Mercurial > hg > xemacs-beta
comparison src/keymap.c @ 428:3ecd8885ac67 r21-2-22
Import from CVS: tag r21-2-22
author | cvs |
---|---|
date | Mon, 13 Aug 2007 11:28:15 +0200 |
parents | |
children | 84b14dcb0985 |
comparison
equal
deleted
inserted
replaced
427:0a0253eac470 | 428:3ecd8885ac67 |
---|---|
1 /* Manipulation of keymaps | |
2 Copyright (C) 1985, 1991-1995 Free Software Foundation, Inc. | |
3 Copyright (C) 1995 Board of Trustees, University of Illinois. | |
4 Copyright (C) 1995 Sun Microsystems, Inc. | |
5 Totally redesigned by jwz in 1991. | |
6 | |
7 This file is part of XEmacs. | |
8 | |
9 XEmacs is free software; you can redistribute it and/or modify it | |
10 under the terms of the GNU General Public License as published by the | |
11 Free Software Foundation; either version 2, or (at your option) any | |
12 later version. | |
13 | |
14 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
17 for more details. | |
18 | |
19 You should have received a copy of the GNU General Public License | |
20 along with XEmacs; see the file COPYING. If not, write to | |
21 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
22 Boston, MA 02111-1307, USA. */ | |
23 | |
24 /* Synched up with: Mule 2.0. Not synched with FSF. Substantially | |
25 different from FSF. */ | |
26 | |
27 | |
28 #include <config.h> | |
29 #include "lisp.h" | |
30 | |
31 #include "buffer.h" | |
32 #include "bytecode.h" | |
33 #include "console.h" | |
34 #include "elhash.h" | |
35 #include "events.h" | |
36 #include "frame.h" | |
37 #include "insdel.h" | |
38 #include "keymap.h" | |
39 #include "window.h" | |
40 | |
41 #ifdef WINDOWSNT | |
42 /* Hmm, under unix we want X modifiers, under NT we want X modifiers if | |
43 we are running X and Windows modifiers otherwise. | |
44 gak. This is a kludge until we support multiple native GUIs! | |
45 */ | |
46 #undef MOD_ALT | |
47 #undef MOD_CONTROL | |
48 #undef MOD_SHIFT | |
49 #endif | |
50 | |
51 #include "events-mod.h" | |
52 | |
53 | |
54 /* A keymap contains six slots: | |
55 | |
56 parents Ordered list of keymaps to search after | |
57 this one if no match is found. | |
58 Keymaps can thus be arranged in a hierarchy. | |
59 | |
60 table A hash table, hashing keysyms to their bindings. | |
61 It will be one of the following: | |
62 | |
63 -- a symbol, e.g. 'home | |
64 -- a character, representing something printable | |
65 (not ?\C-c meaning C-c, for instance) | |
66 -- an integer representing a modifier combination | |
67 | |
68 inverse_table A hash table, hashing bindings to the list of keysyms | |
69 in this keymap which are bound to them. This is to make | |
70 the Fwhere_is_internal() function be fast. It needs to be | |
71 fast because we want to be able to call it in realtime to | |
72 update the keyboard-equivalents on the pulldown menus. | |
73 Values of the table are either atoms (keysyms) | |
74 or a dotted list of keysyms. | |
75 | |
76 sub_maps_cache An alist; for each entry in this keymap whose binding is | |
77 a keymap (that is, Fkeymapp()) this alist associates that | |
78 keysym with that binding. This is used to optimize both | |
79 Fwhere_is_internal() and Faccessible_keymaps(). This slot | |
80 gets set to the symbol `t' every time a change is made to | |
81 this keymap, causing it to be recomputed when next needed. | |
82 | |
83 prompt See `set-keymap-prompt'. | |
84 | |
85 default_binding See `set-keymap-default-binding'. | |
86 | |
87 Sequences of keys are stored in the obvious way: if the sequence of keys | |
88 "abc" was bound to some command `foo', the hierarchy would look like | |
89 | |
90 keymap-1: associates "a" with keymap-2 | |
91 keymap-2: associates "b" with keymap-3 | |
92 keymap-3: associates "c" with foo | |
93 | |
94 However, bucky bits ("modifiers" to the X-minded) are represented in the | |
95 keymap hierarchy as well. (This lets us use EQable objects as hash keys.) | |
96 Each combination of modifiers (e.g. control-hyper) gets its own submap | |
97 off of the main map. The hash key for a modifier combination is | |
98 an integer, computed by MAKE_MODIFIER_HASH_KEY(). | |
99 | |
100 If the key `C-a' was bound to some command, the hierarchy would look like | |
101 | |
102 keymap-1: associates the integer MOD_CONTROL with keymap-2 | |
103 keymap-2: associates "a" with the command | |
104 | |
105 Similarly, if the key `C-H-a' was bound to some command, the hierarchy | |
106 would look like | |
107 | |
108 keymap-1: associates the integer (MOD_CONTROL | MOD_HYPER) | |
109 with keymap-2 | |
110 keymap-2: associates "a" with the command | |
111 | |
112 Note that a special exception is made for the meta modifier, in order | |
113 to deal with ESC/meta lossage. Any key combination containing the | |
114 meta modifier is first indexed off of the main map into the meta | |
115 submap (with hash key MOD_META) and then indexed off of the | |
116 meta submap with the meta modifier removed from the key combination. | |
117 For example, when associating a command with C-M-H-a, we'd have | |
118 | |
119 keymap-1: associates the integer MOD_META with keymap-2 | |
120 keymap-2: associates the integer (MOD_CONTROL | MOD_HYPER) | |
121 with keymap-3 | |
122 keymap-3: associates "a" with the command | |
123 | |
124 Note that keymap-2 might have normal bindings in it; these would be | |
125 for key combinations containing only the meta modifier, such as | |
126 M-y or meta-backspace. | |
127 | |
128 If the command that "a" was bound to in keymap-3 was itself a keymap, | |
129 then that would make the key "C-M-H-a" be a prefix character. | |
130 | |
131 Note that this new model of keymaps takes much of the magic away from | |
132 the Escape key: the value of the variable `esc-map' is no longer indexed | |
133 in the `global-map' under the ESC key. It's indexed under the integer | |
134 MOD_META. This is not user-visible, however; none of the "bucky" | |
135 maps are. | |
136 | |
137 There is a hack in Flookup_key() that makes (lookup-key global-map "\^[") | |
138 and (define-key some-random-map "\^[" my-esc-map) work as before, for | |
139 compatibility. | |
140 | |
141 Since keymaps are opaque, the only way to extract information from them | |
142 is with the functions lookup-key, key-binding, local-key-binding, and | |
143 global-key-binding, which work just as before, and the new function | |
144 map-keymap, which is roughly analagous to maphash. | |
145 | |
146 Note that map-keymap perpetuates the illusion that the "bucky" submaps | |
147 don't exist: if you map over a keymap with bucky submaps, it will also | |
148 map over those submaps. It does not, however, map over other random | |
149 submaps of the keymap, just the bucky ones. | |
150 | |
151 One implication of this is that when you map over `global-map', you will | |
152 also map over `esc-map'. It is merely for compatibility that the esc-map | |
153 is accessible at all; I think that's a bad thing, since it blurs the | |
154 distinction between ESC and "meta" even more. "M-x" is no more a two- | |
155 key sequence than "C-x" is. | |
156 | |
157 */ | |
158 | |
159 typedef struct Lisp_Keymap | |
160 { | |
161 struct lcrecord_header header; | |
162 Lisp_Object parents; /* Keymaps to be searched after this one | |
163 * An ordered list */ | |
164 Lisp_Object prompt; /* Qnil or a string to print in the minibuffer | |
165 * when reading from this keymap */ | |
166 | |
167 Lisp_Object table; /* The contents of this keymap */ | |
168 Lisp_Object inverse_table; /* The inverse mapping of the above */ | |
169 | |
170 Lisp_Object default_binding; /* Use this if no other binding is found | |
171 * (this overrides parent maps and the | |
172 * normal global-map lookup). */ | |
173 | |
174 | |
175 Lisp_Object sub_maps_cache; /* Cache of directly inferior keymaps; | |
176 This holds an alist, of the key and the | |
177 maps, or the modifier bit and the map. | |
178 If this is the symbol t, then the cache | |
179 needs to be recomputed. | |
180 */ | |
181 int fullness; /* How many entries there are in this table. | |
182 This should be the same as the fullness | |
183 of the `table', but hash.c is broken. */ | |
184 Lisp_Object name; /* Just for debugging convenience */ | |
185 } Lisp_Keymap; | |
186 | |
187 #define MAKE_MODIFIER_HASH_KEY(modifier) make_int (modifier) | |
188 #define MODIFIER_HASH_KEY_BITS(x) (INTP (x) ? XINT (x) : 0) | |
189 | |
190 | |
191 | |
192 /* Actually allocate storage for these variables */ | |
193 | |
194 static Lisp_Object Vcurrent_global_map; /* Always a keymap */ | |
195 | |
196 static Lisp_Object Vmouse_grabbed_buffer; | |
197 | |
198 /* Alist of minor mode variables and keymaps. */ | |
199 static Lisp_Object Qminor_mode_map_alist; | |
200 | |
201 static Lisp_Object Voverriding_local_map; | |
202 | |
203 static Lisp_Object Vkey_translation_map; | |
204 | |
205 static Lisp_Object Vvertical_divider_map; | |
206 | |
207 /* This is incremented whenever a change is made to a keymap. This is | |
208 so that things which care (such as the menubar code) can recompute | |
209 privately-cached data when the user has changed keybindings. | |
210 */ | |
211 int keymap_tick; | |
212 | |
213 /* Prefixing a key with this character is the same as sending a meta bit. */ | |
214 Lisp_Object Vmeta_prefix_char; | |
215 | |
216 Lisp_Object Qkeymapp; | |
217 Lisp_Object Vsingle_space_string; | |
218 Lisp_Object Qsuppress_keymap; | |
219 Lisp_Object Qmodeline_map; | |
220 Lisp_Object Qtoolbar_map; | |
221 | |
222 EXFUN (Fkeymap_fullness, 1); | |
223 EXFUN (Fset_keymap_name, 2); | |
224 EXFUN (Fsingle_key_description, 1); | |
225 | |
226 static void describe_command (Lisp_Object definition, Lisp_Object buffer); | |
227 static void describe_map (Lisp_Object keymap, Lisp_Object elt_prefix, | |
228 void (*elt_describer) (Lisp_Object, Lisp_Object), | |
229 int partial, | |
230 Lisp_Object shadow, | |
231 int mice_only_p, | |
232 Lisp_Object buffer); | |
233 | |
234 Lisp_Object Qcontrol, Qctrl, Qmeta, Qsuper, Qhyper, Qalt, Qshift; | |
235 Lisp_Object Qbutton0, Qbutton1, Qbutton2, Qbutton3; | |
236 Lisp_Object Qbutton4, Qbutton5, Qbutton6, Qbutton7; | |
237 Lisp_Object Qbutton0up, Qbutton1up, Qbutton2up, Qbutton3up; | |
238 Lisp_Object Qbutton4up, Qbutton5up, Qbutton6up, Qbutton7up; | |
239 | |
240 Lisp_Object Qmenu_selection; | |
241 /* Emacs compatibility */ | |
242 Lisp_Object Qdown_mouse_1, Qdown_mouse_2, Qdown_mouse_3, Qdown_mouse_4, | |
243 Qdown_mouse_5; | |
244 Lisp_Object Qmouse_1, Qmouse_2, Qmouse_3, Qmouse_4, Qmouse_5; | |
245 | |
246 /* Kludge kludge kludge */ | |
247 Lisp_Object QLFD, QTAB, QRET, QESC, QDEL, QSPC, QBS; | |
248 | |
249 | |
250 /************************************************************************/ | |
251 /* The keymap Lisp object */ | |
252 /************************************************************************/ | |
253 | |
254 static Lisp_Object | |
255 mark_keymap (Lisp_Object obj) | |
256 { | |
257 Lisp_Keymap *keymap = XKEYMAP (obj); | |
258 mark_object (keymap->parents); | |
259 mark_object (keymap->prompt); | |
260 mark_object (keymap->inverse_table); | |
261 mark_object (keymap->sub_maps_cache); | |
262 mark_object (keymap->default_binding); | |
263 mark_object (keymap->name); | |
264 return keymap->table; | |
265 } | |
266 | |
267 static void | |
268 print_keymap (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag) | |
269 { | |
270 /* This function can GC */ | |
271 Lisp_Keymap *keymap = XKEYMAP (obj); | |
272 char buf[200]; | |
273 int size = XINT (Fkeymap_fullness (obj)); | |
274 if (print_readably) | |
275 error ("printing unreadable object #<keymap 0x%x>", keymap->header.uid); | |
276 write_c_string ("#<keymap ", printcharfun); | |
277 if (!NILP (keymap->name)) | |
278 print_internal (keymap->name, printcharfun, 1); | |
279 /* #### Yuck! This is no way to form plural! --hniksic */ | |
280 sprintf (buf, "%s%d entr%s 0x%x>", | |
281 (NILP (keymap->name) ? "" : " "), | |
282 size, | |
283 ((size == 1) ? "y" : "ies"), | |
284 keymap->header.uid); | |
285 write_c_string (buf, printcharfun); | |
286 } | |
287 | |
288 static const struct lrecord_description keymap_description[] = { | |
289 { XD_LISP_OBJECT, offsetof(Lisp_Keymap, parents), 6 }, | |
290 { XD_LISP_OBJECT, offsetof(Lisp_Keymap, name), 1 }, | |
291 { XD_END } | |
292 }; | |
293 | |
294 /* No need for keymap_equal #### Why not? */ | |
295 DEFINE_LRECORD_IMPLEMENTATION ("keymap", keymap, | |
296 mark_keymap, print_keymap, 0, 0, 0, | |
297 keymap_description, | |
298 Lisp_Keymap); | |
299 | |
300 /************************************************************************/ | |
301 /* Traversing keymaps and their parents */ | |
302 /************************************************************************/ | |
303 | |
304 static Lisp_Object | |
305 traverse_keymaps (Lisp_Object start_keymap, Lisp_Object start_parents, | |
306 Lisp_Object (*mapper) (Lisp_Object keymap, void *mapper_arg), | |
307 void *mapper_arg) | |
308 { | |
309 /* This function can GC */ | |
310 Lisp_Object keymap; | |
311 Lisp_Object tail = start_parents; | |
312 Lisp_Object malloc_sucks[10]; | |
313 Lisp_Object malloc_bites = Qnil; | |
314 int stack_depth = 0; | |
315 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4; | |
316 GCPRO4 (*malloc_sucks, malloc_bites, start_keymap, tail); | |
317 gcpro1.nvars = 0; | |
318 | |
319 start_keymap = get_keymap (start_keymap, 1, 1); | |
320 keymap = start_keymap; | |
321 /* Hack special-case parents at top-level */ | |
322 tail = ((!NILP (tail)) ? tail : XKEYMAP (keymap)->parents); | |
323 | |
324 for (;;) | |
325 { | |
326 Lisp_Object result; | |
327 | |
328 QUIT; | |
329 result = ((mapper) (keymap, mapper_arg)); | |
330 if (!NILP (result)) | |
331 { | |
332 while (CONSP (malloc_bites)) | |
333 { | |
334 struct Lisp_Cons *victim = XCONS (malloc_bites); | |
335 malloc_bites = victim->cdr; | |
336 free_cons (victim); | |
337 } | |
338 UNGCPRO; | |
339 return result; | |
340 } | |
341 if (NILP (tail)) | |
342 { | |
343 if (stack_depth == 0) | |
344 { | |
345 UNGCPRO; | |
346 return Qnil; /* Nothing found */ | |
347 } | |
348 stack_depth--; | |
349 if (CONSP (malloc_bites)) | |
350 { | |
351 struct Lisp_Cons *victim = XCONS (malloc_bites); | |
352 tail = victim->car; | |
353 malloc_bites = victim->cdr; | |
354 free_cons (victim); | |
355 } | |
356 else | |
357 { | |
358 tail = malloc_sucks[stack_depth]; | |
359 gcpro1.nvars = stack_depth; | |
360 } | |
361 keymap = XCAR (tail); | |
362 tail = XCDR (tail); | |
363 } | |
364 else | |
365 { | |
366 Lisp_Object parents; | |
367 | |
368 keymap = XCAR (tail); | |
369 tail = XCDR (tail); | |
370 parents = XKEYMAP (keymap)->parents; | |
371 if (!CONSP (parents)) | |
372 ; | |
373 else if (NILP (tail)) | |
374 /* Tail-recurse */ | |
375 tail = parents; | |
376 else | |
377 { | |
378 if (CONSP (malloc_bites)) | |
379 malloc_bites = noseeum_cons (tail, malloc_bites); | |
380 else if (stack_depth < countof (malloc_sucks)) | |
381 { | |
382 malloc_sucks[stack_depth++] = tail; | |
383 gcpro1.nvars = stack_depth; | |
384 } | |
385 else | |
386 { | |
387 /* *&@##[*&^$ C. @#[$*&@# Unix. Losers all. */ | |
388 int i; | |
389 for (i = 0, malloc_bites = Qnil; | |
390 i < countof (malloc_sucks); | |
391 i++) | |
392 malloc_bites = noseeum_cons (malloc_sucks[i], | |
393 malloc_bites); | |
394 gcpro1.nvars = 0; | |
395 } | |
396 tail = parents; | |
397 } | |
398 } | |
399 keymap = get_keymap (keymap, 1, 1); | |
400 if (EQ (keymap, start_keymap)) | |
401 { | |
402 signal_simple_error ("Cyclic keymap indirection", | |
403 start_keymap); | |
404 } | |
405 } | |
406 } | |
407 | |
408 | |
409 /************************************************************************/ | |
410 /* Some low-level functions */ | |
411 /************************************************************************/ | |
412 | |
413 static unsigned int | |
414 bucky_sym_to_bucky_bit (Lisp_Object sym) | |
415 { | |
416 if (EQ (sym, Qcontrol)) return MOD_CONTROL; | |
417 if (EQ (sym, Qmeta)) return MOD_META; | |
418 if (EQ (sym, Qsuper)) return MOD_SUPER; | |
419 if (EQ (sym, Qhyper)) return MOD_HYPER; | |
420 if (EQ (sym, Qalt)) return MOD_ALT; | |
421 if (EQ (sym, Qsymbol)) return MOD_ALT; /* #### - reverse compat */ | |
422 if (EQ (sym, Qshift)) return MOD_SHIFT; | |
423 | |
424 return 0; | |
425 } | |
426 | |
427 static Lisp_Object | |
428 control_meta_superify (Lisp_Object frob, unsigned int modifiers) | |
429 { | |
430 if (modifiers == 0) | |
431 return frob; | |
432 frob = Fcons (frob, Qnil); | |
433 if (modifiers & MOD_SHIFT) frob = Fcons (Qshift, frob); | |
434 if (modifiers & MOD_ALT) frob = Fcons (Qalt, frob); | |
435 if (modifiers & MOD_HYPER) frob = Fcons (Qhyper, frob); | |
436 if (modifiers & MOD_SUPER) frob = Fcons (Qsuper, frob); | |
437 if (modifiers & MOD_CONTROL) frob = Fcons (Qcontrol, frob); | |
438 if (modifiers & MOD_META) frob = Fcons (Qmeta, frob); | |
439 return frob; | |
440 } | |
441 | |
442 static Lisp_Object | |
443 make_key_description (CONST struct key_data *key, int prettify) | |
444 { | |
445 Lisp_Object keysym = key->keysym; | |
446 unsigned int modifiers = key->modifiers; | |
447 | |
448 if (prettify && CHARP (keysym)) | |
449 { | |
450 /* This is a little slow, but (control a) is prettier than (control 65). | |
451 It's now ok to do this for digit-chars too, since we've fixed the | |
452 bug where \9 read as the integer 9 instead of as the symbol with | |
453 "9" as its name. | |
454 */ | |
455 /* !!#### I'm not sure how correct this is. */ | |
456 Bufbyte str [1 + MAX_EMCHAR_LEN]; | |
457 Bytecount count = set_charptr_emchar (str, XCHAR (keysym)); | |
458 str[count] = 0; | |
459 keysym = intern ((char *) str); | |
460 } | |
461 return control_meta_superify (keysym, modifiers); | |
462 } | |
463 | |
464 | |
465 /************************************************************************/ | |
466 /* Low-level keymap-store functions */ | |
467 /************************************************************************/ | |
468 | |
469 static Lisp_Object | |
