_BYTE and
712 FIELD2_TO_PRIVATE_LEADING_BYTE are the same.
713 */
714
715 INLINE Emchar MAKE_CHAR (Lisp_Object charset, int c1, int c2);
716 INLINE Emchar
717 MAKE_CHAR (Lisp_Object charset, int c1, int c2)
718 {
719 if (EQ (charset, Vcharset_ascii))
720 return c1;
721 else if (EQ (charset, Vcharset_control_1))
722 return c1 | 0x80;
723 #ifdef ENABLE_COMPOSITE_CHARS
724 else if (EQ (charset, Vcharset_composite))
725 return (0x1F << 14) | ((c1) << 7) | (c2);
726 #endif
727 else if (XCHARSET_DIMENSION (charset) == 1)
728 return ((XCHARSET_LEADING_BYTE (charset) -
729 FIELD2_TO_OFFICIAL_LEADING_BYTE) << 7) | (c1);
730 else if (!XCHARSET_PRIVATE_P (charset))
731 return ((XCHARSET_LEADING_BYTE (charset) -
732 FIELD1_TO_OFFICIAL_LEADING_BYTE) << 14) | ((c1) << 7) | (c2);
733 else
734 return ((XCHARSET_LEADING_BYTE (charset) -
735 FIELD1_TO_PRIVATE_LEADING_BYTE) << 14) | ((c1) << 7) | (c2);
736 }
737
738 /* The charset of character C is set to CHARSET, and the
739 position-codes of C are set to C1 and C2. C2 of TYPE9N character
740 is 0. */
741
742 /* BREAKUP_CHAR_1_UNSAFE assumes that the charset has already been
743 calculated, and just computes c1 and c2.
744
745 BREAKUP_CHAR also computes and stores the charset. */
746
747 #define BREAKUP_CHAR_1_UNSAFE(c, charset, c1, c2) \
748 XCHARSET_DIMENSION (charset) == 1 \
749 ? ((c1) = CHAR_FIELD3 (c), (c2) = 0) \
750 : ((c1) = CHAR_FIELD2 (c), \
751 (c2) = CHAR_FIELD3 (c))
752
753 INLINE void breakup_char_1 (Emchar c, Lisp_Object *charset, int *c1, int *c2);
754 INLINE void
755 breakup_char_1 (Emchar c, Lisp_Object *charset, int *c1, int *c2)
756 {
757 *charset = CHAR_CHARSET (c);
758 BREAKUP_CHAR_1_UNSAFE (c, *charset, *c1, *c2);
759 }
760
761 #define BREAKUP_CHAR(c, charset, c1, c2) \
762 breakup_char_1 (c, &(charset), &(c1), &(c2))
763
764
765
766 #ifdef ENABLE_COMPOSITE_CHARS
767 /************************************************************************/
768 /* Composite characters */
769 /************************************************************************/
770
771 Emchar lookup_composite_char (Bufbyte *str, int len);
772 Lisp_Object composite_char_string (Emchar ch);
773 #endif /* ENABLE_COMPOSITE_CHARS */
774
775
776 /************************************************************************/
777 /* Exported functions */
778 /************************************************************************/
779
780 EXFUN (Ffind_charset, 1);
781 EXFUN (Fget_charset, 1);
782
783 extern Lisp_Object Vcharset_chinese_big5_1;
784 extern Lisp_Object Vcharset_chinese_big5_2;
785 extern Lisp_Object Vcharset_japanese_jisx0208;
786
787 Emchar Lstream_get_emchar_1 (Lstream *stream, int first_char);
788 int Lstream_fput_emchar (Lstream *stream, Emchar ch);
789 void Lstream_funget_emchar (Lstream *stream, Emchar ch);
790
791 int copy_internal_to_external (CONST Bufbyte *internal, Bytecount len,
792 unsigned char *external);
793 Bytecount copy_external_to_internal (CONST unsigned char *external,
794 int len, Bufbyte *internal);
795
796 #endif /* _XEMACS_MULE_CHARSET_H */