470 raw_lookup_key (Lisp_Object keymap, | |
471 CONST struct key_data *raw_keys, int raw_keys_count, | |
472 int keys_so_far, int accept_default); | |
473 | |
474 /* Relies on caller to gc-protect args */ | |
475 static Lisp_Object | |
476 keymap_lookup_directly (Lisp_Object keymap, | |
477 Lisp_Object keysym, unsigned int modifiers) | |
478 { | |
479 Lisp_Keymap *k; | |
480 | |
481 if ((modifiers & ~(MOD_CONTROL | MOD_META | MOD_SUPER | MOD_HYPER | |
482 | MOD_ALT | MOD_SHIFT)) != 0) | |
483 abort (); | |
484 | |
485 k = XKEYMAP (keymap); | |
486 | |
487 /* If the keysym is a one-character symbol, use the char code instead. */ | |
488 if (SYMBOLP (keysym) && string_char_length (XSYMBOL (keysym)->name) == 1) | |
489 { | |
490 Lisp_Object i_fart_on_gcc = | |
491 make_char (string_char (XSYMBOL (keysym)->name, 0)); | |
492 keysym = i_fart_on_gcc; | |
493 } | |
494 | |
495 if (modifiers & MOD_META) /* Utterly hateful ESC lossage */ | |
496 { | |
497 Lisp_Object submap = Fgethash (MAKE_MODIFIER_HASH_KEY (MOD_META), | |
498 k->table, Qnil); | |
499 if (NILP (submap)) | |
500 return Qnil; | |
501 k = XKEYMAP (submap); | |
502 modifiers &= ~MOD_META; | |
503 } | |
504 | |
505 if (modifiers != 0) | |
506 { | |
507 Lisp_Object submap = Fgethash (MAKE_MODIFIER_HASH_KEY (modifiers), | |
508 k->table, Qnil); | |
509 if (NILP (submap)) | |
510 return Qnil; | |
511 k = XKEYMAP (submap); | |
512 } | |
513 return Fgethash (keysym, k->table, Qnil); | |
514 } | |
515 | |
516 static void | |
517 keymap_store_inverse_internal (Lisp_Object inverse_table, | |
518 Lisp_Object keysym, | |
519 Lisp_Object value) | |
520 { | |
521 Lisp_Object keys = Fgethash (value, inverse_table, Qunbound); | |
522 | |
523 if (UNBOUNDP (keys)) | |
524 { | |
525 keys = keysym; | |
526 /* Don't cons this unless necessary */ | |
527 /* keys = Fcons (keysym, Qnil); */ | |
528 Fputhash (value, keys, inverse_table); | |
529 } | |
530 else if (!CONSP (keys)) | |
531 { | |
532 /* Now it's necessary to cons */ | |
533 keys = Fcons (keys, keysym); | |
534 Fputhash (value, keys, inverse_table); | |
535 } | |
536 else | |
537 { | |
538 while (CONSP (XCDR (keys))) | |
539 keys = XCDR (keys); | |
540 XCDR (keys) = Fcons (XCDR (keys), keysym); | |
541 /* No need to call puthash because we've destructively | |
542 modified the list tail in place */ | |
543 } | |
544 } | |
545 | |
546 | |
547 static void | |
548 keymap_delete_inverse_internal (Lisp_Object inverse_table, | |
549 Lisp_Object keysym, | |
550 Lisp_Object value) | |
551 { | |
552 Lisp_Object keys = Fgethash (value, inverse_table, Qunbound); | |
553 Lisp_Object new_keys = keys; | |
554 Lisp_Object tail; | |
555 Lisp_Object *prev; | |
556 | |
557 if (UNBOUNDP (keys)) | |
558 abort (); | |
559 | |
560 for (prev = &new_keys, tail = new_keys; | |
561 ; | |
562 prev = &(XCDR (tail)), tail = XCDR (tail)) | |
563 { | |
564 if (EQ (tail, keysym)) | |
565 { | |
566 *prev = Qnil; | |
567 break; | |
568 } | |
569 else if (EQ (keysym, XCAR (tail))) | |
570 { | |
571 *prev = XCDR (tail); | |
572 break; | |
573 } | |
574 } | |
575 | |
576 if (NILP (new_keys)) | |
577 Fremhash (value, inverse_table); | |
578 else if (!EQ (keys, new_keys)) | |
579 /* Removed the first elt */ | |
580 Fputhash (value, new_keys, inverse_table); | |
581 /* else the list's tail has been modified, so we don't need to | |
582 touch the hash table again (the pointer in there is ok). | |
583 */ | |
584 } | |
585 | |
586 | |
587 static void | |
588 keymap_store_internal (Lisp_Object keysym, Lisp_Keymap *keymap, | |
589 Lisp_Object value) | |
590 { | |
591 Lisp_Object prev_value = Fgethash (keysym, keymap->table, Qnil); | |
592 | |
593 if (EQ (prev_value, value)) | |
594 return; | |
595 if (!NILP (prev_value)) | |
596 keymap_delete_inverse_internal (keymap->inverse_table, | |
597 keysym, prev_value); | |
598 if (NILP (value)) | |
599 { | |
600 keymap->fullness--; | |
601 if (keymap->fullness < 0) abort (); | |
602 Fremhash (keysym, keymap->table); | |
603 } | |
604 else | |
605 { | |
606 if (NILP (prev_value)) | |
607 keymap->fullness++; | |
608 Fputhash (keysym, value, keymap->table); | |
609 keymap_store_inverse_internal (keymap->inverse_table, | |
610 keysym, value); | |
611 } | |
612 keymap_tick++; | |
613 } | |
614 | |
615 | |
616 static Lisp_Object | |
617 create_bucky_submap (Lisp_Keymap *k, unsigned int modifiers, | |
618 Lisp_Object parent_for_debugging_info) | |
619 { | |
620 Lisp_Object submap = Fmake_sparse_keymap (Qnil); | |
621 /* User won't see this, but it is nice for debugging Emacs */ | |
622 XKEYMAP (submap)->name | |
623 = control_meta_superify (parent_for_debugging_info, modifiers); | |
624 /* Invalidate cache */ | |
625 k->sub_maps_cache = Qt; | |
626 keymap_store_internal (MAKE_MODIFIER_HASH_KEY (modifiers), k, submap); | |
627 return submap; | |
628 } | |
629 | |
630 | |
631 /* Relies on caller to gc-protect keymap, keysym, value */ | |
632 static void | |
633 keymap_store (Lisp_Object keymap, CONST struct key_data *key, | |
634 Lisp_Object value) | |
635 { | |
636 Lisp_Object keysym = key->keysym; | |
637 unsigned int modifiers = key->modifiers; | |
638 Lisp_Keymap *k; | |
639 | |
640 if ((modifiers & ~(MOD_CONTROL | MOD_META | MOD_SUPER | MOD_HYPER | |
641 | MOD_ALT | MOD_SHIFT)) != 0) | |
642 abort (); | |
643 | |
644 k = XKEYMAP (keymap); | |
645 | |
646 /* If the keysym is a one-character symbol, use the char code instead. */ | |
647 if (SYMBOLP (keysym) && string_char_length (XSYMBOL (keysym)->name) == 1) | |
648 { | |
649 Lisp_Object run_the_gcc_developers_over_with_a_steamroller = | |
650 make_char (string_char (XSYMBOL (keysym)->name, 0)); | |
651 keysym = run_the_gcc_developers_over_with_a_steamroller; | |
652 } | |
653 | |
654 if (modifiers & MOD_META) /* Utterly hateful ESC lossage */ | |
655 { | |
656 Lisp_Object submap = Fgethash (MAKE_MODIFIER_HASH_KEY (MOD_META), | |
657 k->table, Qnil); | |
658 if (NILP (submap)) | |
659 submap = create_bucky_submap (k, MOD_META, keymap); | |
660 k = XKEYMAP (submap); | |
661 modifiers &= ~MOD_META; | |
662 } | |
663 | |
664 if (modifiers != 0) | |
665 { | |
666 Lisp_Object submap = Fgethash (MAKE_MODIFIER_HASH_KEY (modifiers), | |
667 k->table, Qnil); | |
668 if (NILP (submap)) | |
669 submap = create_bucky_submap (k, modifiers, keymap); | |
670 k = XKEYMAP (submap); | |
671 } | |
672 k->sub_maps_cache = Qt; /* Invalidate cache */ | |
673 keymap_store_internal (keysym, k, value); | |
674 } | |
675 | |
676 | |
677 /************************************************************************/ | |
678 /* Listing the submaps of a keymap */ | |
679 /************************************************************************/ | |
680 | |
681 struct keymap_submaps_closure | |
682 { | |
683 Lisp_Object *result_locative; | |
684 }; | |
685 | |
686 static int | |
687 keymap_submaps_mapper_0 (Lisp_Object key, Lisp_Object value, | |
688 void *keymap_submaps_closure) | |
689 { | |
690 /* This function can GC */ | |
691 /* Perform any autoloads, etc */ | |
692 Fkeymapp (value); | |
693 return 0; | |
694 } | |
695 | |
696 static int | |
697 keymap_submaps_mapper (Lisp_Object key, Lisp_Object value, | |
698 void *keymap_submaps_closure) | |
699 { | |
700 /* This function can GC */ | |
701 Lisp_Object *result_locative; | |
702 struct keymap_submaps_closure *cl = | |
703 (struct keymap_submaps_closure *) keymap_submaps_closure; | |
704 result_locative = cl->result_locative; | |
705 | |
706 if (!NILP (Fkeymapp (value))) | |
707 *result_locative = Fcons (Fcons (key, value), *result_locative); | |
708 return 0; | |
709 } | |
710 | |
711 static int map_keymap_sort_predicate (Lisp_Object obj1, Lisp_Object obj2, | |
712 Lisp_Object pred); | |
713 | |
714 static Lisp_Object | |
715 keymap_submaps (Lisp_Object keymap) | |
716 { | |
717 /* This function can GC */ | |
718 Lisp_Keymap *k = XKEYMAP (keymap); | |
719 | |
720 if (EQ (k->sub_maps_cache, Qt)) /* Unknown */ | |
721 { | |
722 Lisp_Object result = Qnil; | |
723 struct gcpro gcpro1, gcpro2; | |
724 struct keymap_submaps_closure keymap_submaps_closure; | |
725 | |
726 GCPRO2 (keymap, result); | |
727 keymap_submaps_closure.result_locative = &result; | |
728 /* Do this first pass to touch (and load) any autoloaded maps */ | |
729 elisp_maphash (keymap_submaps_mapper_0, k->table, | |
730 &keymap_submaps_closure); | |
731 result = Qnil; | |
732 elisp_maphash (keymap_submaps_mapper, k->table, | |
733 &keymap_submaps_closure); | |
734 /* keep it sorted so that the result of accessible-keymaps is ordered */ | |
735 k->sub_maps_cache = list_sort (result, | |
736 Qnil, | |
737 map_keymap_sort_predicate); | |
738 UNGCPRO; | |
739 } | |
740 return k->sub_maps_cache; | |
741 } | |
742 | |
743 | |
744 /************************************************************************/ | |
745 /* Basic operations on keymaps */ | |
746 /************************************************************************/ | |
747 | |
748 static Lisp_Object | |
749 make_keymap (size_t size) | |
750 { | |
751 Lisp_Object result; | |
752 Lisp_Keymap *keymap = alloc_lcrecord_type (Lisp_Keymap, &lrecord_keymap); | |
753 | |
754 XSETKEYMAP (result, keymap); | |
755 | |
756 keymap->parents = Qnil; | |
757 keymap->prompt = Qnil; | |
758 keymap->table = Qnil; | |
759 keymap->inverse_table = Qnil; | |
760 keymap->default_binding = Qnil; | |
761 keymap->sub_maps_cache = Qnil; /* No possible submaps */ | |
762 keymap->fullness = 0; | |
763 keymap->name = Qnil; | |
764 | |
765 if (size != 0) /* hack for copy-keymap */ | |
766 { | |
767 keymap->table = | |
768 make_lisp_hash_table (size, HASH_TABLE_NON_WEAK, HASH_TABLE_EQ); | |
769 /* Inverse table is often less dense because of duplicate key-bindings. | |
770 If not, it will grow anyway. */ | |
771 keymap->inverse_table = | |
772 make_lisp_hash_table (size * 3 / 4, HASH_TABLE_NON_WEAK, HASH_TABLE_EQ); | |
773 } | |
774 return result; | |
775 } | |
776 | |
777 DEFUN ("make-keymap", Fmake_keymap, 0, 1, 0, /* | |
778 Construct and return a new keymap object. | |
779 All entries in it are nil, meaning "command undefined". | |
780 | |
781 Optional argument NAME specifies a name to assign to the keymap, | |
782 as in `set-keymap-name'. This name is only a debugging convenience; | |
783 it is not used except when printing the keymap. | |
784 */ | |
785 (name)) | |
786 { | |
787 Lisp_Object keymap = make_keymap (60); | |
788 if (!NILP (name)) | |
789 Fset_keymap_name (keymap, name); | |
790 return keymap; | |
791 } | |
792 | |
793 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, 0, 1, 0, /* | |
794 Construct and return a new keymap object. | |
795 All entries in it are nil, meaning "command undefined". The only | |
796 difference between this function and make-keymap is that this function | |
797 returns a "smaller" keymap (one that is expected to contain fewer | |
798 entries). As keymaps dynamically resize, the distinction is not great. | |
799 | |
800 Optional argument NAME specifies a name to assign to the keymap, | |
801 as in `set-keymap-name'. This name is only a debugging convenience; | |
802 it is not used except when printing the keymap. | |
803 */ | |
804 (name)) | |
805 { | |
806 Lisp_Object keymap = make_keymap (8); | |
807 if (!NILP (name)) | |
808 Fset_keymap_name (keymap, name); | |
809 return keymap; | |
810 } | |
811 | |
812 DEFUN ("keymap-parents", Fkeymap_parents, 1, 1, 0, /* | |
813 Return the `parent' keymaps of KEYMAP, or nil. | |
814 The parents of a keymap are searched for keybindings when a key sequence | |
815 isn't bound in this one. `(current-global-map)' is the default parent | |
816 of all keymaps. | |
817 */ | |
818 (keymap)) | |
819 { | |
820 keymap = get_keymap (keymap, 1, 1); | |
821 return Fcopy_sequence (XKEYMAP (keymap)->parents); | |
822 } | |
823 | |
824 | |
825 | |
826 static Lisp_Object | |
827 traverse_keymaps_noop (Lisp_Object keymap, void *arg) | |
828 { | |
829 return Qnil; | |
830 } | |
831 | |
832 DEFUN ("set-keymap-parents", Fset_keymap_parents, 2, 2, 0, /* | |
833 Set the `parent' keymaps of KEYMAP to PARENTS. | |
834 The parents of a keymap are searched for keybindings when a key sequence | |
835 isn't bound in this one. `(current-global-map)' is the default parent | |
836 of all keymaps. | |
837 */ | |
838 (keymap, parents)) | |
839 { | |
840 /* This function can GC */ | |
841 Lisp_Object k; | |
842 struct gcpro gcpro1, gcpro2; | |
843 | |
844 GCPRO2 (keymap, parents); | |
845 keymap = get_keymap (keymap, 1, 1); | |
846 | |
847 if (KEYMAPP (parents)) /* backwards-compatibility */ | |
848 parents = list1 (parents); | |
849 if (!NILP (parents)) | |
850 { | |
851 Lisp_Object tail = parents; | |
852 while (!NILP (tail)) | |
853 { | |
854 QUIT; | |
855 CHECK_CONS (tail); | |
856 k = XCAR (tail); | |
857 /* Require that it be an actual keymap object, rather than a symbol | |
858 with a (crockish) symbol-function which is a keymap */ | |
859 CHECK_KEYMAP (k); /* get_keymap (k, 1, 1); */ | |
860 tail = XCDR (tail); | |
861 } | |
862 } | |
863 | |
864 /* Check for circularities */ | |
865 traverse_keymaps (keymap, parents, traverse_keymaps_noop, 0); | |
866 keymap_tick++; | |
867 XKEYMAP (keymap)->parents = Fcopy_sequence (parents); | |
868 UNGCPRO; | |
869 return parents; | |
870 } | |
871 | |
872 DEFUN ("set-keymap-name", Fset_keymap_name, 2, 2, 0, /* | |
873 Set the `name' of the KEYMAP to NEW-NAME. | |
874 The name is only a debugging convenience; it is not used except | |
875 when printing the keymap. | |
876 */ | |
877 (keymap, new_name)) | |
878 { | |
879 keymap = get_keymap (keymap, 1, 1); | |
880 | |
881 XKEYMAP (keymap)->name = new_name; | |
882 return new_name; | |
883 } | |
884 | |
885 DEFUN ("keymap-name", Fkeymap_name, 1, 1, 0, /* | |
886 Return the `name' of KEYMAP. | |
887 The name is only a debugging convenience; it is not used except | |
888 when printing the keymap. | |
889 */ | |
890 (keymap)) | |
891 { | |
892 keymap = get_keymap (keymap, 1, 1); | |
893 | |
894 return XKEYMAP (keymap)->name; | |
895 } | |
896 | |
897 DEFUN ("set-keymap-prompt", Fset_keymap_prompt, 2, 2, 0, /* | |
898 Set the `prompt' of KEYMAP to string NEW-PROMPT, or `nil' | |
899 if no prompt is desired. The prompt is shown in the echo-area | |
900 when reading a key-sequence to be looked-up in this keymap. | |
901 */ | |
902 (keymap, new_prompt)) | |
903 { | |
904 keymap = get_keymap (keymap, 1, 1); | |
905 | |
906 if (!NILP (new_prompt)) | |
907 CHECK_STRING (new_prompt); | |
908 | |
909 XKEYMAP (keymap)->prompt = new_prompt; | |
910 return new_prompt; | |
911 } | |
912 | |
913 static Lisp_Object | |
914 keymap_prompt_mapper (Lisp_Object keymap, void *arg) | |
915 { | |
916 return XKEYMAP (keymap)->prompt; | |
917 } | |
918 | |
919 | |
920 DEFUN ("keymap-prompt", Fkeymap_prompt, 1, 2, 0, /* | |
921 Return the `prompt' of KEYMAP. | |
922 If non-nil, the prompt is shown in the echo-area | |
923 when reading a key-sequence to be looked-up in this keymap. | |
924 */ | |
925 (keymap, use_inherited)) | |
926 { | |
927 /* This function can GC */ | |
928 Lisp_Object prompt; | |
929 | |
930 keymap = get_keymap (keymap, 1, 1); | |
931 prompt = XKEYMAP (keymap)->prompt; | |
932 if (!NILP (prompt) || NILP (use_inherited)) | |
933 return prompt; | |
934 else | |
935 return traverse_keymaps (keymap, Qnil, keymap_prompt_mapper, 0); | |
936 } | |
937 | |
938 DEFUN ("set-keymap-default-binding", Fset_keymap_default_binding, 2, 2, 0, /* | |
939 Sets the default binding of KEYMAP to COMMAND, or `nil' | |
940 if no default is desired. The default-binding is returned when | |
941 no other binding for a key-sequence is found in the keymap. | |
942 If a keymap has a non-nil default-binding, neither the keymap's | |
943 parents nor the current global map are searched for key bindings. | |
944 */ | |
945 (keymap, command)) | |
946 { | |
947 /* This function can GC */ | |
948 keymap = get_keymap (keymap, 1, 1); | |
949 | |
950 XKEYMAP (keymap)->default_binding = command; | |
951 return command; | |
952 } | |
953 | |
954 DEFUN ("keymap-default-binding", Fkeymap_default_binding, 1, 1, 0, /* | |
955 Return the default binding of KEYMAP, or `nil' if it has none. | |
956 The default-binding is returned when no other binding for a key-sequence | |
957 is found in the keymap. | |
958 If a keymap has a non-nil default-binding, neither the keymap's | |
959 parents nor the current global map are searched for key bindings. | |
960 */ | |
961 (keymap)) | |
962 { | |
963 /* This function can GC */ | |
964 keymap = get_keymap (keymap, 1, 1); | |
965 return XKEYMAP (keymap)->default_binding; | |
966 } | |
967 | |
968 DEFUN ("keymapp", Fkeymapp, 1, 1, 0, /* | |
969 Return t if ARG is a keymap object. | |
970 The keymap may be autoloaded first if necessary. | |
971 */ | |
972 (object)) | |
973 { | |
974 /* This function can GC */ | |
975 return KEYMAPP (get_keymap (object, 0, 0)) ? Qt : Qnil; | |
976 } | |
977 | |
978 /* Check that OBJECT is a keymap (after dereferencing through any | |
979 symbols). If it is, return it. | |
980 | |
981 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value | |
982 is an autoload form, do the autoload and try again. | |
983 If AUTOLOAD is nonzero, callers must assume GC is possible. | |
984 | |
985 ERRORP controls how we respond if OBJECT isn't a keymap. | |
986 If ERRORP is non-zero, signal an error; otherwise, just return Qnil. | |
987 | |
988 Note that most of the time, we don't want to pursue autoloads. | |
989 Functions like Faccessible_keymaps which scan entire keymap trees | |
990 shouldn't load every autoloaded keymap. I'm not sure about this, | |
991 but it seems to me that only read_key_sequence, Flookup_key, and | |
992 Fdefine_key should cause keymaps to be autoloaded. */ | |
993 | |
994 Lisp_Object | |
995 get_keymap (Lisp_Object object, int errorp, int autoload) | |
996 { | |
997 /* This function can GC */ | |
998 while (1) | |
999 { | |
1000 Lisp_Object tem = indirect_function (object, 0); | |
1001 | |
1002 if (KEYMAPP (tem)) | |
1003 return tem; | |
1004 /* Should we do an autoload? */ | |
1005 else if (autoload | |
1006 /* (autoload "filename" doc nil keymap) */ | |
1007 && SYMBOLP (object) | |
1008 && CONSP (tem) | |
1009 && EQ (XCAR (tem), Qautoload) | |
1010 && EQ (Fcar (Fcdr (Fcdr (Fcdr (Fcdr (tem))))), Qkeymap)) | |
1011 { | |
1012 struct gcpro gcpro1, gcpro2; | |
1013 GCPRO2 (tem, object); | |
1014 do_autoload (tem, object); | |
1015 UNGCPRO; | |
1016 } | |
1017 else if (errorp) | |
1018 object = wrong_type_argument (Qkeymapp, object); | |
1019 else | |
1020 return Qnil; | |
1021 } | |
1022 } | |
1023 | |
1024 /* Given OBJECT which was found in a slot in a keymap, | |
1025 trace indirect definitions to get the actual definition of that slot. | |
1026 An indirect definition is a list of the form | |
1027 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one | |
1028 and INDEX is an ASCII code, or a cons of (KEYSYM . MODIFIERS). | |
1029 */ | |
1030 static Lisp_Object | |
1031 get_keyelt (Lisp_Object object, int accept_default) | |
1032 { | |
1033 /* This function can GC */ | |
1034 Lisp_Object map; | |
1035 | |
1036 tail_recurse: | |
1037 if (!CONSP (object)) | |
1038 return object; | |
1039 | |
1040 { | |
1041 struct gcpro gcpro1; | |
1042 GCPRO1 (object); | |
1043 map = XCAR (object); | |
1044 map = get_keymap (map, 0, 1); | |
1045 UNGCPRO; | |
1046 } | |
1047 /* If the contents are (KEYMAP . ELEMENT), go indirect. */ | |
1048 if (!NILP (map)) | |
1049 { | |
1050 Lisp_Object idx = Fcdr (object); | |
1051 struct key_data indirection; | |
1052 if (CHARP (idx)) | |
1053 { | |
1054 struct Lisp_Event event; | |
1055 event.event_type = empty_event; | |
1056 character_to_event (XCHAR (idx), &event, | |
1057 XCONSOLE (Vselected_console), 0, 0); | |
1058 indirection = event.event.key; | |
1059 } | |
1060 else if (CONSP (idx)) | |
1061 { | |
1062 if (!INTP (XCDR (idx))) | |
1063 return Qnil; | |
1064 indirection.keysym = XCAR (idx); | |
1065 indirection.modifiers = XINT (XCDR (idx)); | |
1066 } | |
1067 else if (SYMBOLP (idx)) | |
1068 { | |
1069 indirection.keysym = idx; | |
1070 indirection.modifiers = 0; | |
1071 } | |
1072 else | |
1073 { | |
1074 /* Random junk */ | |
1075 return Qnil; | |
1076 } | |
1077 return raw_lookup_key (map, &indirection, 1, 0, accept_default); | |
1078 } | |
1079 else if (STRINGP (XCAR (object))) | |
1080 { | |
1081 /* If the keymap contents looks like (STRING . DEFN), | |
1082 use DEFN. | |
1083 Keymap alist elements like (CHAR MENUSTRING . DEFN) | |
1084 will be used by HierarKey menus. */ | |
1085 object = XCDR (object); | |
1086 goto tail_recurse; | |
1087 } | |
1088 else | |
1089 { | |
1090 /* Anything else is really the value. */ | |
1091 return object; | |
1092 } | |
1093 } | |
1094 | |
1095 static Lisp_Object | |
1096 keymap_lookup_1 (Lisp_Object keymap, CONST struct key_data *key, | |
1097 int accept_default) | |
1098 { | |
1099 /* This function can GC */ | |
1100 return get_keyelt (keymap_lookup_directly (keymap, | |
1101 key->keysym, key->modifiers), | |
1102 accept_default); | |
1103 } | |
1104 | |
1105 | |
1106 /************************************************************************/ | |
1107 /* Copying keymaps */ | |
1108 /************************************************************************/ | |
1109 | |
1110 struct copy_keymap_inverse_closure | |
1111 { | |
1112 Lisp_Object inverse_table; | |
1113 }; | |
1114 | |
1115 static int | |
1116 copy_keymap_inverse_mapper (Lisp_Object key, Lisp_Object value, | |
1117 void *copy_keymap_inverse_closure) | |
1118 { | |
1119 struct copy_keymap_inverse_closure *closure = | |
1120 (struct copy_keymap_inverse_closure *) copy_keymap_inverse_closure; | |
1121 | |
1122 /* copy-sequence deals with dotted lists. */ | |
1123 if (CONSP (value)) | |
1124 value = Fcopy_list (value); | |
1125 Fputhash (key, value, closure->inverse_table); | |
1126 | |
1127 return 0; | |
1128 } | |
1129 | |
1130 | |
1131 static Lisp_Object | |
1132 copy_keymap_internal (Lisp_Keymap *keymap) | |
1133 { | |
1134 Lisp_Object nkm = make_keymap (0); | |
1135 Lisp_Keymap *new_keymap = XKEYMAP (nkm); | |
1136 struct copy_keymap_inverse_closure copy_keymap_inverse_closure; | |
1137 copy_keymap_inverse_closure.inverse_table = keymap->inverse_table; | |
1138 | |
1139 new_keymap->parents = Fcopy_sequence (keymap->parents); | |
1140 new_keymap->fullness = keymap->fullness; | |
1141 new_keymap->sub_maps_cache = Qnil; /* No submaps */ | |
1142 new_keymap->table = Fcopy_hash_table (keymap->table); | |
1143 new_keymap->inverse_table = Fcopy_hash_table (keymap->inverse_table); | |
1144 new_keymap->default_binding = keymap->default_binding; | |
1145 /* After copying the inverse map, we need to copy the conses which | |
1146 are its values, lest they be shared by the copy, and mangled. | |
1147 */ | |
1148 elisp_maphash (copy_keymap_inverse_mapper, keymap->inverse_table, | |
1149 ©_keymap_inverse_closure); | |
1150 return nkm; | |
1151 } | |
1152 | |
1153 | |
1154 static Lisp_Object copy_keymap (Lisp_Object keymap); | |
1155 | |
1156 struct copy_keymap_closure | |
1157 { | |
1158 Lisp_Keymap *self; | |
1159 }; | |
1160 | |
1161 static int | |
1162 copy_keymap_mapper (Lisp_Object key, Lisp_Object value, | |
1163 void *copy_keymap_closure) | |
1164 { | |
1165 /* This function can GC */ | |
1166 struct copy_keymap_closure *closure = | |
1167 (struct copy_keymap_closure *) copy_keymap_closure; | |
1168 | |
1169 /* When we encounter a keymap which is indirected through a | |
1170 symbol, we need to copy the sub-map. In v18, the form | |
1171 (lookup-key (copy-keymap global-map) "\C-x") | |
1172 returned a new keymap, not the symbol 'Control-X-prefix. | |
1173 */ | |
1174 value = get_keymap (value, 0, 1); /* #### autoload GC-safe here? */ | |
1175 if (KEYMAPP (value)) | |
1176 keymap_store_internal (key, closure->self, | |
1177 copy_keymap (value)); | |
1178 return 0; | |
1179 } | |
1180 | |
1181 static Lisp_Object | |
1182 copy_keymap (Lisp_Object keymap) | |
1183 { | |
1184 /* This function can GC */ | |
1185 struct copy_keymap_closure copy_keymap_closure; | |
1186 | |
1187 keymap = copy_keymap_internal (XKEYMAP (keymap)); | |
1188 copy_keymap_closure.self = XKEYMAP (keymap); | |
1189 elisp_maphash (copy_keymap_mapper, | |
1190 XKEYMAP (keymap)->table, | |
1191 ©_keymap_closure); | |
1192 return keymap; | |
1193 } | |
1194 | |
1195 DEFUN ("copy-keymap", Fcopy_keymap, 1, 1, 0, /* | |
1196 Return a copy of the keymap KEYMAP. | |
1197 The copy starts out with the same definitions of KEYMAP, | |
1198 but changing either the copy or KEYMAP does not affect the other. | |
1199 Any key definitions that are subkeymaps are recursively copied. | |
1200 */ | |
1201 (keymap)) | |
1202 { | |
1203 /* This function can GC */ | |
1204 keymap = get_keymap (keymap, 1, 1); | |
1205 return copy_keymap (keymap); | |
1206 } | |
1207 | |
1208 | |
1209 static int | |
1210 keymap_fullness (Lisp_Object keymap) | |
1211 { | |
1212 /* This function can GC */ | |
1213 int fullness; | |
1214 Lisp_Object sub_maps; | |
1215 struct gcpro gcpro1, gcpro2; | |
1216 | |
1217 keymap = get_keymap (keymap, 1, 1); | |
1218 fullness = XKEYMAP (keymap)->fullness; | |
1219 sub_maps = keymap_submaps (keymap); | |
1220 GCPRO2 (keymap, sub_maps); | |
1221 for (; !NILP (sub_maps); sub_maps = XCDR (sub_maps)) | |
1222 { | |
1223 if (MODIFIER_HASH_KEY_BITS (XCAR (XCAR (sub_maps))) != 0) | |
1224 { | |
1225 Lisp_Object sub_map = XCDR (XCAR (sub_maps)); | |
1226 fullness--; /* don't count bucky maps */ | |
1227 fullness += keymap_fullness (sub_map); | |
1228 } | |
1229 } | |
1230 UNGCPRO; | |
1231 return fullness; | |
1232 } | |
1233 | |
1234 DEFUN ("keymap-fullness", Fkeymap_fullness, 1, 1, 0, /* | |
1235 Return the number of bindings in the keymap. | |
1236 */ | |
1237 (keymap)) | |
1238 { | |
1239 /* This function can GC */ | |
1240 return make_int (keymap_fullness (get_keymap (keymap, 1, 1))); | |
1241 } | |
1242 | |
1243 | |
1244 /************************************************************************/ | |
1245 /* Defining keys in keymaps */ | |
1246 /************************************************************************/ | |
1247 | |
1248 /* Given a keysym (should be a symbol, int, char), make sure it's valid | |
1249 and perform any necessary canonicalization. */ | |
1250 | |
1251 static void | |
1252 define_key_check_and_coerce_keysym (Lisp_Object spec, | |
1253 Lisp_Object *keysym, | |
1254 unsigned int modifiers) | |
1255 { | |
1256 /* Now, check and massage the trailing keysym specifier. */ | |
1257 if (SYMBOLP (*keysym)) | |
1258 { | |
1259 if (string_char_length (XSYMBOL (*keysym)->name) == 1) | |
1260 { | |
1261 Lisp_Object ream_gcc_up_the_ass = | |
1262 make_char (string_char (XSYMBOL (*keysym)->name, 0)); | |
1263 *keysym = ream_gcc_up_the_ass; | |
1264 goto fixnum_keysym; | |
1265 } | |
1266 } | |
1267 else if (CHAR_OR_CHAR_INTP (*keysym)) | |
1268 { | |
1269 CHECK_CHAR_COERCE_INT (*keysym); | |
1270 fixnum_keysym: | |
1271 if (XCHAR (*keysym) < ' ' | |
1272 /* || (XCHAR (*keysym) >= 128 && XCHAR (*keysym) < 160) */) | |
1273 /* yuck! Can't make the above restriction; too many compatibility | |
1274 problems ... */ | |
1275 signal_simple_error ("keysym char must be printable", *keysym); | |
1276 /* #### This bites! I want to be able to write (control shift a) */ | |
1277 if (modifiers & MOD_SHIFT) | |
1278 signal_simple_error | |
1279 ("The `shift' modifier may not be applied to ASCII keysyms", | |
1280 spec); | |
1281 } | |
1282 else | |
1283 { | |
1284 signal_simple_error ("Unknown keysym specifier", | |
1285 *keysym); | |
1286 } | |
1287 | |
1288 if (SYMBOLP (*keysym)) | |
1289 { | |
1290 char *name = (char *) | |
1291 string_data (XSYMBOL (*keysym)->name); | |
1292 | |
1293 /* FSFmacs uses symbols with the printed representation of keysyms in | |
1294 their names, like 'M-x, and we use the syntax '(meta x). So, to avoid | |
1295 confusion, notice the M-x syntax and signal an error - because | |
1296 otherwise it would be interpreted as a regular keysym, and would even | |
1297 show up in the list-buffers output, causing confusion to the naive. | |
1298 | |
1299 We can get away with this because none of the X keysym names contain | |
1300 a hyphen (some contain underscore, however). | |
1301 | |
1302 It might be useful to reject keysyms which are not x-valid-keysym- | |
1303 name-p, but that would interfere with various tricks we do to | |
1304 sanitize the Sun keyboards, and would make it trickier to | |
1305 conditionalize a .emacs file for multiple X servers. | |
1306 */ | |
1307 if (((int) strlen (name) >= 2 && name[1] == '-') | |
1308 #if 1 | |
1309 || | |
1310 /* Ok, this is a bit more dubious - prevent people from doing things | |
1311 like (global-set-key 'RET 'something) because that will have the | |
1312 same problem as above. (Gag!) Maybe we should just silently | |
1313 accept these as aliases for the "real" names? | |
1314 */ | |
1315 (string_length (XSYMBOL (*keysym)->name) <= 3 && | |
1316 (!strcmp (name, "LFD") || | |
1317 !strcmp (name, "TAB") || | |
1318 !strcmp (name, "RET") || | |
1319 !strcmp (name, "ESC") || | |
1320 !strcmp (name, "DEL") || | |
1321 !strcmp (name, "SPC") || | |
1322 !strcmp (name, "BS"))) | |
1323 #endif /* unused */ | |
1324 ) | |
1325 signal_simple_error | |
1326 ("Invalid (FSF Emacs) key format (see doc of define-key)", | |
1327 *keysym); | |
1328 | |
1329 /* #### Ok, this is a bit more dubious - make people not lose if they | |
1330 do things like (global-set-key 'RET 'something) because that would | |
1331 otherwise have the same problem as above. (Gag!) We silently | |
1332 accept these as aliases for the "real" names. | |
1333 */ | |
1334 else if (!strncmp(name, "kp_", 3)) { | |
1335 /* Likewise, the obsolete keysym binding of kp_.* should not lose. */ | |
1336 char temp[50]; | |
1337 | |
1338 strncpy(temp, name, sizeof (temp)); | |
1339 temp[sizeof (temp) - 1] = '\0'; | |
1340 temp[2] = '-'; | |
1341 *keysym = Fintern_soft(make_string((Bufbyte *)temp, | |
1342 strlen(temp)), | |
1343 Qnil); | |
1344 } else if (EQ (*keysym, QLFD)) | |
1345 *keysym = QKlinefeed; | |
1346 else if (EQ (*keysym, QTAB)) | |
1347 *keysym = QKtab; | |
1348 else if (EQ (*keysym, QRET)) | |
1349 *keysym = QKreturn; | |
1350 else if (EQ (*keysym, QESC)) | |
1351 *keysym = QKescape; | |
1352 else if (EQ (*keysym, QDEL)) | |
1353 *keysym = QKdelete; | |
1354 else if (EQ (*keysym, QSPC)) | |
1355 *keysym = QKspace; | |
1356 else if (EQ (*keysym, QBS)) | |
1357 *keysym = QKbackspace; | |
1358 /* Emacs compatibility */ | |
1359 else if (EQ(*keysym, Qdown_mouse_1)) | |
1360 *keysym = Qbutton1; | |
1361 else if (EQ(*keysym, Qdown_mouse_2)) | |
1362 *keysym = Qbutton2; | |
1363 else if (EQ(*keysym, Qdown_mouse_3)) | |
1364 *keysym = Qbutton3; | |
1365 else if (EQ(*keysym, Qdown_mouse_4)) | |
1366 *keysym = Qbutton4; | |
1367 else if (EQ(*keysym, Qdown_mouse_5)) | |
1368 *keysym = Qbutton5; | |
1369 else if (EQ(*keysym, Qmouse_1)) | |
1370 *keysym = Qbutton1up; | |
1371 else if (EQ(*keysym, Qmouse_2)) | |
1372 *keysym = Qbutton2up; | |
1373 else if (EQ(*keysym, Qmouse_3)) | |
1374 *keysym = Qbutton3up; | |
1375 else if (EQ(*keysym, Qmouse_4)) | |
1376 *keysym = Qbutton4up; | |
1377 else if (EQ(*keysym, Qmouse_5)) | |
1378 *keysym = Qbutton5up; | |
1379 } | |
1380 } | |
1381 | |
1382 | |
1383 /* Given any kind of key-specifier, return a keysym and modifier mask. | |
1384 Proper canonicalization is performed: | |
1385 | |
1386 -- integers are converted into the equivalent characters. | |
1387 -- one-character strings are converted into the equivalent characters. | |
1388 */ | |
1389 | |
1390 static void | |
1391 define_key_parser (Lisp_Object spec, struct key_data *returned_value) | |
1392 { | |
1393 if (CHAR_OR_CHAR_INTP (spec)) | |
1394 { | |
1395 struct Lisp_Event event; | |
1396 event.event_type = empty_event; | |
1397 character_to_event (XCHAR_OR_CHAR_INT (spec), &event, | |
1398 XCONSOLE (Vselected_console), 0, 0); | |
1399 returned_value->keysym = event.event.key.keysym; | |
1400 returned_value->modifiers = event.event.key.modifiers; | |
1401 } | |
1402 else if (EVENTP (spec)) | |
1403 { | |
1404 switch (XEVENT (spec)->event_type) | |
1405 { | |
1406 case key_press_event: | |
1407 { | |
1408 returned_value->keysym = XEVENT (spec)->event.key.keysym; | |
1409 returned_value->modifiers = XEVENT (spec)->event.key.modifiers; | |
1410 break; | |
1411 } | |
1412 case button_press_event: | |
1413 case button_release_event: | |
1414 { | |
1415 int down = (XEVENT (spec)->event_type == button_press_event); | |
1416 switch (XEVENT (spec)->event.button.button) | |
1417 { | |
1418 case 1: | |
1419 returned_value->keysym = (down ? Qbutton1 : Qbutton1up); break; | |
1420 case 2: | |
1421 returned_value->keysym = (down ? Qbutton2 : Qbutton2up); break; | |
1422 case 3: | |
1423 returned_value->keysym = (down ? Qbutton3 : Qbutton3up); break; | |
1424 case 4: | |
1425 returned_value->keysym = (down ? Qbutton4 : Qbutton4up); break; | |
1426 case 5: | |
1427 returned_value->keysym = (down ? Qbutton5 : Qbutton5up); break; | |
1428 case 6: | |
1429 returned_value->keysym = (down ? Qbutton6 : Qbutton6up); break; | |
1430 case 7: | |
1431 returned_value->keysym = (down ? Qbutton7 : Qbutton7up); break; | |
1432 default: | |
1433 returned_value->keysym = (down ? Qbutton0 : Qbutton0up); break; | |
1434 } | |
1435 returned_value->modifiers = XEVENT (spec)->event.button.modifiers; | |
1436 break; | |
1437 } | |
1438 default: | |
1439 signal_error (Qwrong_type_argument, | |
1440 list2 (build_translated_string | |
1441 ("unable to bind this type of event"), | |
1442 spec)); | |
1443 } | |
1444 } | |
1445 else if (SYMBOLP (spec)) | |
1446 { | |
1447 /* Be nice, allow = to mean (=) */ | |
1448 if (bucky_sym_to_bucky_bit (spec) != 0) | |
1449 signal_simple_error ("Key is a modifier name", spec); | |
1450 define_key_check_and_coerce_keysym (spec, &spec, 0); | |
1451 returned_value->keysym = spec; | |
1452 returned_value->modifiers = 0; | |
1453 } | |
1454 else if (CONSP (spec)) | |
1455 { | |
1456 unsigned int modifiers = 0; | |
1457 Lisp_Object keysym = Qnil; | |
1458 Lisp_Object rest = spec; | |
1459 | |
1460 /* First, parse out the leading modifier symbols. */ | |
1461 while (CONSP (rest)) | |
1462 { | |
1463 unsigned int modifier; | |
1464 | |
1465 keysym = XCAR (rest); | |
1466 modifier = bucky_sym_to_bucky_bit (keysym); | |
1467 modifiers |= modifier; | |
1468 if (!NILP (XCDR (rest))) | |
1469 { | |
1470 if (! modifier) | |
1471 signal_simple_error ("Unknown modifier", keysym); | |
1472 } | |
1473 else | |
1474 { | |
1475 if (modifier) | |
1476 signal_simple_error ("Nothing but modifiers here", | |
1477 spec); | |
1478 } | |
1479 rest = XCDR (rest); | |
1480 QUIT; | |
1481 } | |
1482 if (!NILP (rest)) | |
1483 signal_simple_error ("List must be nil-terminated", spec); | |
1484 | |
1485 define_key_check_and_coerce_keysym (spec, &keysym, modifiers); | |
1486 returned_value->keysym = keysym; | |
1487 returned_value->modifiers = modifiers; | |
1488 } | |
1489 else | |
1490 { | |
1491 signal_simple_error ("Unknown key-sequence specifier", | |
1492 spec); | |
1493 } | |
1494 } | |
1495 | |
1496 /* Used by character-to-event */ | |
1497 void | |
1498 key_desc_list_to_event (Lisp_Object list, Lisp_Object event, | |
1499 int allow_menu_events) | |
1500 { | |
1501 struct key_data raw_key; | |
1502 | |
1503 if (allow_menu_events && | |
1504 CONSP (list) && | |
1505 /* #### where the hell does this come from? */ | |
1506 EQ (XCAR (list), Qmenu_selection)) | |
1507 { | |
1508 Lisp_Object fn, arg; | |
1509 if (! NILP (Fcdr (Fcdr (list)))) | |
1510 signal_simple_error ("Invalid menu event desc", list); | |
1511 arg = Fcar (Fcdr (list)); | |
1512 if (SYMBOLP (arg)) | |
1513 fn = Qcall_interactively; | |
1514 else | |
1515 fn = Qeval; | |
1516 XSETFRAME (XEVENT (event)->channel, selected_frame ()); | |
1517 XEVENT (event)->event_type = misc_user_event; | |
1518 XEVENT (event)->event.eval.function = fn; | |
1519 XEVENT (event)->event.eval.object = arg; | |
1520 return; | |
1521 } | |
1522 | |
1523 define_key_parser (list, &raw_key); | |
1524 | |
1525 if (EQ (raw_key.keysym, Qbutton0) || EQ (raw_key.keysym, Qbutton0up) || | |
1526 EQ (raw_key.keysym, Qbutton1) || EQ (raw_key.keysym, Qbutton1up) || | |
1527 EQ (raw_key.keysym, Qbutton2) || EQ (raw_key.keysym, Qbutton2up) || | |
1528 EQ (raw_key.keysym, Qbutton3) || EQ (raw_key.keysym, Qbutton3up) || | |
1529 EQ (raw_key.keysym, Qbutton4) || EQ (raw_key.keysym, Qbutton4up) || | |
1530 EQ (raw_key.keysym, Qbutton5) || EQ (raw_key.keysym, Qbutton5up) || | |
1531 EQ (raw_key.keysym, Qbutton6) || EQ (raw_key.keysym, Qbutton6up) || | |
1532 EQ (raw_key.keysym, Qbutton7) || EQ (raw_key.keysym, Qbutton7up)) | |
1533 error ("Mouse-clicks can't appear in saved keyboard macros."); | |
1534 | |
1535 XEVENT (event)->channel = Vselected_console; | |
1536 XEVENT (event)->event_type = key_press_event; | |
1537 XEVENT (event)->event.key.keysym = raw_key.keysym; | |
1538 XEVENT (event)->event.key.modifiers = raw_key.modifiers; | |
1539 } | |
1540 | |
1541 | |
1542 int | |
1543 event_matches_key_specifier_p (struct Lisp_Event *event, | |
1544 Lisp_Object key_specifier) | |
1545 { | |
1546 Lisp_Object event2; | |
1547 int retval; | |
1548 struct gcpro gcpro1; | |
1549 | |
1550 if (event->event_type != key_press_event || NILP (key_specifier) || | |
1551 (INTP (key_specifier) && !CHAR_INTP (key_specifier))) | |
1552 return 0; | |
1553 | |
1554 /* if the specifier is an integer such as 27, then it should match | |
1555 both of the events 'escape' and 'control ['. Calling | |
1556 Fcharacter_to_event() will only match 'escape'. */ | |
1557 if (CHAR_OR_CHAR_INTP (key_specifier)) | |
1558 return (XCHAR_OR_CHAR_INT (key_specifier) | |
1559 == event_to_character (event, 0, 0, 0)); | |
1560 | |
1561 /* Otherwise, we cannot call event_to_character() because we may | |
1562 be dealing with non-ASCII keystrokes. In any case, if I ask | |
1563 for 'control [' then I should get exactly that, and not | |
1564 'escape'. | |
1565 | |
1566 However, we have to behave differently on TTY's, where 'control [' | |
1567 is silently converted into 'escape' by the keyboard driver. | |
1568 In this case, ASCII is the only thing we know about, so we have | |
1569 to compare the ASCII values. */ | |
1570 | |
1571 GCPRO1 (event2); | |
1572 event2 = Fmake_event (Qnil, Qnil); | |
1573 Fcharacter_to_event (key_specifier, event2, Qnil, Qnil); | |
1574 if (XEVENT (event2)->event_type != key_press_event) | |
1575 retval = 0; | |
1576 else if (CONSOLE_TTY_P (XCONSOLE (EVENT_CHANNEL (event)))) | |
1577 { | |
1578 int ch1, ch2; | |
1579 | |
1580 ch1 = event_to_character (event, 0, 0, 0); | |
1581 ch2 = event_to_character (XEVENT (event2), 0, 0, 0); | |
1582 retval = (ch1 >= 0 && ch2 >= 0 && ch1 == ch2); | |
1583 } | |
1584 else if (EQ (event->event.key.keysym, XEVENT (event2)->event.key.keysym) && | |
1585 event->event.key.modifiers == XEVENT (event2)->event.key.modifiers) | |
1586 retval = 1; | |
1587 else | |
1588 retval = 0; | |
1589 Fdeallocate_event (event2); | |
1590 UNGCPRO; | |
1591 return retval; | |
1592 } | |
1593 | |
1594 static int | |
1595 meta_prefix_char_p (CONST struct key_data *key) | |
1596 { | |
1597 struct Lisp_Event event; | |
1598 | |
1599 event.event_type = key_press_event; | |
1600 event.channel = Vselected_console; | |
1601 event.event.key.keysym = key->keysym; | |
1602 event.event.key.modifiers = key->modifiers; | |
1603 return event_matches_key_specifier_p (&event, Vmeta_prefix_char); | |
1604 } | |
1605 | |
1606 DEFUN ("event-matches-key-specifier-p", Fevent_matches_key_specifier_p, 2, 2, 0, /* | |
1607 Return non-nil if EVENT matches KEY-SPECIFIER. | |
1608 This can be useful, e.g., to determine if the user pressed `help-char' or | |
1609 `quit-char'. | |
1610 */ | |
1611 (event, key_specifier)) | |
1612 { | |
1613 CHECK_LIVE_EVENT (event); | |
1614 return (event_matches_key_specifier_p (XEVENT (event), key_specifier) | |
1615 ? Qt : Qnil); | |
1616 } | |
1617 | |
1618 #define MACROLET(k,m) do { \ | |
1619 returned_value->keysym = (k); \ | |
1620 returned_value->modifiers = (m); \ | |
1621 RETURN_SANS_WARNINGS; \ | |
1622 } while (0) | |
1623 | |
1624 /* ASCII grunge. | |
1625 Given a keysym, return another keysym/modifier pair which could be | |
1626 considered the same key in an ASCII world. Backspace returns ^H, for | |
1627 example. | |
1628 */ | |
1629 static void | |
1630 define_key_alternate_name (struct key_data *key, | |
1631 struct key_data *returned_value) | |
1632 { | |
1633 Lisp_Object keysym = key->keysym; | |
1634 unsigned int modifiers = key->modifiers; | |
1635 unsigned int modifiers_sans_control = (modifiers & (~MOD_CONTROL)); | |
1636 unsigned int modifiers_sans_meta = (modifiers & (~MOD_META)); | |
1637 returned_value->keysym = Qnil; /* By default, no "alternate" key */ | |
1638 returned_value->modifiers = 0; | |
1639 if (modifiers_sans_meta == MOD_CONTROL) | |
1640 { | |
1641 if EQ (keysym, QKspace) | |
1642 MACROLET (make_char ('@'), modifiers); | |
1643 else if (!CHARP (keysym)) | |
1644 return; | |
1645 else switch (XCHAR (keysym)) | |
1646 { | |
1647 case '@': /* c-@ => c-space */ | |
1648 MACROLET (QKspace, modifiers); | |
1649 case 'h': /* c-h => backspace */ | |
1650 MACROLET (QKbackspace, modifiers_sans_control); | |
1651 case 'i': /* c-i => tab */ | |
1652 MACROLET (QKtab, modifiers_sans_control); | |
1653 case 'j': /* c-j => linefeed */ | |
1654 MACROLET (QKlinefeed, modifiers_sans_control); | |
1655 case 'm': /* c-m => return */ | |
1656 MACROLET (QKreturn, modifiers_sans_control); | |
1657 case '[': /* c-[ => escape */ | |
1658 MACROLET (QKescape, modifiers_sans_control); | |
1659 default: | |
1660 return; | |
1661 } | |
1662 } | |
1663 else if (modifiers_sans_meta != 0) | |
1664 return; | |
1665 else if (EQ (keysym, QKbackspace)) /* backspace => c-h */ | |
1666 MACROLET (make_char ('h'), (modifiers | MOD_CONTROL)); | |
1667 else if (EQ (keysym, QKtab)) /* tab => c-i */ | |
1668 MACROLET (make_char ('i'), (modifiers | MOD_CONTROL)); | |
1669 else if (EQ (keysym, QKlinefeed)) /* linefeed => c-j */ | |
1670 MACROLET (make_char ('j'), (modifiers | MOD_CONTROL)); | |
1671 else if (EQ (keysym, QKreturn)) /* return => c-m */ | |
1672 MACROLET (make_char ('m'), (modifiers | MOD_CONTROL)); | |
1673 else if (EQ (keysym, QKescape)) /* escape => c-[ */ | |
1674 MACROLET (make_char ('['), (modifiers | MOD_CONTROL)); | |
1675 else | |
1676 return; | |
1677 #undef MACROLET | |
1678 } | |
1679 | |
1680 | |
1681 static void | |
1682 ensure_meta_prefix_char_keymapp (Lisp_Object keys, int indx, | |
1683 Lisp_Object keymap) | |
1684 { | |
1685 /* This function can GC */ | |
1686 Lisp_Object new_keys; | |
1687 int i; | |
1688 Lisp_Object mpc_binding; | |
1689 struct key_data meta_key; | |
1690 | |
1691 if (NILP (Vmeta_prefix_char) || | |
1692 (INTP (Vmeta_prefix_char) && !CHAR_INTP (Vmeta_prefix_char))) | |
1693 return; | |
1694 | |
1695 define_key_parser (Vmeta_prefix_char, &meta_key); | |
1696 mpc_binding = keymap_lookup_1 (keymap, &meta_key, 0); | |
1697 if (NILP (mpc_binding) || !NILP (Fkeymapp (mpc_binding))) | |
1698 return; | |
1699 | |
1700 if (indx == 0) | |
1701 new_keys = keys; | |
1702 else if (STRINGP (keys)) | |
1703 new_keys = Fsubstring (keys, Qzero, make_int (indx)); | |
1704 else if (VECTORP (keys)) | |
1705 { | |
1706 new_keys = make_vector (indx, Qnil); | |
1707 for (i = 0; i < indx; i++) | |
1708 XVECTOR_DATA (new_keys) [i] = XVECTOR_DATA (keys) [i]; | |
1709 } | |
1710 else | |
1711 abort (); | |
1712 | |
1713 if (EQ (keys, new_keys)) | |
1714 error_with_frob (mpc_binding, | |
1715 "can't bind %s: %s has a non-keymap binding", | |
1716 (char *) XSTRING_DATA (Fkey_description (keys)), | |
1717 (char *) XSTRING_DATA (Fsingle_key_description | |
1718 (Vmeta_prefix_char))); | |
1719 else | |
1720 error_with_frob (mpc_binding, | |
1721 "can't bind %s: %s %s has a non-keymap binding", | |
1722 (char *) XSTRING_DATA (Fkey_description (keys)), | |
1723 (char *) XSTRING_DATA (Fkey_description (new_keys)), | |
1724 (char *) XSTRING_DATA (Fsingle_key_description | |
1725 (Vmeta_prefix_char))); | |
1726 } | |
1727 | |
1728 DEFUN ("define-key", Fdefine_key, 3, 3, 0, /* | |
1729 Define key sequence KEYS, in KEYMAP, as DEF. | |
1730 KEYMAP is a keymap object. | |
1731 KEYS is the sequence of keystrokes to bind, described below. | |
1732 DEF is anything that can be a key's definition: | |
1733 nil (means key is undefined in this keymap); | |
1734 a command (a Lisp function suitable for interactive calling); | |
1735 a string or key sequence vector (treated as a keyboard macro); | |
1736 a keymap (to define a prefix key); | |
1737 a symbol; when the key is looked up, the symbol will stand for its | |
1738 function definition, that should at that time be one of the above, | |
1739 or another symbol whose function definition is used, and so on. | |
1740 a cons (STRING . DEFN), meaning that DEFN is the definition | |
1741 (DEFN should be a valid definition in its own right); | |
1742 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP. | |
1743 | |
1744 Contrary to popular belief, the world is not ASCII. When running under a | |
1745 window manager, XEmacs can tell the difference between, for example, the | |
1746 keystrokes control-h, control-shift-h, and backspace. You can, in fact, | |
1747 bind different commands to each of these. | |
1748 | |
1749 A `key sequence' is a set of keystrokes. A `keystroke' is a keysym and some | |
1750 set of modifiers (such as control and meta). A `keysym' is what is printed | |
1751 on the keys on your keyboard. | |
1752 | |
1753 A keysym may be represented by a symbol, or (if and only if it is equivalent | |
1754 to an ASCII character in the range 32 - 255) by a character or its equivalent | |
1755 ASCII code. The `A' key may be represented by the symbol `A', the character | |
1756 `?A', or by the number 65. The `break' key may be represented only by the | |
1757 symbol `break'. | |
1758 | |
1759 A keystroke may be represented by a list: the last element of the list | |
1760 is the key (a symbol, character, or number, as above) and the | |
1761 preceding elements are the symbolic names of modifier keys (control, | |
1762 meta, super, hyper, alt, and shift). Thus, the sequence control-b is | |
1763 represented by the forms `(control b)', `(control ?b)', and `(control | |
1764 98)'. A keystroke may also be represented by an event object, as | |
1765 returned by the `next-command-event' and `read-key-sequence' | |
1766 functions. | |
1767 | |
1768 Note that in this context, the keystroke `control-b' is *not* represented | |
1769 by the number 2 (the ASCII code for ^B) or the character `?\^B'. See below. | |
1770 | |
1771 The `shift' modifier is somewhat of a special case. You should not (and | |
1772 cannot) use `(meta shift a)' to mean `(meta A)', since for characters that | |
1773 have ASCII equivalents, the state of the shift key is implicit in the | |
1774 keysym (a vs. A). You also cannot say `(shift =)' to mean `+', as that | |
1775 sort of thing varies from keyboard to keyboard. The shift modifier is for | |
1776 use only with characters that do not have a second keysym on the same key, | |
1777 such as `backspace' and `tab'. | |
1778 | |
1779 A key sequence is a vector of keystrokes. As a degenerate case, elements | |
1780 of this vector may also be keysyms if they have no modifiers. That is, | |
1781 the `A' keystroke is represented by all of these forms: | |
1782 A ?A 65 (A) (?A) (65) | |
1783 [A] [?A] [65] [(A)] [(?A)] [(65)] | |
1784 | |
1785 the `control-a' keystroke is represented by these forms: | |
1786 (control A) (control ?A) (control 65) | |
1787 [(control A)] [(control ?A)] [(control 65)] | |
1788 the key sequence `control-c control-a' is represented by these forms: | |
1789 [(control c) (control a)] [(control ?c) (control ?a)] | |
1790 [(control 99) (control 65)] etc. | |
1791 | |
1792 Mouse button clicks work just like keypresses: (control button1) means | |
1793 pressing the left mouse button while holding down the control key. | |
1794 \[(control c) (shift button3)] means control-c, hold shift, click right. | |
1795 | |
1796 Commands may be bound to the mouse-button up-stroke rather than the down- | |
1797 stroke as well. `button1' means the down-stroke, and `button1up' means the | |
1798 up-stroke. Different commands may be bound to the up and down strokes, | |
1799 though that is probably not what you want, so be careful. | |
1800 | |
1801 For backward compatibility, a key sequence may also be represented by a | |
1802 string. In this case, it represents the key sequence(s) that would | |
1803 produce that sequence of ASCII characters in a purely ASCII world. For | |
1804 example, a string containing the ASCII backspace character, "\\^H", would | |
1805 represent two key sequences: `(control h)' and `backspace'. Binding a | |
1806 command to this will actually bind both of those key sequences. Likewise | |
1807 for the following pairs: | |
1808 | |
1809 control h backspace | |
1810 control i tab | |
1811 control m return | |
1812 control j linefeed | |
1813 control [ escape | |
1814 control @ control space | |
1815 | |
1816 After binding a command to two key sequences with a form like | |
1817 | |
1818 (define-key global-map "\\^X\\^I" \'command-1) | |
1819 | |
1820 it is possible to redefine only one of those sequences like so: | |
1821 | |
1822 (define-key global-map [(control x) (control i)] \'command-2) | |
1823 (define-key global-map [(control x) tab] \'command-3) | |
1824 | |
1825 Of course, all of this applies only when running under a window system. If | |
1826 you're talking to XEmacs through a TTY connection, you don't get any of | |
1827 these features. | |
1828 */ | |
1829 (keymap, keys, def)) | |
1830 { | |
1831 /* This function can GC */ | |
1832 int idx; | |
1833 int metized = 0; | |
1834 int len; | |
1835 int ascii_hack; | |
1836 struct gcpro gcpro1, gcpro2, gcpro3; | |
1837 | |
1838 if (VECTORP (keys)) | |
1839 len = XVECTOR_LENGTH (keys); | |
1840 else if (STRINGP (keys)) | |
1841 len = XSTRING_CHAR_LENGTH (keys); | |
1842 else if (CHAR_OR_CHAR_INTP (keys) || SYMBOLP (keys) || CONSP (keys)) | |
1843 { | |
1844 if (!CONSP (keys)) keys = list1 (keys); | |
1845 len = 1; | |
1846 keys = make_vector (1, keys); /* this is kinda sleazy. */ | |
1847 } | |
1848 else | |
1849 { | |
1850 keys = wrong_type_argument (Qsequencep, keys); | |
1851 len = XINT (Flength (keys)); | |
1852 } | |
1853 if (len == 0) | |
1854 return Qnil; | |
1855 | |
1856 GCPRO3 (keymap, keys, def); | |
1857 | |
1858 /* ASCII grunge. | |
1859 When the user defines a key which, in a strictly ASCII world, would be | |
1860 produced by two different keys (^J and linefeed, or ^H and backspace, | |
1861 for example) then the binding will be made for both keysyms. | |
1862 | |
1863 This is done if the user binds a command to a string, as in | |
1864 (define-key map "\^H" 'something), but not when using one of the new | |
1865 syntaxes, like (define-key map '(control h) 'something). | |
1866 */ | |
1867 ascii_hack = (STRINGP (keys)); | |
1868 | |
1869 keymap = get_keymap (keymap, 1, 1); | |
1870 | |
1871 idx = 0; | |
1872 while (1) | |
1873 { | |
1874 Lisp_Object c; | |
1875 struct key_data raw_key1; | |
1876 struct key_data raw_key2; | |
1877 | |
1878 if (STRINGP (keys)) | |
1879 c = make_char (string_char (XSTRING (keys), idx)); | |
1880 else | |
1881 c = XVECTOR_DATA (keys) [idx]; | |
1882 | |
1883 define_key_parser (c, &raw_key1); | |
1884 | |
1885 if (!metized && ascii_hack && meta_prefix_char_p (&raw_key1)) | |
1886 { | |
1887 if (idx == (len - 1)) | |
1888 { | |
1889 /* This is a hack to prevent a binding for the meta-prefix-char | |
1890 from being made in a map which already has a non-empty "meta" | |
1891 submap. That is, we can't let both "escape" and "meta" have | |
1892 a binding in the same keymap. This implies that the idiom | |
1893 (define-key my-map "\e" my-escape-map) | |
1894 (define-key my-escape-map "a" 'my-command) | |
1895 no longer works. That's ok. Instead the luser should do | |
1896 (define-key my-map "\ea" 'my-command) | |
1897 or, more correctly | |
1898 (define-key my-map "\M-a" 'my-command) | |
1899 and then perhaps | |
1900 (defvar my-escape-map (lookup-key my-map "\e")) | |
1901 if the luser really wants the map in a variable. | |
1902 */ | |
1903 Lisp_Object mmap; | |
1904 struct gcpro ngcpro1; | |
1905 | |
1906 NGCPRO1 (c); | |
1907 mmap = Fgethash (MAKE_MODIFIER_HASH_KEY (MOD_META), | |
1908 XKEYMAP (keymap)->table, Qnil); | |
1909 if (!NILP (mmap) | |
1910 && keymap_fullness (mmap) != 0) | |
1911 { | |
1912 Lisp_Object desc | |
1913 = Fsingle_key_description (Vmeta_prefix_char); | |
1914 signal_simple_error_2 | |
1915 ("Map contains meta-bindings, can't bind", desc, keymap); | |
1916 } | |
1917 NUNGCPRO; | |
1918 } | |
1919 else | |
1920 { | |
1921 metized = 1; | |
1922 idx++; | |
1923 continue; | |
1924 } | |
1925 } | |
1926 | |
1927 if (ascii_hack) | |
1928 define_key_alternate_name (&raw_key1, &raw_key2); | |
1929 else | |
1930 { | |
1931 raw_key2.keysym = Qnil; | |
1932 raw_key2.modifiers = 0; | |
1933 } | |
1934 | |
1935 if (metized) | |
1936 { | |
1937 raw_key1.modifiers |= MOD_META; | |
1938 raw_key2.modifiers |= MOD_META; | |
1939 metized = 0; | |
1940 } | |
1941 | |
1942 /* This crap is to make sure that someone doesn't bind something like | |
1943 "C-x M-a" while "C-x ESC" has a non-keymap binding. */ | |
1944 if (raw_key1.modifiers & MOD_META) | |
1945 ensure_meta_prefix_char_keymapp (keys, idx, keymap); | |
1946 | |
1947 if (++idx == len) | |
1948 { | |
1949 keymap_store (keymap, &raw_key1, def); | |
1950 if (ascii_hack && !NILP (raw_key2.keysym)) | |
1951 keymap_store (keymap, &raw_key2, def); | |
1952 UNGCPRO; | |
1953 return def; | |
1954 } | |
1955 | |
1956 { | |
1957 Lisp_Object cmd; | |
1958 struct gcpro ngcpro1; | |
1959 NGCPRO1 (c); | |
1960 | |
1961 cmd = keymap_lookup_1 (keymap, &raw_key1, 0); | |
1962 if (NILP (cmd)) | |
1963 { | |
1964 cmd = Fmake_sparse_keymap (Qnil); | |
1965 XKEYMAP (cmd)->name /* for debugging */ | |
1966 = list2 (make_key_description (&raw_key1, 1), keymap); | |
1967 keymap_store (keymap, &raw_key1, cmd); | |
1968 } | |
1969 if (NILP (Fkeymapp (cmd))) | |
1970 signal_simple_error_2 ("Invalid prefix keys in sequence", | |
1971 c, keys); | |
1972 | |
1973 if (ascii_hack && !NILP (raw_key2.keysym) && | |
1974 NILP (keymap_lookup_1 (keymap, &raw_key2, 0))) | |
1975 keymap_store (keymap, &raw_key2, cmd); | |
1976 | |
1977 keymap = get_keymap (cmd, 1, 1); | |
1978 NUNGCPRO; | |
1979 } | |
1980 } | |
1981 } | |
1982 | |
1983 | |
1984 /************************************************************************/ | |
1985 /* Looking up keys in keymaps */ | |
1986 /************************************************************************/ | |
1987 | |
1988 /* We need a very fast (i.e., non-consing) version of lookup-key in order | |
1989 to make where-is-internal really fly. */ | |
1990 | |
1991 struct raw_lookup_key_mapper_closure | |
1992 { | |
1993 int remaining; | |
1994 CONST struct key_data *raw_keys; | |
1995 int raw_keys_count; | |
1996 int keys_so_far; | |
1997 int accept_default; | |
1998 }; | |
1999 | |
2000 static Lisp_Object raw_lookup_key_mapper (Lisp_Object k, void *); | |
2001 | |
2002 /* Caller should gc-protect args (keymaps may autoload) */ | |
2003 static Lisp_Object | |
2004 raw_lookup_key (Lisp_Object keymap, | |
2005 CONST struct key_data *raw_keys, int raw_keys_count, | |
2006 int keys_so_far, int accept_default) | |
2007 { | |
2008 /* This function can GC */ | |
2009 struct raw_lookup_key_mapper_closure c; | |
2010 c.remaining = raw_keys_count - 1; | |
2011 c.raw_keys = raw_keys; | |
2012 c.raw_keys_count = raw_keys_count; | |
2013 c.keys_so_far = keys_so_far; | |
2014 c.accept_default = accept_default; | |
2015 | |
2016 return traverse_keymaps (keymap, Qnil, raw_lookup_key_mapper, &c); | |
2017 } | |
2018 | |
2019 static Lisp_Object | |
2020 raw_lookup_key_mapper (Lisp_Object k, void *arg) | |
2021 { | |
2022 /* This function can GC */ | |
2023 struct raw_lookup_key_mapper_closure *c = | |
2024 (struct raw_lookup_key_mapper_closure *) arg; | |
2025 int accept_default = c->accept_default; | |
2026 int remaining = c->remaining; | |
2027 int keys_so_far = c->keys_so_far; | |
2028 CONST struct key_data *raw_keys = c->raw_keys; | |
2029 Lisp_Object cmd; | |
2030 | |
2031 if (! meta_prefix_char_p (&(raw_keys[0]))) | |
2032 { | |
2033 /* Normal case: every case except the meta-hack (see below). */ | |
2034 cmd = keymap_lookup_1 (k, &(raw_keys[0]), accept_default); | |
2035 | |
2036 if (remaining == 0) | |
2037 /* Return whatever we found if we're out of keys */ | |
2038 ; | |
2039 else if (NILP (cmd)) | |
2040 /* Found nothing (though perhaps parent map may have binding) */ | |
2041 ; | |
2042 else if (NILP (Fkeymapp (cmd))) | |
2043 /* Didn't find a keymap, and we have more keys. | |
2044 * Return a fixnum to indicate that keys were too long. | |
2045 */ | |
2046 cmd = make_int (keys_so_far + 1); | |
2047 else | |
2048 cmd = raw_lookup_key (cmd, raw_keys + 1, remaining, | |
2049 keys_so_far + 1, accept_default); | |
2050 } | |
2051 else | |
2052 { | |
2053 /* This is a hack so that looking up a key-sequence whose last | |
2054 * element is the meta-prefix-char will return the keymap that | |
2055 * the "meta" keys are stored in, if there is no binding for | |
2056 * the meta-prefix-char (and if this map has a "meta" submap). | |
2057 * If this map doesn't have a "meta" submap, then the | |
2058 * meta-prefix-char is looked up just like any other key. | |
2059 */ | |
2060 if (remaining == 0) | |
2061 { | |
2062 /* First look for the prefix-char directly */ | |
2063 cmd = keymap_lookup_1 (k, &(raw_keys[0]), accept_default); | |
2064 if (NILP (cmd)) | |
2065 { | |
2066 /* Do kludgy return of the meta-map */ | |
2067 cmd = Fgethash (MAKE_MODIFIER_HASH_KEY (MOD_META), | |
2068 XKEYMAP (k)->table, Qnil); | |
2069 } | |
2070 } | |
2071 else | |
2072 { | |
2073 /* Search for the prefix-char-prefixed sequence directly */ | |
2074 cmd = keymap_lookup_1 (k, &(raw_keys[0]), accept_default); | |
2075 cmd = get_keymap (cmd, 0, 1); | |
2076 if (!NILP (cmd)) | |
2077 cmd = raw_lookup_key (cmd, raw_keys + 1, remaining, | |
2078 keys_so_far + 1, accept_default); | |
2079 else if ((raw_keys[1].modifiers & MOD_META) == 0) | |
2080 { | |
2081 struct key_data metified; | |
2082 metified.keysym = raw_keys[1].keysym; | |
2083 metified.modifiers = raw_keys[1].modifiers | MOD_META; | |
2084 | |
2085 /* Search for meta-next-char sequence directly */ | |
2086 cmd = keymap_lookup_1 (k, &metified, accept_default); | |
2087 if (remaining == 1) | |
2088 ; | |
2089 else | |
2090 { | |
2091 cmd = get_keymap (cmd, 0, 1); | |
2092 if (!NILP (cmd)) | |
2093 cmd = raw_lookup_key (cmd, raw_keys + 2, remaining - 1, | |
2094 keys_so_far + 2, | |
2095 accept_default); | |
2096 } | |
2097 } | |
2098 } | |
2099 } | |
2100 if (accept_default && NILP (cmd)) | |
2101 cmd = XKEYMAP (k)->default_binding; | |
2102 return cmd; | |
2103 } | |
2104 | |
2105 /* Value is number if `keys' is too long; NIL if valid but has no definition.*/ | |
2106 /* Caller should gc-protect arguments */ | |
2107 static Lisp_Object | |
2108 lookup_keys (Lisp_Object keymap, int nkeys, Lisp_Object *keys, | |
2109 int accept_default) | |
2110 { | |
2111 /* This function can GC */ | |
2112 struct key_data kkk[20]; | |
2113 struct key_data *raw_keys; | |
2114 int i; | |
2115 | |
2116 if (nkeys == 0) | |
2117 return Qnil; | |
2118 | |
2119 if (nkeys < (countof (kkk))) | |
2120 raw_keys = kkk; | |
2121 else | |
2122 raw_keys = alloca_array (struct key_data, nkeys); | |
2123 | |
2124 for (i = 0; i < nkeys; i++) | |
2125 { | |
2126 define_key_parser (keys[i], &(raw_keys[i])); | |
2127 } | |
2128 return raw_lookup_key (keymap, raw_keys, nkeys, 0, accept_default); | |
2129 } | |
2130 | |
2131 static Lisp_Object | |
2132 lookup_events (Lisp_Object event_head, int nmaps, Lisp_Object keymaps[], | |
2133 int accept_default) | |
2134 { | |
2135 /* This function can GC */ | |
2136 struct key_data kkk[20]; | |
2137 Lisp_Object event; | |
2138 | |
2139 int nkeys; | |
2140 struct key_data *raw_keys; | |
2141 Lisp_Object tem = Qnil; | |
2142 struct gcpro gcpro1, gcpro2; | |
2143 int iii; | |
2144 | |
2145 CHECK_LIVE_EVENT (event_head); | |
2146 | |
2147 nkeys = event_chain_count (event_head); | |
2148 | |
2149 if (nkeys < (countof (kkk))) | |
2150 raw_keys = kkk; | |
2151 else | |
2152 raw_keys = alloca_array (struct key_data, nkeys); | |
2153 | |
2154 nkeys = 0; | |
2155 EVENT_CHAIN_LOOP (event, event_head) | |
2156 define_key_parser (event, &(raw_keys[nkeys++])); | |
2157 GCPRO2 (keymaps[0], event_head); | |
2158 gcpro1.nvars = nmaps; | |
2159 /* ####raw_keys[].keysym slots aren't gc-protected. We rely (but shouldn't) | |
2160 * on somebody else somewhere (obarray) having a pointer to all keysyms. */ | |
2161 for (iii = 0; iii < nmaps; iii++) | |
2162 { | |
2163 tem = raw_lookup_key (keymaps[iii], raw_keys, nkeys, 0, | |
2164 accept_default); | |
2165 if (INTP (tem)) | |
2166 { | |
2167 /* Too long in some local map means don't look at global map */ | |
2168 tem = Qnil; | |
2169 break; | |
2170 } | |
2171 else if (!NILP (tem)) | |
2172 break; | |
2173 } | |
2174 UNGCPRO; | |
2175 return tem; | |
2176 } | |
2177 | |
2178 DEFUN ("lookup-key", Flookup_key, 2, 3, 0, /* | |
2179 In keymap KEYMAP, look up key-sequence KEYS. Return the definition. | |
2180 Nil is returned if KEYS is unbound. See documentation of `define-key' | |
2181 for valid key definitions and key-sequence specifications. | |
2182 A number is returned if KEYS is "too long"; that is, the leading | |
2183 characters fail to be a valid sequence of prefix characters in KEYMAP. | |
2184 The number is how many characters at the front of KEYS | |
2185 it takes to reach a non-prefix command. | |
2186 */ | |
2187 (keymap, keys, accept_default)) | |
2188 { | |
2189 /* This function can GC */ | |
2190 if (VECTORP (keys)) | |
2191 return lookup_keys (keymap, | |
2192 XVECTOR_LENGTH (keys), | |
2193 XVECTOR_DATA (keys), | |
2194 !NILP (accept_default)); | |
2195 else if (SYMBOLP (keys) || CHAR_OR_CHAR_INTP (keys) || CONSP (keys)) | |
2196 return lookup_keys (keymap, 1, &keys, !NILP (accept_default)); | |
2197 else if (STRINGP (keys)) | |
2198 { | |
2199 int length = XSTRING_CHAR_LENGTH (keys); | |
2200 int i; | |
2201 struct key_data *raw_keys = alloca_array (struct key_data, length); | |
2202 if (length == 0) | |
2203 return Qnil; | |
2204 | |
2205 for (i = 0; i < length; i++) | |
2206 { | |
2207 Emchar n = string_char (XSTRING (keys), i); | |
2208 define_key_parser (make_char (n), &(raw_keys[i])); | |
2209 } | |
2210 return raw_lookup_key (keymap, raw_keys, length, 0, | |
2211 !NILP (accept_default)); | |
2212 } | |
2213 else | |
2214 { | |
2215 keys = wrong_type_argument (Qsequencep, keys); | |
2216 return Flookup_key (keymap, keys, accept_default); | |
2217 } | |
2218 } | |
2219 | |
2220 /* Given a key sequence, returns a list of keymaps to search for bindings. | |
2221 Does all manner of semi-hairy heuristics, like looking in the current | |
2222 buffer's map before looking in the global map and looking in the local | |
2223 map of the buffer in which the mouse was clicked in event0 is a click. | |
2224 | |
2225 It would be kind of nice if this were in Lisp so that this semi-hairy | |
2226 semi-heuristic command-lookup behavior could be readily understood and | |
2227 customised. However, this needs to be pretty fast, or performance of | |
2228 keyboard macros goes to shit; putting this in lisp slows macros down | |
2229 2-3x. And they're already slower than v18 by 5-6x. | |
2230 */ | |
2231 | |
2232 struct relevant_maps | |
2233 { | |
2234 int nmaps; | |
2235 unsigned int max_maps; | |
2236 Lisp_Object *maps; | |
2237 struct gcpro *gcpro; | |
2238 }; | |
2239 | |
2240 static void get_relevant_extent_keymaps (Lisp_Object pos, | |
2241 Lisp_Object buffer_or_string, | |
2242 Lisp_Object glyph, | |
2243 struct relevant_maps *closure); | |
2244 static void get_relevant_minor_maps (Lisp_Object buffer, | |
2245 struct relevant_maps *closure); | |
2246 | |
2247 static void | |
2248 relevant_map_push (Lisp_Object map, struct relevant_maps *closure) | |
2249 { | |
2250 unsigned int nmaps = closure->nmaps; | |
2251 | |
2252 if (!KEYMAPP (map)) | |
2253 return; | |
2254 closure->nmaps = nmaps + 1; | |
2255 if (nmaps < closure->max_maps) | |
2256 { | |
2257 closure->maps[nmaps] = map; | |
2258 closure->gcpro->nvars = nmaps; | |
2259 } | |
2260 } | |
2261 | |
2262 static int | |
2263 get_relevant_keymaps (Lisp_Object keys, | |
2264 int max_maps, Lisp_Object maps[]) | |
2265 { | |
2266 /* This function can GC */ | |
2267 Lisp_Object terminal = Qnil; | |
2268 struct gcpro gcpro1; | |
2269 struct relevant_maps closure; | |
2270 struct console *con; | |
2271 | |
2272 GCPRO1 (*maps); | |
2273 gcpro1.nvars = 0; | |
2274 closure.nmaps = 0; | |
2275 closure.max_maps = max_maps; | |
2276 closure.maps = maps; | |
2277 closure.gcpro = &gcpro1; | |
2278 | |
2279 if (EVENTP (keys)) | |
2280 terminal = event_chain_tail (keys); | |
2281 else if (VECTORP (keys)) | |
2282 { | |
2283 int len = XVECTOR_LENGTH (keys); | |
2284 if (len > 0) | |
2285 terminal = XVECTOR_DATA (keys)[len - 1]; | |
2286 } | |
2287 | |
2288 if (EVENTP (terminal)) | |
2289 { | |
2290 CHECK_LIVE_EVENT (terminal); | |
2291 con = event_console_or_selected (terminal); | |
2292 } | |
2293 else | |
2294 con = XCONSOLE (Vselected_console); | |
2295 | |
2296 if (KEYMAPP (con->overriding_terminal_local_map) | |
2297 || KEYMAPP (Voverriding_local_map)) | |
2298 { | |
2299 if (KEYMAPP (con->overriding_terminal_local_map)) | |
2300 relevant_map_push (con->overriding_terminal_local_map, &closure); | |
2301 if (KEYMAPP (Voverriding_local_map)) | |
2302 relevant_map_push (Voverriding_local_map, &closure); | |
2303 } | |
2304 else if (!EVENTP (terminal) | |
2305 || (XEVENT (terminal)->event_type != button_press_event | |
2306 && XEVENT (terminal)->event_type != button_release_event)) | |
2307 { | |
2308 Lisp_Object tem; | |
2309 XSETBUFFER (tem, current_buffer); | |
2310 /* It's not a mouse event; order of keymaps searched is: | |
2311 o keymap of any/all extents under the mouse | |
2312 o minor-mode maps | |
2313 o local-map of current-buffer | |
2314 o global-map | |
2315 */ | |
2316 /* The terminal element of the lookup may be nil or a keysym. | |
2317 In those cases we don't want to check for an extent | |
2318 keymap. */ | |
2319 if (EVENTP (terminal)) | |
2320 { | |
2321 get_relevant_extent_keymaps (make_int (BUF_PT (current_buffer)), | |
2322 tem, Qnil, &closure); | |
2323 } | |
2324 get_relevant_minor_maps (tem, &closure); | |
2325 | |
2326 tem = current_buffer->keymap; | |
2327 if (!NILP (tem)) | |
2328 relevant_map_push (tem, &closure); | |
2329 } | |
2330 #ifdef HAVE_WINDOW_SYSTEM | |
2331 else | |
2332 { | |
2333 /* It's a mouse event; order of keymaps searched is: | |
2334 o vertical-divider-map, if event is over a divider | |
2335 o local-map of mouse-grabbed-buffer | |
2336 o keymap of any/all extents under the mouse | |
2337 if the mouse is over a modeline: | |
2338 o modeline-map of buffer corresponding to that modeline | |
2339 o else, local-map of buffer under the mouse | |
2340 o minor-mode maps | |
2341 o local-map of current-buffer | |
2342 o global-map | |
2343 */ | |
2344 Lisp_Object window = Fevent_window (terminal); | |
2345 | |
2346 if (!NILP (Fevent_over_vertical_divider_p (terminal))) | |
2347 { | |
2348 if (KEYMAPP (Vvertical_divider_map)) | |
2349 relevant_map_push (Vvertical_divider_map, &closure); | |
2350 } | |
2351 | |
2352 if (BUFFERP (Vmouse_grabbed_buffer)) | |
2353 { | |
2354 Lisp_Object map = XBUFFER (Vmouse_grabbed_buffer)->keymap; | |
2355 | |
2356 get_relevant_minor_maps (Vmouse_grabbed_buffer, &closure); | |
2357 if (!NILP (map)) | |
2358 relevant_map_push (map, &closure); | |
2359 } | |
2360 | |
2361 if (!NILP (window)) | |
2362 { | |
2363 Lisp_Object buffer = Fwindow_buffer (window); | |
2364 | |
2365 if (!NILP (buffer)) | |
2366 { | |
2367 if (!NILP (Fevent_over_modeline_p (terminal))) | |
2368 { | |
2369 Lisp_Object map = symbol_value_in_buffer (Qmodeline_map, | |
2370 buffer); | |
2371 | |
2372 get_relevant_extent_keymaps | |
2373 (Fevent_modeline_position (terminal), | |
2374 XBUFFER (buffer)->generated_modeline_string, | |
2375 /* #### third arg should maybe be a glyph. */ | |
2376 Qnil, &closure); | |
2377 | |
2378 if (!UNBOUNDP (map) && !NILP (map)) | |
2379 relevant_map_push (get_keymap (map, 1, 1), &closure); | |
2380 } | |
2381 else | |
2382 { | |
2383 get_relevant_extent_keymaps (Fevent_point (terminal), buffer, | |
2384 Fevent_glyph_extent (terminal), | |
2385 &closure); | |
2386 } | |
2387 | |
2388 if (!EQ (buffer, Vmouse_grabbed_buffer)) /* already pushed */ | |
2389 { | |
2390 Lisp_Object map = XBUFFER (buffer)->keymap; | |
2391 | |
2392 get_relevant_minor_maps (buffer, &closure); | |
2393 if (!NILP(map)) | |
2394 relevant_map_push (map, &closure); | |
2395 } | |
2396 } | |
2397 } | |
2398 else if (!NILP (Fevent_over_toolbar_p (terminal))) | |
2399 { | |
2400 Lisp_Object map = Fsymbol_value (Qtoolbar_map); | |
2401 | |
2402 if (!UNBOUNDP (map) && !NILP (map)) | |
2403 relevant_map_push (map, &closure); | |
2404 } | |
2405 } | |
2406 #endif /* HAVE_WINDOW_SYSTEM */ | |
2407 | |
2408 { | |
2409 int nmaps = closure.nmaps; | |
2410 /* Silently truncate at 100 keymaps to prevent infinite lossage */ | |
2411 if (nmaps >= max_maps && max_maps > 0) | |
2412 maps[max_maps - 1] = Vcurrent_global_map; | |
2413 else | |
2414 maps[nmaps] = Vcurrent_global_map; | |
2415 UNGCPRO; | |
2416 return nmaps + 1; | |
2417 } | |
2418 } | |
2419 | |
2420 /* Returns a set of keymaps extracted from the extents at POS in | |
2421 BUFFER_OR_STRING. The GLYPH arg, if specified, is one more extent | |
2422 to look for a keymap in, and if it has one, its keymap will be the | |
2423 first element in the list returned. This is so we can correctly | |
2424 search the keymaps associated with glyphs which may be physically | |
2425 disjoint from their extents: for example, if a glyph is out in the | |
2426 margin, we should still consult the keymap of that glyph's extent, | |
2427 which may not itself be under the mouse. | |
2428 */ | |
2429 | |
2430 static void | |
2431 get_relevant_extent_keymaps (Lisp_Object pos, Lisp_Object buffer_or_string, | |
2432 Lisp_Object glyph, | |
2433 struct relevant_maps *closure) | |
2434 { | |
2435 /* This function can GC */ | |
2436 /* the glyph keymap, if any, comes first. | |
2437 (Processing it twice is no big deal: noop.) */ | |
2438 if (!NILP (glyph)) | |
2439 { | |
2440 Lisp_Object keymap = Fextent_property (glyph, Qkeymap, Qnil); | |
2441 if (!NILP (keymap)) | |
2442 relevant_map_push (get_keymap (keymap, 1, 1), closure); | |
2443 } | |
2444 | |
2445 /* Next check the extents at the text position, if any */ | |
2446 if (!NILP (pos)) | |
2447 { | |
2448 Lisp_Object extent; | |
2449 for (extent = Fextent_at (pos, buffer_or_string, Qkeymap, Qnil, Qnil); | |
2450 !NILP (extent); | |
2451 extent = Fextent_at (pos, buffer_or_string, Qkeymap, extent, Qnil)) | |
2452 { | |
2453 Lisp_Object keymap = Fextent_property (extent, Qkeymap, Qnil); | |
2454 if (!NILP (keymap)) | |
2455 relevant_map_push (get_keymap (keymap, 1, 1), closure); | |
2456 QUIT; | |
2457 } | |
2458 } | |
2459 } | |
2460 | |
2461 static Lisp_Object | |
2462 minor_mode_keymap_predicate (Lisp_Object assoc, Lisp_Object buffer) | |
2463 { | |
2464 /* This function can GC */ | |
2465 if (CONSP (assoc)) | |
2466 { | |
2467 Lisp_Object sym = XCAR (assoc); | |
2468 if (SYMBOLP (sym)) | |
2469 { | |
2470 Lisp_Object val = symbol_value_in_buffer (sym, buffer); | |
2471 if (!NILP (val) && !UNBOUNDP (val)) | |
2472 { | |
2473 Lisp_Object map = get_keymap (XCDR (assoc), 0, 1); | |
2474 return map; | |
2475 } | |
2476 } | |
2477 } | |
2478 return Qnil; | |
2479 } | |
2480 | |
2481 static void | |
2482 get_relevant_minor_maps (Lisp_Object buffer, struct relevant_maps *closure) | |
2483 { | |
2484 /* This function can GC */ | |
2485 Lisp_Object alist; | |
2486 | |
2487 /* Will you ever lose badly if you make this circular! */ | |
2488 for (alist = symbol_value_in_buffer (Qminor_mode_map_alist, buffer); | |
2489 CONSP (alist); | |
2490 alist = XCDR (alist)) | |
2491 { | |
2492 Lisp_Object m = minor_mode_keymap_predicate (XCAR (alist), | |
2493 buffer); | |
2494 if (!NILP (m)) relevant_map_push (m, closure); | |
2495 QUIT; | |
2496 } | |
2497 } | |
2498 | |
2499 /* #### Would map-current-keymaps be a better thing?? */ | |
2500 DEFUN ("current-keymaps", Fcurrent_keymaps, 0, 1, 0, /* | |
2501 Return a list of the current keymaps that will be searched for bindings. | |
2502 This lists keymaps such as the current local map and the minor-mode maps, | |
2503 but does not list the parents of those keymaps. | |
2504 EVENT-OR-KEYS controls which keymaps will be listed. | |
2505 If EVENT-OR-KEYS is a mouse event (or a vector whose last element is a | |
2506 mouse event), the keymaps for that mouse event will be listed (see | |
2507 `key-binding'). Otherwise, the keymaps for key presses will be listed. | |
2508 */ | |
2509 (event_or_keys)) | |
2510 { | |
2511 /* This function can GC */ | |
2512 struct gcpro gcpro1; | |
2513 Lisp_Object maps[100]; | |
2514 Lisp_Object *gubbish = maps; | |
2515 int nmaps; | |
2516 | |
2517 GCPRO1 (event_or_keys); | |
2518 nmaps = get_relevant_keymaps (event_or_keys, countof (maps), | |
2519 gubbish); | |
2520 if (nmaps > countof (maps)) | |
2521 { | |
2522 gubbish = alloca_array (Lisp_Object, nmaps); | |
2523 nmaps = get_relevant_keymaps (event_or_keys, nmaps, gubbish); | |
2524 } | |
2525 UNGCPRO; | |
2526 return Flist (nmaps, gubbish); | |
2527 } | |
2528 | |
2529 DEFUN ("key-binding", Fkey_binding, 1, 2, 0, /* | |
2530 Return the binding for command KEYS in current keymaps. | |
2531 KEYS is a string, a vector of events, or a vector of key-description lists | |
2532 as described in the documentation for the `define-key' function. | |
2533 The binding is probably a symbol with a function definition; see | |
2534 the documentation for `lookup-key' for more information. | |
2535 | |
2536 For key-presses, the order of keymaps searched is: | |
2537 - the `keymap' property of any extent(s) at point; | |
2538 - any applicable minor-mode maps; | |
2539 - the current-local-map of the current-buffer; | |
2540 - the current global map. | |
2541 | |
2542 For mouse-clicks, the order of keymaps searched is: | |
2543 - the current-local-map of the `mouse-grabbed-buffer' if any; | |
2544 - vertical-divider-map, if the event happened over a vertical divider | |
2545 - the `keymap' property of any extent(s) at the position of the click | |
2546 (this includes modeline extents); | |
2547 - the modeline-map of the buffer corresponding to the modeline under | |
2548 the mouse (if the click happened over a modeline); | |
2549 - the value of toolbar-map in the current-buffer (if the click | |
2550 happened over a toolbar); | |
2551 - the current-local-map of the buffer under the mouse (does not | |
2552 apply to toolbar clicks); | |
2553 - any applicable minor-mode maps; | |
2554 - the current global map. | |
2555 | |
2556 Note that if `overriding-local-map' or `overriding-terminal-local-map' | |
2557 is non-nil, *only* those two maps and the current global map are searched. | |
2558 */ | |
2559 (keys, accept_default)) | |
2560 { | |
2561 /* This function can GC */ | |
2562 int i; | |
2563 Lisp_Object maps[100]; | |
2564 int nmaps; | |
2565 struct gcpro gcpro1, gcpro2; | |
2566 GCPRO2 (keys, accept_default); /* get_relevant_keymaps may autoload */ | |
2567 | |
2568 nmaps = get_relevant_keymaps (keys, countof (maps), maps); | |
2569 | |
2570 UNGCPRO; | |
2571 | |
2572 if (EVENTP (keys)) /* unadvertised "feature" for the future */ | |
2573 return lookup_events (keys, nmaps, maps, !NILP (accept_default)); | |
2574 | |
2575 for (i = 0; i < nmaps; i++) | |
2576 { | |
2577 Lisp_Object tem = Flookup_key (maps[i], keys, | |
2578 accept_default); | |
2579 if (INTP (tem)) | |
2580 { | |
2581 /* Too long in some local map means don't look at global map */ | |
2582 return Qnil; | |
2583 } | |
2584 else if (!NILP (tem)) | |
2585 return tem; | |
2586 } | |
2587 return Qnil; | |
2588 } | |
2589 | |
2590 static Lisp_Object | |
2591 process_event_binding_result (Lisp_Object result) | |
2592 { | |
2593 if (EQ (result, Qundefined)) | |
2594 /* The suppress-keymap function binds keys to 'undefined - special-case | |
2595 that here, so that being bound to that has the same error-behavior as | |
2596 not being defined at all. | |
2597 */ | |
2598 result = Qnil; | |
2599 if (!NILP (result)) | |
2600 { | |
2601 Lisp_Object map; | |
2602 /* Snap out possible keymap indirections */ | |
2603 map = get_keymap (result, 0, 1); | |
2604 if (!NILP (map)) | |
2605 result = map; | |
2606 } | |
2607 | |
2608 return result; | |
2609 } | |
2610 | |
2611 /* Attempts to find a command corresponding to the event-sequence | |
2612 whose head is event0 (sequence is threaded though event_next). | |
2613 | |
2614 The return value will be | |
2615 | |
2616 -- nil (there is no binding; this will also be returned | |
2617 whenever the event chain is "too long", i.e. there | |
2618 is a non-nil, non-keymap binding for a prefix of | |
2619 the event chain) | |
2620 -- a keymap (part of a command has been specified) | |
2621 -- a command (anything that satisfies `commandp'; this includes | |
2622 some symbols, lists, subrs, strings, vectors, and | |
2623 compiled-function objects) */ | |
2624 Lisp_Object | |
2625 event_binding (Lisp_Object event0, int accept_default) | |
2626 { | |
2627 /* This function can GC */ | |
2628 Lisp_Object maps[100]; | |
2629 int nmaps; | |
2630 | |
2631 assert (EVENTP (event0)); | |
2632 | |
2633 nmaps = get_relevant_keymaps (event0, countof (maps), maps); | |
2634 if (nmaps > countof (maps)) | |
2635 nmaps = countof (maps); | |
2636 return process_event_binding_result (lookup_events (event0, nmaps, maps, | |
2637 accept_default)); | |
2638 } | |
2639 | |
2640 /* like event_binding, but specify a keymap to search */ | |
2641 | |
2642 Lisp_Object | |
2643 event_binding_in (Lisp_Object event0, Lisp_Object keymap, int accept_default) | |
2644 { | |
2645 /* This function can GC */ | |
2646 if (!KEYMAPP (keymap)) | |
2647 return Qnil; | |
2648 | |
2649 return process_event_binding_result (lookup_events (event0, 1, &keymap, | |
2650 accept_default)); | |
2651 } | |
2652 | |
2653 /* Attempts to find a function key mapping corresponding to the | |
2654 event-sequence whose head is event0 (sequence is threaded through | |
2655 event_next). The return value will be the same as for event_binding(). */ | |
2656 Lisp_Object | |
2657 munging_key_map_event_binding (Lisp_Object event0, | |
2658 enum munge_me_out_the_door munge) | |
2659 { | |
2660 Lisp_Object keymap = (munge == MUNGE_ME_FUNCTION_KEY) ? | |
2661 CONSOLE_FUNCTION_KEY_MAP (event_console_or_selected (event0)) : | |
2662 Vkey_translation_map; | |
2663 | |
2664 if (NILP (keymap)) | |
2665 return Qnil; | |
2666 | |
2667 return process_event_binding_result (lookup_events (event0, 1, &keymap, 1)); | |
2668 } | |
2669 | |
2670 | |
2671 /************************************************************************/ | |
2672 /* Setting/querying the global and local maps */ | |
2673 /************************************************************************/ | |
2674 | |
2675 DEFUN ("use-global-map", Fuse_global_map, 1, 1, 0, /* | |
2676 Select KEYMAP as the global keymap. | |
2677 */ | |
2678 (keymap)) | |
2679 { | |
2680 /* This function can GC */ | |
2681 keymap = get_keymap (keymap, 1, 1); | |
2682 Vcurrent_global_map = keymap; | |
2683 return Qnil; | |
2684 } | |
2685 | |
2686 DEFUN ("use-local-map", Fuse_local_map, 1, 2, 0, /* | |
2687 Select KEYMAP as the local keymap in BUFFER. | |
2688 If KEYMAP is nil, that means no local keymap. | |
2689 If BUFFER is nil, the current buffer is assumed. | |
2690 */ | |
2691 (keymap, buffer)) | |
2692 { | |
2693 /* This function can GC */ | |
2694 struct buffer *b = decode_buffer (buffer, 0); | |
2695 if (!NILP (keymap)) | |
2696 keymap = get_keymap (keymap, 1, 1); | |
2697 | |
2698 b->keymap = keymap; | |
2699 | |
2700 return Qnil; | |
2701 } | |
2702 | |
2703 DEFUN ("current-local-map", Fcurrent_local_map, 0, 1, 0, /* | |
2704 Return BUFFER's local keymap, or nil if it has none. | |
2705 If BUFFER is nil, the current buffer is assumed. | |
2706 */ | |
2707 (buffer)) | |
2708 { | |
2709 struct buffer *b = decode_buffer (buffer, 0); | |
2710 return b->keymap; | |
2711 } | |
2712 | |
2713 DEFUN ("current-global-map", Fcurrent_global_map, 0, 0, 0, /* | |
2714 Return the current global keymap. | |
2715 */ | |
2716 ()) | |
2717 { | |
2718 return Vcurrent_global_map; | |
2719 } | |
2720 | |
2721 | |
2722 /************************************************************************/ | |
2723 /* Mapping over keymap elements */ | |
2724 /************************************************************************/ | |
2725 | |
2726 /* Since keymaps are arranged in a hierarchy, one keymap per bucky bit or | |
2727 prefix key, it's not entirely obvious what map-keymap should do, but | |
2728 what it does is: map over all keys in this map; then recursively map | |
2729 over all submaps of this map that are "bucky" submaps. This means that, | |
2730 when mapping over a keymap, it appears that "x" and "C-x" are in the | |
2731 same map, although "C-x" is really in the "control" submap of this one. | |
2732 However, since we don't recursively descend the submaps that are bound | |
2733 to prefix keys (like C-x, C-h, etc) the caller will have to recurse on | |
2734 those explicitly, if that's what they want. | |
2735 | |
2736 So the end result of this is that the bucky keymaps (the ones indexed | |
2737 under the large integers returned from MAKE_MODIFIER_HASH_KEY()) are | |
2738 invisible from elisp. They're just an implementation detail that code | |
2739 outside of this file doesn't need to know about. | |
2740 */ | |
2741 | |
2742 struct map_keymap_unsorted_closure | |
2743 { | |
2744 void (*fn) (CONST struct key_data *, Lisp_Object binding, void *arg); | |
2745 void *arg; | |
2746 unsigned int modifiers; | |
2747 }; | |
2748 | |
2749 /* used by map_keymap() */ | |
2750 static int | |
2751 map_keymap_unsorted_mapper (Lisp_Object keysym, Lisp_Object value, | |
2752 void *map_keymap_unsorted_closure) | |
2753 { | |
2754 /* This function can GC */ | |
2755 struct map_keymap_unsorted_closure *closure = | |
2756 (struct map_keymap_unsorted_closure *) map_keymap_unsorted_closure; | |
2757 unsigned int modifiers = closure->modifiers; | |
2758 unsigned int mod_bit; | |
2759 mod_bit = MODIFIER_HASH_KEY_BITS (keysym); | |
2760 if (mod_bit != 0) | |
2761 { | |
2762 int omod = modifiers; | |
2763 closure->modifiers = (modifiers | mod_bit); | |
2764 value = get_keymap (value, 1, 0); | |
2765 elisp_maphash (map_keymap_unsorted_mapper, | |
2766 XKEYMAP (value)->table, | |
2767 map_keymap_unsorted_closure); | |
2768 closure->modifiers = omod; | |
2769 } | |
2770 else | |
2771 { | |
2772 struct key_data key; | |
2773 key.keysym = keysym; | |
2774 key.modifiers = modifiers; | |
2775 ((*closure->fn) (&key, value, closure->arg)); | |
2776 } | |
2777 return 0; | |
2778 } | |
2779 | |
2780 | |
2781 struct map_keymap_sorted_closure | |
2782 { | |
2783 Lisp_Object *result_locative; | |
2784 }; | |
2785 | |
2786 /* used by map_keymap_sorted() */ | |
2787 static int | |
2788 map_keymap_sorted_mapper (Lisp_Object key, Lisp_Object value, | |
2789 void *map_keymap_sorted_closure) | |
2790 { | |
2791 struct map_keymap_sorted_closure *cl = | |
2792 (struct map_keymap_sorted_closure *) map_keymap_sorted_closure; | |
2793 Lisp_Object *list = cl->result_locative; | |
2794 *list = Fcons (Fcons (key, value), *list); | |
2795 return 0; | |
2796 } | |
2797 | |
2798 | |
2799 /* used by map_keymap_sorted(), describe_map_sort_predicate(), | |
2800 and keymap_submaps(). | |
2801 */ | |
2802 static int | |
2803 map_keymap_sort_predicate (Lisp_Object obj1, Lisp_Object obj2, | |
2804 Lisp_Object pred) | |
2805 { | |
2806 /* obj1 and obj2 are conses with keysyms in their cars. Cdrs are ignored. | |
2807 */ | |
2808 unsigned int bit1, bit2; | |
2809 int sym1_p = 0; | |
2810 int sym2_p = 0; | |
2811 obj1 = XCAR (obj1); | |
2812 obj2 = XCAR (obj2); | |
2813 | |
2814 if (EQ (obj1, obj2)) | |
2815 return -1; | |
2816 bit1 = MODIFIER_HASH_KEY_BITS (obj1); | |
2817 bit2 = MODIFIER_HASH_KEY_BITS (obj2); | |
2818 | |
2819 /* If either is a symbol with a character-set-property, then sort it by | |
2820 that code instead of alphabetically. | |
2821 */ | |
2822 if (! bit1 && SYMBOLP (obj1)) | |
2823 { | |
2824 Lisp_Object code = Fget (obj1, Vcharacter_set_property, Qnil); | |
2825 if (CHAR_OR_CHAR_INTP (code)) | |
2826 { | |
2827 obj1 = code; | |
2828 CHECK_CHAR_COERCE_INT (obj1); | |
2829 sym1_p = 1; | |
2830 } | |
2831 } | |
2832 if (! bit2 && SYMBOLP (obj2)) | |
2833 { | |
2834 Lisp_Object code = Fget (obj2, Vcharacter_set_property, Qnil); | |
2835 if (CHAR_OR_CHAR_INTP (code)) | |
2836 { | |
2837 obj2 = code; | |
2838 CHECK_CHAR_COERCE_INT (obj2); | |
2839 sym2_p = 1; | |
2840 } | |
2841 } | |
2842 | |
2843 /* all symbols (non-ASCIIs) come after characters (ASCIIs) */ | |
2844 if (XTYPE (obj1) != XTYPE (obj2)) | |
2845 return SYMBOLP (obj2) ? 1 : -1; | |
2846 | |
2847 if (! bit1 && CHARP (obj1)) /* they're both ASCII */ | |
2848 { | |
2849 int o1 = XCHAR (obj1); | |
2850 int o2 = XCHAR (obj2); | |
2851 if (o1 == o2 && /* If one started out as a symbol and the */ | |
2852 sym1_p != sym2_p) /* other didn't, the symbol comes last. */ | |
2853 return sym2_p ? 1 : -1; | |
2854 | |
2855 return o1 < o2 ? 1 : -1; /* else just compare them */ | |
2856 } | |
2857 | |
2858 /* else they're both symbols. If they're both buckys, then order them. */ | |
2859 if (bit1 && bit2) | |
2860 return bit1 < bit2 ? 1 : -1; | |
2861 | |
2862 /* if only one is a bucky, then it comes later */ | |
2863 if (bit1 || bit2) | |
2864 return bit2 ? 1 : -1; | |
2865 | |
2866 /* otherwise, string-sort them. */ | |
2867 { | |
2868 char *s1 = (char *) string_data (XSYMBOL (obj1)->name); | |
2869 char *s2 = (char *) string_data (XSYMBOL (obj2)->name); | |
2870 #ifdef I18N2 | |
2871 return 0 > strcoll (s1, s2) ? 1 : -1; | |
2872 #else | |
2873 return 0 > strcmp (s1, s2) ? 1 : -1; | |
2874 #endif | |
2875 } | |
2876 } | |
2877 | |
2878 | |
2879 /* used by map_keymap() */ | |
2880 static void | |
2881 map_keymap_sorted (Lisp_Object keymap_table, | |
2882 unsigned int modifiers, | |
2883 void (*function) (CONST struct key_data *key, | |
2884 Lisp_Object binding, | |
2885 void *map_keymap_sorted_closure), | |
2886 void *map_keymap_sorted_closure) | |
2887 { | |
2888 /* This function can GC */ | |
2889 struct gcpro gcpro1; | |
2890 Lisp_Object contents = Qnil; | |
2891 | |
2892 if (XINT (Fhash_table_count (keymap_table)) == 0) | |
2893 return; | |
2894 | |
2895 GCPRO1 (contents); | |
2896 | |
2897 { | |
2898 struct map_keymap_sorted_closure c1; | |
2899 c1.result_locative = &contents; | |
2900 elisp_maphash (map_keymap_sorted_mapper, keymap_table, &c1); | |
2901 } | |
2902 contents = list_sort (contents, Qnil, map_keymap_sort_predicate); | |
2903 for (; !NILP (contents); contents = XCDR (contents)) | |
2904 { | |
2905 Lisp_Object keysym = XCAR (XCAR (contents)); | |
2906 Lisp_Object binding = XCDR (XCAR (contents)); | |
2907 unsigned int sub_bits = MODIFIER_HASH_KEY_BITS (keysym); | |
2908 if (sub_bits != 0) | |
2909 map_keymap_sorted (XKEYMAP (get_keymap (binding, | |
2910 1, 1))->table, | |
2911 (modifiers | sub_bits), | |
2912 function, | |
2913 map_keymap_sorted_closure); | |
2914 else | |
2915 { | |
2916 struct key_data k; | |
2917 k.keysym = keysym; | |
2918 k.modifiers = modifiers; | |
2919 ((*function) (&k, binding, map_keymap_sorted_closure)); | |
2920 } | |
2921 } | |
2922 UNGCPRO; | |
2923 } | |
2924 | |
2925 | |
2926 /* used by Fmap_keymap() */ | |
2927 static void | |
2928 map_keymap_mapper (CONST struct key_data *key, | |
2929 Lisp_Object binding, | |
2930 void *function) | |
2931 { | |
2932 /* This function can GC */ | |
2933 Lisp_Object fn; | |
2934 VOID_TO_LISP (fn, function); | |
2935 call2 (fn, make_key_description (key, 1), binding); | |
2936 } | |
2937 | |
2938 | |
2939 static void | |
2940 map_keymap (Lisp_Object keymap_table, int sort_first, | |
2941 void (*function) (CONST struct key_data *key, | |
2942 Lisp_Object binding, | |
2943 void *fn_arg), | |
2944 void *fn_arg) | |
2945 { | |
2946 /* This function can GC */ | |
2947 if (sort_first) | |
2948 map_keymap_sorted (keymap_table, 0, function, fn_arg); | |
2949 else | |
2950 { | |
2951 struct map_keymap_unsorted_closure map_keymap_unsorted_closure; | |
2952 map_keymap_unsorted_closure.fn = function; | |
2953 map_keymap_unsorted_closure.arg = fn_arg; | |
2954 map_keymap_unsorted_closure.modifiers = 0; | |
2955 elisp_maphash (map_keymap_unsorted_mapper, keymap_table, | |
2956 &map_keymap_unsorted_closure); | |
2957 } | |
2958 } | |
2959 | |
2960 DEFUN ("map-keymap", Fmap_keymap, 2, 3, 0, /* | |
2961 Apply FUNCTION to each element of KEYMAP. | |
2962 FUNCTION will be called with two arguments: a key-description list, and | |
2963 the binding. The order in which the elements of the keymap are passed to | |
2964 the function is unspecified. If the function inserts new elements into | |
2965 the keymap, it may or may not be called with them later. No element of | |
2966 the keymap will ever be passed to the function more than once. | |
2967 | |
2968 The function will not be called on elements of this keymap's parents | |
2969 \(see the function `keymap-parents') or upon keymaps which are contained | |
2970 within this keymap (multi-character definitions). | |
2971 It will be called on "meta" characters since they are not really | |
2972 two-character sequences. | |
2973 | |
2974 If the optional third argument SORT-FIRST is non-nil, then the elements of | |
2975 the keymap will be passed to the mapper function in a canonical order. | |
2976 Otherwise, they will be passed in hash (that is, random) order, which is | |
2977 faster. | |
2978 */ | |
2979 (function, keymap, sort_first)) | |
2980 { | |
2981 /* This function can GC */ | |
2982 struct gcpro gcpro1, gcpro2; | |
2983 | |
2984 /* tolerate obviously transposed args */ | |
2985 if (!NILP (Fkeymapp (function))) | |
2986 { | |
2987 Lisp_Object tmp = function; | |
2988 function = keymap; | |
2989 keymap = tmp; | |
2990 } | |
2991 GCPRO2 (function, keymap); | |
2992 keymap = get_keymap (keymap, 1, 1); | |
2993 map_keymap (XKEYMAP (keymap)->table, !NILP (sort_first), | |
2994 map_keymap_mapper, LISP_TO_VOID (function)); | |
2995 UNGCPRO; | |
2996 return Qnil; | |
2997 } | |
2998 | |
2999 | |
3000 | |
3001 /************************************************************************/ | |
3002 /* Accessible keymaps */ | |
3003 /************************************************************************/ | |
3004 | |
3005 struct accessible_keymaps_closure | |
3006 { | |
3007 Lisp_Object tail; | |
3008 }; | |
3009 | |
3010 | |
3011 static void | |
3012 accessible_keymaps_mapper_1 (Lisp_Object keysym, Lisp_Object contents, | |
3013 unsigned int modifiers, | |
3014 struct accessible_keymaps_closure *closure) | |
3015 { | |
3016 /* This function can GC */ | |
3017 unsigned int subbits = MODIFIER_HASH_KEY_BITS (keysym); | |
3018 | |
3019 if (subbits != 0) | |
3020 { | |
3021 Lisp_Object submaps; | |
3022 | |
3023 contents = get_keymap (contents, 1, 1); | |
3024 submaps = keymap_submaps (contents); | |
3025 for (; !NILP (submaps); submaps = XCDR (submaps)) | |
3026 { | |
3027 accessible_keymaps_mapper_1 (XCAR (XCAR (submaps)), | |
3028 XCDR (XCAR (submaps)), | |
3029 (subbits | modifiers), | |
3030 closure); | |
3031 } | |
3032 } | |
3033 else | |
3034 { | |
3035 Lisp_Object thisseq = Fcar (Fcar (closure->tail)); | |
3036 Lisp_Object cmd = get_keyelt (contents, 1); | |
3037 Lisp_Object vec; | |
3038 int j; | |
3039 int len; | |
3040 struct key_data key; | |
3041 key.keysym = keysym; | |
3042 key.modifiers = modifiers; | |
3043 | |
3044 if (NILP (cmd)) | |
3045 abort (); | |
3046 cmd = get_keymap (cmd, 0, 1); | |
3047 if (!KEYMAPP (cmd)) | |
3048 abort (); | |
3049 | |
3050 vec = make_vector (XVECTOR_LENGTH (thisseq) + 1, Qnil); | |
3051 len = XVECTOR_LENGTH (thisseq); | |
3052 for (j = 0; j < len; j++) | |
3053 XVECTOR_DATA (vec) [j] = XVECTOR_DATA (thisseq) [j]; | |
3054 XVECTOR_DATA (vec) [j] = make_key_description (&key, 1); | |
3055 | |
3056 nconc2 (closure->tail, list1 (Fcons (vec, cmd))); | |
3057 } | |
3058 } | |
3059 | |
3060 | |
3061 static Lisp_Object | |
3062 accessible_keymaps_keymap_mapper (Lisp_Object thismap, void *arg) | |
3063 { | |
3064 /* This function can GC */ | |
3065 struct accessible_keymaps_closure *closure = | |
3066 (struct accessible_keymaps_closure *) arg; | |
3067 Lisp_Object submaps = keymap_submaps (thismap); | |
3068 | |
3069 for (; !NILP (submaps); submaps = XCDR (submaps)) | |
3070 { | |
3071 accessible_keymaps_mapper_1 (XCAR (XCAR (submaps)), | |
3072 XCDR (XCAR (submaps)), | |
3073 0, | |
3074 closure); | |
3075 } | |
3076 return Qnil; | |
3077 } | |
3078 | |
3079 | |
3080 DEFUN ("accessible-keymaps", Faccessible_keymaps, 1, 2, 0, /* | |
3081 Find all keymaps accessible via prefix characters from KEYMAP. | |
3082 Returns a list of elements of the form (KEYS . MAP), where the sequence | |
3083 KEYS starting from KEYMAP gets you to MAP. These elements are ordered | |
3084 so that the KEYS increase in length. The first element is ([] . KEYMAP). | |
3085 An optional argument PREFIX, if non-nil, should be a key sequence; | |
3086 then the value includes only maps for prefixes that start with PREFIX. | |
3087 */ | |
3088 (keymap, prefix)) | |
3089 { | |
3090 /* This function can GC */ | |
3091 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4; | |
3092 Lisp_Object accessible_keymaps = Qnil; | |
3093 struct accessible_keymaps_closure c; | |
3094 c.tail = Qnil; | |
3095 GCPRO4 (accessible_keymaps, c.tail, prefix, keymap); | |
3096 | |
3097 retry: | |
3098 keymap = get_keymap (keymap, 1, 1); | |
3099 if (NILP (prefix)) | |
3100 prefix = make_vector (0, Qnil); | |
3101 else if (!VECTORP (prefix) || STRINGP (prefix)) | |
3102 { | |
3103 prefix = wrong_type_argument (Qarrayp, prefix); | |
3104 goto retry; | |
3105 } | |
3106 else | |
3107 { | |
3108 int len = XINT (Flength (prefix)); | |
3109 Lisp_Object def = Flookup_key (keymap, prefix, Qnil); | |
3110 Lisp_Object p; | |
3111 int iii; | |
3112 struct gcpro ngcpro1; | |
3113 | |
3114 def = get_keymap (def, 0, 1); | |
3115 if (!KEYMAPP (def)) | |
3116 goto RETURN; | |
3117 | |
3118 keymap = def; | |
3119 p = make_vector (len, Qnil); | |
3120 NGCPRO1 (p); | |
3121 for (iii = 0; iii < len; iii++) | |
3122 { | |
3123 struct key_data key; | |
3124 define_key_parser (Faref (prefix, make_int (iii)), &key); | |
3125 XVECTOR_DATA (p)[iii] = make_key_description (&key, 1); | |
3126 } | |
3127 NUNGCPRO; | |
3128 prefix = p; | |
3129 } | |
3130 | |
3131 accessible_keymaps = list1 (Fcons (prefix, keymap)); | |
3132 | |
3133 /* For each map in the list maps, | |
3134 look at any other maps it points to | |
3135 and stick them at the end if they are not already in the list */ | |
3136 | |
3137 for (c.tail = accessible_keymaps; | |
3138 !NILP (c.tail); | |
3139 c.tail = XCDR (c.tail)) | |
3140 { | |
3141 Lisp_Object thismap = Fcdr (Fcar (c.tail)); | |
3142 CHECK_KEYMAP (thismap); | |
3143 traverse_keymaps (thismap, Qnil, | |
3144 accessible_keymaps_keymap_mapper, &c); | |
3145 } | |
3146 RETURN: | |
3147 UNGCPRO; | |
3148 return accessible_keymaps; | |
3149 } | |
3150 | |
3151 | |
3152 | |
3153 /************************************************************************/ | |
3154 /* Pretty descriptions of key sequences */ | |
3155 /************************************************************************/ | |
3156 | |
3157 DEFUN ("key-description", Fkey_description, 1, 1, 0, /* | |
3158 Return a pretty description of key-sequence KEYS. | |
3159 Control characters turn into "C-foo" sequences, meta into "M-foo", | |
3160 spaces are put between sequence elements, etc... | |
3161 */ | |
3162 (keys)) | |
3163 { | |
3164 if (CHAR_OR_CHAR_INTP (keys) || CONSP (keys) || SYMBOLP (keys) | |
3165 || EVENTP (keys)) | |
3166 { | |
3167 return Fsingle_key_description (keys); | |
3168 } | |
3169 else if (VECTORP (keys) || | |
3170 STRINGP (keys)) | |
3171 { | |
3172 Lisp_Object string = Qnil; | |
3173 /* Lisp_Object sep = Qnil; */ | |
3174 int size = XINT (Flength (keys)); | |
3175 int i; | |
3176 | |
3177 for (i = 0; i < size; i++) | |
3178 { | |
3179 Lisp_Object s2 = Fsingle_key_description | |
3180 (STRINGP (keys) | |
3181 ? make_char (string_char (XSTRING (keys), i)) | |
3182 : XVECTOR_DATA (keys)[i]); | |
3183 | |
3184 if (i == 0) | |
3185 string = s2; | |
3186 else | |
3187 { | |
3188 /* if (NILP (sep)) Lisp_Object sep = build_string (" ") */; | |
3189 string = concat2 (string, concat2 (Vsingle_space_string, s2)); | |
3190 } | |
3191 } | |
3192 return string; | |
3193 } | |
3194 return Fkey_description (wrong_type_argument (Qsequencep, keys)); | |
3195 } | |
3196 | |
3197 DEFUN ("single-key-description", Fsingle_key_description, 1, 1, 0, /* | |
3198 Return a pretty description of command character KEY. | |
3199 Control characters turn into C-whatever, etc. | |
3200 This differs from `text-char-description' in that it returns a description | |
3201 of a key read from the user rather than a character from a buffer. | |
3202 */ | |
3203 (key)) | |
3204 { | |
3205 if (SYMBOLP (key)) | |
3206 key = Fcons (key, Qnil); /* sleaze sleaze */ | |
3207 | |
3208 if (EVENTP (key) || CHAR_OR_CHAR_INTP (key)) | |
3209 { | |
3210 char buf [255]; | |
3211 if (!EVENTP (key)) | |
3212 { | |
3213 struct Lisp_Event event; | |
3214 event.event_type = empty_event; | |
3215 CHECK_CHAR_COERCE_INT (key); | |
3216 character_to_event (XCHAR (key), &event, | |
3217 XCONSOLE (Vselected_console), 0, 1); | |
3218 format_event_object (buf, &event, 1); | |
3219 } | |
3220 else | |
3221 format_event_object (buf, XEVENT (key), 1); | |
3222 return build_string (buf); | |
3223 } | |
3224 | |
3225 if (CONSP (key)) | |
3226 { | |
3227 char buf[255]; | |
3228 char *bufp = buf; | |
3229 Lisp_Object rest; | |
3230 buf[0] = 0; | |
3231 LIST_LOOP (rest, key) | |
3232 { | |
3233 Lisp_Object keysym = XCAR (rest); | |
3234 if (EQ (keysym, Qcontrol)) strcpy (bufp, "C-"), bufp += 2; | |
3235 else if (EQ (keysym, Qctrl)) strcpy (bufp, "C-"), bufp += 2; | |
3236 else if (EQ (keysym, Qmeta)) strcpy (bufp, "M-"), bufp += 2; | |
3237 else if (EQ (keysym, Qsuper)) strcpy (bufp, "S-"), bufp += 2; | |
3238 else if (EQ (keysym, Qhyper)) strcpy (bufp, "H-"), bufp += 2; | |
3239 else if (EQ (keysym, Qalt)) strcpy (bufp, "A-"), bufp += 2; | |
3240 else if (EQ (keysym, Qshift)) strcpy (bufp, "Sh-"), bufp += 3; | |
3241 else if (CHAR_OR_CHAR_INTP (keysym)) | |
3242 { | |
3243 bufp += set_charptr_emchar ((Bufbyte *) bufp, | |
3244 XCHAR_OR_CHAR_INT (keysym)); | |
3245 *bufp = 0; | |
3246 } | |
3247 else | |
3248 { | |
3249 CHECK_SYMBOL (keysym); | |
3250 #if 0 /* This is bogus */ | |
3251 if (EQ (keysym, QKlinefeed)) strcpy (bufp, "LFD"); | |
3252 else if (EQ (keysym, QKtab)) strcpy (bufp, "TAB"); | |
3253 else if (EQ (keysym, QKreturn)) strcpy (bufp, "RET"); | |
3254 else if (EQ (keysym, QKescape)) strcpy (bufp, "ESC"); | |
3255 else if (EQ (keysym, QKdelete)) strcpy (bufp, "DEL"); | |
3256 else if (EQ (keysym, QKspace)) strcpy (bufp, "SPC"); | |
3257 else if (EQ (keysym, QKbackspace)) strcpy (bufp, "BS"); | |
3258 else | |
3259 #endif | |
3260 strcpy (bufp, (char *) string_data (XSYMBOL (keysym)->name)); | |
3261 if (!NILP (XCDR (rest))) | |
3262 signal_simple_error ("Invalid key description", | |
3263 key); | |
3264 } | |
3265 } | |
3266 return build_string (buf); | |
3267 } | |
3268 return Fsingle_key_description | |
3269 (wrong_type_argument (intern ("char-or-event-p"), key)); | |
3270 } | |
3271 | |
3272 DEFUN ("text-char-description", Ftext_char_description, 1, 1, 0, /* | |
3273 Return a pretty description of file-character CHR. | |
3274 Unprintable characters turn into "^char" or \\NNN, depending on the value | |
3275 of the `ctl-arrow' variable. | |
3276 This differs from `single-key-description' in that it returns a description | |
3277 of a character from a buffer rather than a key read from the user. | |
3278 */ | |
3279 (chr)) | |
3280 { | |
3281 Bufbyte buf[200]; | |
3282 Bufbyte *p; | |
3283 Emchar c; | |
3284 Lisp_Object ctl_arrow = current_buffer->ctl_arrow; | |
3285 int ctl_p = !NILP (ctl_arrow); | |
3286 Emchar printable_min = (CHAR_OR_CHAR_INTP (ctl_arrow) | |
3287 ? XCHAR_OR_CHAR_INT (ctl_arrow) | |
3288 : ((EQ (ctl_arrow, Qt) || NILP (ctl_arrow)) | |
3289 ? 256 : 160)); | |
3290 | |
3291 if (EVENTP (chr)) | |
3292 { | |
3293 Lisp_Object ch = Fevent_to_character (chr, Qnil, Qnil, Qt); | |
3294 if (NILP (ch)) | |
3295 return | |
3296 signal_simple_continuable_error | |
3297 ("character has no ASCII equivalent", Fcopy_event (chr, Qnil)); | |
3298 chr = ch; | |
3299 } | |
3300 | |
3301 CHECK_CHAR_COERCE_INT (chr); | |
3302 | |
3303 c = XCHAR (chr); | |
3304 p = buf; | |
3305 | |
3306 if (c >= printable_min) | |
3307 { | |
3308 p += set_charptr_emchar (p, c); | |
3309 } | |
3310 else if (c < 040 && ctl_p) | |
3311 { | |
3312 *p++ = '^'; | |
3313 *p++ = c + 64; /* 'A' - 1 */ | |
3314 } | |
3315 else if (c == 0177) | |
3316 { | |
3317 *p++ = '^'; | |
3318 *p++ = '?'; | |
3319 } | |
3320 else if (c >= 0200 || c < 040) | |
3321 { | |
3322 *p++ = '\\'; | |
3323 #ifdef MULE | |
3324 /* !!#### This syntax is not readable. It will | |
3325 be interpreted as a 3-digit octal number rather | |
3326 than a 7-digit octal number. */ | |
3327 if (c >= 0400) | |
3328 { | |
3329 *p++ = '0' + ((c & 07000000) >> 18); | |
3330 *p++ = '0' + ((c & 0700000) >> 15); | |
3331 *p++ = '0' + ((c & 070000) >> 12); | |
3332 *p++ = '0' + ((c & 07000) >> 9); | |
3333 } | |
3334 #endif | |
3335 *p++ = '0' + ((c & 0700) >> 6); | |
3336 *p++ = '0' + ((c & 0070) >> 3); | |
3337 *p++ = '0' + ((c & 0007)); | |
3338 } | |
3339 else | |
3340 { | |
3341 p += set_charptr_emchar (p, c); | |
3342 } | |
3343 | |
3344 *p = 0; | |
3345 return build_string ((char *) buf); | |
3346 } | |
3347 | |
3348 | |
3349 /************************************************************************/ | |
3350 /* where-is (mapping bindings to keys) */ | |
3351 /************************************************************************/ | |
3352 | |
3353 static Lisp_Object | |
3354 where_is_internal (Lisp_Object definition, Lisp_Object *maps, int nmaps, | |
3355 Lisp_Object firstonly, char *target_buffer); | |
3356 | |
3357 DEFUN ("where-is-internal", Fwhere_is_internal, 1, 5, 0, /* | |
3358 Return list of keys that invoke DEFINITION in KEYMAPS. | |
3359 KEYMAPS can be either a keymap (meaning search in that keymap and the | |
3360 current global keymap) or a list of keymaps (meaning search in exactly | |
3361 those keymaps and no others). If KEYMAPS is nil, search in the currently | |
3362 applicable maps for EVENT-OR-KEYS (this is equivalent to specifying | |
3363 `(current-keymaps EVENT-OR-KEYS)' as the argument to KEYMAPS). | |
3364 | |
3365 If optional 3rd arg FIRSTONLY is non-nil, return a vector representing | |
3366 the first key sequence found, rather than a list of all possible key | |
3367 sequences. | |
3368 | |
3369 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections | |
3370 to other keymaps or slots. This makes it possible to search for an | |
3371 indirect definition itself. | |
3372 */ | |
3373 (definition, keymaps, firstonly, noindirect, event_or_keys)) | |
3374 { | |
3375 /* This function can GC */ | |
3376 Lisp_Object maps[100]; | |
3377 Lisp_Object *gubbish = maps; | |
3378 int nmaps; | |
3379 | |
3380 /* Get keymaps as an array */ | |
3381 if (NILP (keymaps)) | |
3382 { | |
3383 nmaps = get_relevant_keymaps (event_or_keys, countof (maps), | |
3384 gubbish); | |
3385 if (nmaps > countof (maps)) | |
3386 { | |
3387 gubbish = alloca_array (Lisp_Object, nmaps); | |
3388 nmaps = get_relevant_keymaps (event_or_keys, nmaps, gubbish); | |
3389 } | |
3390 } | |
3391 else if (CONSP (keymaps)) | |
3392 { | |
3393 Lisp_Object rest; | |
3394 int i; | |
3395 | |
3396 nmaps = XINT (Flength (keymaps)); | |
3397 if (nmaps > countof (maps)) | |
3398 { | |
3399 gubbish = alloca_array (Lisp_Object, nmaps); | |
3400 } | |
3401 for (rest = keymaps, i = 0; !NILP (rest); | |
3402 rest = XCDR (keymaps), i++) | |
3403 { | |
3404 gubbish[i] = get_keymap (XCAR (keymaps), 1, 1); | |
3405 } | |
3406 } | |
3407 else | |
3408 { | |
3409 nmaps = 1; | |
3410 gubbish[0] = get_keymap (keymaps, 1, 1); | |
3411 if (!EQ (gubbish[0], Vcurrent_global_map)) | |
3412 { | |
3413 gubbish[1] = Vcurrent_global_map; | |
3414 nmaps++; | |
3415 } | |
3416 } | |
3417 | |
3418 return where_is_internal (definition, gubbish, nmaps, firstonly, 0); | |
3419 } | |
3420 | |
3421 /* This function is like | |
3422 (key-description (where-is-internal definition nil t)) | |
3423 except that it writes its output into a (char *) buffer that you | |
3424 provide; it doesn't cons (or allocate memory) at all, so it's | |
3425 very fast. This is used by menubar.c. | |
3426 */ | |
3427 void | |
3428 where_is_to_char (Lisp_Object definition, char *buffer) | |
3429 { | |
3430 /* This function can GC */ | |
3431 Lisp_Object maps[100]; | |
3432 Lisp_Object *gubbish = maps; | |
3433 int nmaps; | |
3434 | |
3435 /* Get keymaps as an array */ | |
3436 nmaps = get_relevant_keymaps (Qnil, countof (maps), gubbish); | |
3437 if (nmaps > countof (maps)) | |
3438 { | |
3439 gubbish = alloca_array (Lisp_Object, nmaps); | |
3440 nmaps = get_relevant_keymaps (Qnil, nmaps, gubbish); | |
3441 } | |
3442 | |
3443 buffer[0] = 0; | |
3444 where_is_internal (definition, maps, nmaps, Qt, buffer); | |
3445 } | |
3446 | |
3447 | |
3448 static Lisp_Object | |
3449 raw_keys_to_keys (struct key_data *keys, int count) | |
3450 { | |
3451 Lisp_Object result = make_vector (count, Qnil); | |
3452 while (count--) | |
3453 XVECTOR_DATA (result) [count] = make_key_description (&(keys[count]), 1); | |
3454 return result; | |
3455 } | |
3456 | |
3457 | |
3458 static void | |
3459 format_raw_keys (struct key_data *keys, int count, char *buf) | |
3460 { | |
3461 int i; | |
3462 struct Lisp_Event event; | |
3463 event.event_type = key_press_event; | |
3464 event.channel = Vselected_console; | |
3465 for (i = 0; i < count; i++) | |
3466 { | |
3467 event.event.key.keysym = keys[i].keysym; | |
3468 event.event.key.modifiers = keys[i].modifiers; | |
3469 format_event_object (buf, &event, 1); | |
3470 buf += strlen (buf); | |
3471 if (i < count-1) | |
3472 buf[0] = ' ', buf++; | |
3473 } | |
3474 } | |
3475 | |
3476 | |
3477 /* definition is the thing to look for. | |
3478 map is a keymap. | |
3479 shadow is an array of shadow_count keymaps; if there is a different | |
3480 binding in any of the keymaps of a key that we are considering | |
3481 returning, then we reconsider. | |
3482 firstonly means give up after finding the first match; | |
3483 keys_so_far and modifiers_so_far describe which map we're looking in; | |
3484 If we're in the "meta" submap of the map that "C-x 4" is bound to, | |
3485 then keys_so_far will be {(control x), \4}, and modifiers_so_far | |
3486 will be MOD_META. That is, keys_so_far is the chain of keys that we | |
3487 have followed, and modifiers_so_far_so_far is the bits (partial keys) | |
3488 beyond that. | |
3489 | |
3490 (keys_so_far is a global buffer and the keys_count arg says how much | |
3491 of it we're currently interested in.) | |
3492 | |
3493 If target_buffer is provided, then we write a key-description into it, | |
3494 to avoid consing a string. This only works with firstonly on. | |
3495 */ | |
3496 | |
3497 struct where_is_closure | |
3498 { | |
3499 Lisp_Object definition; | |
3500 Lisp_Object *shadow; | |
3501 int shadow_count; | |
3502 int firstonly; | |
3503 int keys_count; | |
3504 unsigned int modifiers_so_far; | |
3505 char *target_buffer; | |
3506 struct key_data *keys_so_far; | |
3507 int keys_so_far_total_size; | |
3508 int keys_so_far_malloced; | |
3509 }; | |
3510 | |
3511 static Lisp_Object where_is_recursive_mapper (Lisp_Object map, void *arg); | |
3512 | |
3513 static Lisp_Object | |
3514 where_is_recursive_mapper (Lisp_Object map, void *arg) | |
3515 { | |
3516 /* This function can GC */ | |
3517 struct where_is_closure *c = (struct where_is_closure *) arg; | |
3518 Lisp_Object definition = c->definition; | |
3519 CONST int firstonly = c->firstonly; | |
3520 CONST unsigned int keys_count = c->keys_count; | |
3521 CONST unsigned int modifiers_so_far = c->modifiers_so_far; | |
3522 char *target_buffer = c->target_buffer; | |
3523 Lisp_Object keys = Fgethash (definition, | |
3524 XKEYMAP (map)->inverse_table, | |
3525 Qnil); | |
3526 Lisp_Object submaps; | |
3527 Lisp_Object result = Qnil; | |
3528 | |
3529 if (!NILP (keys)) | |
3530 { | |
3531 /* One or more keys in this map match the definition we're looking for. | |
3532 Verify that these bindings aren't shadowed by other bindings | |
3533 in the shadow maps. Either nil or number as value from | |
3534 raw_lookup_key() means undefined. */ | |
3535 struct key_data *so_far = c->keys_so_far; | |
3536 | |
3537 for (;;) /* loop over all keys that match */ | |
3538 { | |
3539 Lisp_Object k = CONSP (keys) ? XCAR (keys) : keys; | |
3540 int i; | |
3541 | |
3542 so_far [keys_count].keysym = k; | |
3543 so_far [keys_count].modifiers = modifiers_so_far; | |
3544 | |
3545 /* now loop over all shadow maps */ | |
3546 for (i = 0; i < c->shadow_count; i++) | |
3547 { | |
3548 Lisp_Object shadowed = raw_lookup_key (c->shadow[i], | |
3549 so_far, | |
3550 keys_count + 1, | |
3551 0, 1); | |
3552 | |
3553 if (NILP (shadowed) || CHARP (shadowed) || | |
3554 EQ (shadowed, definition)) | |
3555 continue; /* we passed this test; it's not shadowed here. */ | |
3556 else | |
3557 /* ignore this key binding, since it actually has a | |
3558 different binding in a shadowing map */ | |
3559 goto c_doesnt_have_proper_loop_exit_statements; | |
3560 } | |
3561 | |
3562 /* OK, the key is for real */ | |
3563 if (target_buffer) | |
3564 { | |
3565 if (!firstonly) abort (); | |
3566 format_raw_keys (so_far, keys_count + 1, target_buffer); | |
3567 return make_int (1); | |
3568 } | |
3569 else if (firstonly) | |
3570 return raw_keys_to_keys (so_far, keys_count + 1); | |
3571 else | |
3572 result = Fcons (raw_keys_to_keys (so_far, keys_count + 1), | |
3573 result); | |
3574 | |
3575 c_doesnt_have_proper_loop_exit_statements: | |
3576 /* now on to the next matching key ... */ | |
3577 if (!CONSP (keys)) break; | |
3578 keys = XCDR (keys); | |
3579 } | |
3580 } | |
3581 | |
3582 /* Now search the sub-keymaps of this map. | |
3583 If we're in "firstonly" mode and have already found one, this | |
3584 point is not reached. If we get one from lower down, either | |
3585 return it immediately (in firstonly mode) or tack it onto the | |
3586 end of the ones we've gotten so far. | |
3587 */ | |
3588 for (submaps = keymap_submaps (map); | |
3589 !NILP (submaps); | |
3590 submaps = XCDR (submaps)) | |
3591 { | |
3592 Lisp_Object key = XCAR (XCAR (submaps)); | |
3593 Lisp_Object submap = XCDR (XCAR (submaps)); | |
3594 unsigned int lower_modifiers; | |
3595 int lower_keys_count = keys_count; | |
3596 unsigned int bucky; | |
3597 | |
3598 submap = get_keymap (submap, 0, 0); | |
3599 | |
3600 if (EQ (submap, map)) | |
3601 /* Arrgh! Some loser has introduced a loop... */ | |
3602 continue; | |
3603 | |
3604 /* If this is not a keymap, then that's probably because someone | |
3605 did an `fset' of a symbol that used to point to a map such that | |
3606 it no longer does. Sigh. Ignore this, and invalidate the cache | |
3607 so that it doesn't happen to us next time too. | |
3608 */ | |
3609 if (NILP (submap)) | |
3610 { | |
3611 XKEYMAP (map)->sub_maps_cache = Qt; | |
3612 continue; | |
3613 } | |
3614 | |
3615 /* If the map is a "bucky" map, then add a bit to the | |
3616 modifiers_so_far list. | |
3617 Otherwise, add a new raw_key onto the end of keys_so_far. | |
3618 */ | |
3619 bucky = MODIFIER_HASH_KEY_BITS (key); | |
3620 if (bucky != 0) | |
3621 lower_modifiers = (modifiers_so_far | bucky); | |
3622 else | |
3623 { | |
3624 struct key_data *so_far = c->keys_so_far; | |
3625 lower_modifiers = 0; | |
3626 so_far [lower_keys_count].keysym = key; | |
3627 so_far [lower_keys_count].modifiers = modifiers_so_far; | |
3628 lower_keys_count++; | |
3629 } | |
3630 | |
3631 if (lower_keys_count >= c->keys_so_far_total_size) | |
3632 { | |
3633 int size = lower_keys_count + 50; | |
3634 if (! c->keys_so_far_malloced) | |
3635 { | |
3636 struct key_data *new = xnew_array (struct key_data, size); | |
3637 memcpy ((void *)new, (CONST void *)c->keys_so_far, | |
3638 c->keys_so_far_total_size * sizeof (struct key_data)); | |
3639 } | |
3640 else | |
3641 XREALLOC_ARRAY (c->keys_so_far, struct key_data, size); | |
3642 | |
3643 c->keys_so_far_total_size = size; | |
3644 c->keys_so_far_malloced = 1; | |
3645 } | |
3646 | |
3647 { | |
3648 Lisp_Object lower; | |
3649 | |
3650 c->keys_count = lower_keys_count; | |
3651 c->modifiers_so_far = lower_modifiers; | |
3652 | |
3653 lower = traverse_keymaps (submap, Qnil, where_is_recursive_mapper, c); | |
3654 | |
3655 c->keys_count = keys_count; | |
3656 c->modifiers_so_far = modifiers_so_far; | |
3657 | |
3658 if (!firstonly) | |
3659 result = nconc2 (lower, result); | |
3660 else if (!NILP (lower)) | |
3661 return lower; | |
3662 } | |
3663 } | |
3664 return result; | |
3665 } | |
3666 | |
3667 | |
3668 static Lisp_Object | |
3669 where_is_internal (Lisp_Object definition, Lisp_Object *maps, int nmaps, | |
3670 Lisp_Object firstonly, char *target_buffer) | |
3671 { | |
3672 /* This function can GC */ | |
3673 Lisp_Object result = Qnil; | |
3674 int i; | |
3675 struct key_data raw[20]; | |
3676 struct where_is_closure c; | |
3677 | |
3678 c.definition = definition; | |
3679 c.shadow = maps; | |
3680 c.firstonly = !NILP (firstonly); | |
3681 c.target_buffer = target_buffer; | |
3682 c.keys_so_far = raw; | |
3683 c.keys_so_far_total_size = countof (raw); | |
3684 c.keys_so_far_malloced = 0; | |
3685 | |
3686 /* Loop over each of the maps, accumulating the keys found. | |
3687 For each map searched, all previous maps shadow this one | |
3688 so that bogus keys aren't listed. */ | |
3689 for (i = 0; i < nmaps; i++) | |
3690 { | |
3691 Lisp_Object this_result; | |
3692 c.shadow_count = i; | |
3693 /* Reset the things set in each iteration */ | |
3694 c.keys_count = 0; | |
3695 c.modifiers_so_far = 0; | |
3696 | |
3697 this_result = traverse_keymaps (maps[i], Qnil, where_is_recursive_mapper, | |
3698 &c); | |
3699 if (!NILP (firstonly)) | |
3700 { | |
3701 result = this_result; | |
3702 if (!NILP (result)) | |
3703 break; | |
3704 } | |
3705 else | |
3706 result = nconc2 (this_result, result); | |
3707 } | |
3708 | |
3709 if (NILP (firstonly)) | |
3710 result = Fnreverse (result); | |
3711 | |
3712 if (c.keys_so_far_malloced) | |
3713 xfree (c.keys_so_far); | |
3714 return result; | |
3715 } | |
3716 | |
3717 | |
3718 /************************************************************************/ | |
3719 /* Describing keymaps */ | |
3720 /************************************************************************/ | |
3721 | |
3722 DEFUN ("describe-bindings-internal", Fdescribe_bindings_internal, 1, 5, 0, /* | |
3723 Insert a list of all defined keys and their definitions in MAP. | |
3724 Optional second argument ALL says whether to include even "uninteresting" | |
3725 definitions (ie symbols with a non-nil `suppress-keymap' property. | |
3726 Third argument SHADOW is a list of keymaps whose bindings shadow those | |
3727 of map; if a binding is present in any shadowing map, it is not printed. | |
3728 Fourth argument PREFIX, if non-nil, should be a key sequence; | |
3729 only bindings which start with that key sequence will be printed. | |
3730 Fifth argument MOUSE-ONLY-P says to only print bindings for mouse clicks. | |
3731 */ | |
3732 (map, all, shadow, prefix, mouse_only_p)) | |
3733 { | |
3734 /* This function can GC */ | |
3735 | |
3736 /* #### At some point, this function should be changed to accept a | |
3737 BUFFER argument. Currently, the BUFFER argument to | |
3738 describe_map_tree is being used only internally. */ | |
3739 describe_map_tree (map, NILP (all), shadow, prefix, | |
3740 !NILP (mouse_only_p), Fcurrent_buffer ()); | |
3741 return Qnil; | |
3742 } | |
3743 | |
3744 | |
3745 /* Insert a description of the key bindings in STARTMAP, | |
3746 followed by those of all maps reachable through STARTMAP. | |
3747 If PARTIAL is nonzero, omit certain "uninteresting" commands | |
3748 (such as `undefined'). | |
3749 If SHADOW is non-nil, it is a list of other maps; | |
3750 don't mention keys which would be shadowed by any of them | |
3751 If PREFIX is non-nil, only list bindings which start with those keys. | |
3752 */ | |
3753 | |
3754 void | |
3755 describe_map_tree (Lisp_Object startmap, int partial, Lisp_Object shadow, | |
3756 Lisp_Object prefix, int mice_only_p, Lisp_Object buffer) | |
3757 { | |
3758 /* This function can GC */ | |
3759 Lisp_Object maps = Qnil; | |
3760 struct gcpro gcpro1, gcpro2; /* get_keymap may autoload */ | |
3761 GCPRO2 (maps, shadow); | |
3762 | |
3763 maps = Faccessible_keymaps (startmap, prefix); | |
3764 | |
3765 for (; !NILP (maps); maps = Fcdr (maps)) | |
3766 { | |
3767 Lisp_Object sub_shadow = Qnil; | |
3768 Lisp_Object elt = Fcar (maps); | |
3769 Lisp_Object tail; | |
3770 int no_prefix = (VECTORP (Fcar (elt)) | |
3771 && XINT (Flength (Fcar (elt))) == 0); | |
3772 struct gcpro ngcpro1, ngcpro2, ngcpro3; | |
3773 NGCPRO3 (sub_shadow, elt, tail); | |
3774 | |
3775 for (tail = shadow; CONSP (tail); tail = XCDR (tail)) | |
3776 { | |
3777 Lisp_Object shmap = XCAR (tail); | |
3778 | |
3779 /* If the sequence by which we reach this keymap is zero-length, | |
3780 then the shadow maps for this keymap are just SHADOW. */ | |
3781 if (no_prefix) | |
3782 ; | |
3783 /* If the sequence by which we reach this keymap actually has | |
3784 some elements, then the sequence's definition in SHADOW is | |
3785 what we should use. */ | |
3786 else | |
3787 { | |
3788 shmap = Flookup_key (shmap, Fcar (elt), Qt); | |
3789 if (CHARP (shmap)) | |
3790 shmap = Qnil; | |
3791 } | |
3792 | |
3793 if (!NILP (shmap)) | |
3794 { | |
3795 Lisp_Object shm = get_keymap (shmap, 0, 1); | |
3796 /* If shmap is not nil and not a keymap, it completely | |
3797 shadows this map, so don't describe this map at all. */ | |
3798 if (!KEYMAPP (shm)) | |
3799 goto SKIP; | |
3800 sub_shadow = Fcons (shm, sub_shadow); | |
3801 } | |
3802 } | |
3803 | |
3804 { | |
3805 /* Describe the contents of map MAP, assuming that this map | |
3806 itself is reached by the sequence of prefix keys KEYS (a vector). | |
3807 PARTIAL and SHADOW are as in `describe_map_tree'. */ | |
3808 Lisp_Object keysdesc | |
3809 = ((!no_prefix) | |
3810 ? concat2 (Fkey_description (Fcar (elt)), Vsingle_space_string) | |
3811 : Qnil); | |
3812 describe_map (Fcdr (elt), keysdesc, | |
3813 describe_command, | |
3814 partial, | |
3815 sub_shadow, | |
3816 mice_only_p, | |
3817 buffer); | |
3818 } | |
3819 SKIP: | |
3820 NUNGCPRO; | |
3821 } | |
3822 UNGCPRO; | |
3823 } | |
3824 | |
3825 | |
3826 static void | |
3827 describe_command (Lisp_Object definition, Lisp_Object buffer) | |
3828 { | |
3829 /* This function can GC */ | |
3830 int keymapp = !NILP (Fkeymapp (definition)); | |
3831 struct gcpro gcpro1; | |
3832 GCPRO1 (definition); | |
3833 | |
3834 Findent_to (make_int (16), make_int (3), buffer); | |
3835 if (keymapp) | |
3836 buffer_insert_c_string (XBUFFER (buffer), "<< "); | |
3837 | |
3838 if (SYMBOLP (definition)) | |
3839 { | |
3840 buffer_insert1 (XBUFFER (buffer), Fsymbol_name (definition)); | |
3841 } | |
3842 else if (STRINGP (definition) || VECTORP (definition)) | |
3843 { | |
3844 buffer_insert_c_string (XBUFFER (buffer), "Kbd Macro: "); | |
3845 buffer_insert1 (XBUFFER (buffer), Fkey_description (definition)); | |
3846 } | |
3847 else if (COMPILED_FUNCTIONP (definition)) | |
3848 buffer_insert_c_string (XBUFFER (buffer), "Anonymous Compiled Function"); | |
3849 else if (CONSP (definition) && EQ (XCAR (definition), Qlambda)) | |
3850 buffer_insert_c_string (XBUFFER (buffer), "Anonymous Lambda"); | |
3851 else if (KEYMAPP (definition)) | |
3852 { | |
3853 Lisp_Object name = XKEYMAP (definition)->name; | |
3854 if (STRINGP (name) || (SYMBOLP (name) && !NILP (name))) | |
3855 { | |
3856 buffer_insert_c_string (XBUFFER (buffer), "Prefix command "); | |
3857 if (SYMBOLP (name) | |
3858 && EQ (find_symbol_value (name), definition)) | |
3859 buffer_insert1 (XBUFFER (buffer), Fsymbol_name (name)); | |
3860 else | |
3861 { | |
3862 buffer_insert1 (XBUFFER (buffer), Fprin1_to_string (name, Qnil)); | |
3863 } | |
3864 } | |
3865 else | |
3866 buffer_insert_c_string (XBUFFER (buffer), "Prefix Command"); | |
3867 } | |
3868 else | |
3869 buffer_insert_c_string (XBUFFER (buffer), "??"); | |
3870 | |
3871 if (keymapp) | |
3872 buffer_insert_c_string (XBUFFER (buffer), " >>"); | |
3873 buffer_insert_c_string (XBUFFER (buffer), "\n"); | |
3874 UNGCPRO; | |
3875 } | |
3876 | |
3877 struct describe_map_closure | |
3878 { | |
3879 Lisp_Object *list; /* pointer to the list to update */ | |
3880 Lisp_Object partial; /* whether to ignore suppressed commands */ | |
3881 Lisp_Object shadow; /* list of maps shadowing this one */ | |
3882 Lisp_Object self; /* this map */ | |
3883 Lisp_Object self_root; /* this map, or some map that has this map as | |
3884 a parent. this is the base of the tree */ | |
3885 int mice_only_p; /* whether we are to display only button bindings */ | |
3886 }; | |
3887 | |
3888 struct describe_map_shadow_closure | |
3889 { | |
3890 CONST struct key_data *raw_key; | |
3891 Lisp_Object self; | |
3892 }; | |
3893 | |
3894 static Lisp_Object | |
3895 describe_map_mapper_shadow_search (Lisp_Object map, void *arg) | |
3896 { | |
3897 struct describe_map_shadow_closure *c = | |
3898 (struct describe_map_shadow_closure *) arg; | |
3899 | |
3900 if (EQ (map, c->self)) | |
3901 return Qzero; /* Not shadowed; terminate search */ | |
3902 | |
3903 return !NILP (keymap_lookup_directly (map, | |
3904 c->raw_key->keysym, | |
3905 c->raw_key->modifiers)) | |
3906 ? Qt : Qnil; | |
3907 } | |
3908 | |
3909 | |
3910 static Lisp_Object | |
3911 keymap_lookup_inherited_mapper (Lisp_Object km, void *arg) | |
3912 { | |
3913 struct key_data *k = (struct key_data *) arg; | |
3914 return keymap_lookup_directly (km, k->keysym, k->modifiers); | |
3915 } | |
3916 | |
3917 | |
3918 static void | |
3919 describe_map_mapper (CONST struct key_data *key, | |
3920 Lisp_Object binding, | |
3921 void *describe_map_closure) | |
3922 { | |
3923 /* This function can GC */ | |
3924 struct describe_map_closure *closure = | |
3925 (struct describe_map_closure *) describe_map_closure; | |
3926 Lisp_Object keysym = key->keysym; | |
3927 unsigned int modifiers = key->modifiers; | |
3928 | |
3929 /* Don't mention suppressed commands. */ | |
3930 if (SYMBOLP (binding) | |
3931 && !NILP (closure->partial) | |
3932 && !NILP (Fget (binding, closure->partial, Qnil))) | |
3933 return; | |
3934 | |
3935 /* If we're only supposed to display mouse bindings and this isn't one, | |
3936 then bug out. */ | |
3937 if (closure->mice_only_p && | |
3938 (! (EQ (keysym, Qbutton0) || | |
3939 EQ (keysym, Qbutton1) || | |
3940 EQ (keysym, Qbutton2) || | |
3941 EQ (keysym, Qbutton3) || | |
3942 EQ (keysym, Qbutton4) || | |
3943 EQ (keysym, Qbutton5) || | |
3944 EQ (keysym, Qbutton6) || | |
3945 EQ (keysym, Qbutton7) || | |
3946 EQ (keysym, Qbutton0up) || | |
3947 EQ (keysym, Qbutton1up) || | |
3948 EQ (keysym, Qbutton2up) || | |
3949 EQ (keysym, Qbutton3up) || | |
3950 EQ (keysym, Qbutton4up) || | |
3951 EQ (keysym, Qbutton5up) || | |
3952 EQ (keysym, Qbutton6up) || | |
3953 EQ (keysym, Qbutton7up)))) | |
3954 return; | |
3955 | |
3956 /* If this command in this map is shadowed by some other map, ignore it. */ | |
3957 { | |
3958 Lisp_Object tail; | |
3959 | |
3960 for (tail = closure->shadow; CONSP (tail); tail = XCDR (tail)) | |
3961 { | |
3962 QUIT; | |
3963 if (!NILP (traverse_keymaps (XCAR (tail), Qnil, | |
3964 keymap_lookup_inherited_mapper, | |
3965 /* Cast to discard `const' */ | |
3966 (void *)key))) | |
3967 return; | |
3968 } | |
3969 } | |
3970 | |
3971 /* If this key is in some map of which this map is a parent, then ignore | |
3972 it (in that case, it has been shadowed). | |
3973 */ | |
3974 { | |
3975 Lisp_Object sh; | |
3976 struct describe_map_shadow_closure c; | |
3977 c.raw_key = key; | |
3978 c.self = closure->self; | |
3979 | |
3980 sh = traverse_keymaps (closure->self_root, Qnil, | |
3981 describe_map_mapper_shadow_search, &c); | |
3982 if (!NILP (sh) && !ZEROP (sh)) | |
3983 return; | |
3984 } | |
3985 | |
3986 /* Otherwise add it to the list to be sorted. */ | |
3987 *(closure->list) = Fcons (Fcons (Fcons (keysym, make_int (modifiers)), | |
3988 binding), | |
3989 *(closure->list)); | |
3990 } | |
3991 | |
3992 | |
3993 static int | |
3994 describe_map_sort_predicate (Lisp_Object obj1, Lisp_Object obj2, | |
3995 Lisp_Object pred) | |
3996 { | |
3997 /* obj1 and obj2 are conses of the form | |
3998 ( ( <keysym> . <modifiers> ) . <binding> ) | |
3999 keysym and modifiers are used, binding is ignored. | |
4000 */ | |
4001 unsigned int bit1, bit2; | |
4002 obj1 = XCAR (obj1); | |
4003 obj2 = XCAR (obj2); | |
4004 bit1 = XINT (XCDR (obj1)); | |
4005 bit2 = XINT (XCDR (obj2)); | |
4006 if (bit1 != bit2) | |
4007 return bit1 < bit2 ? 1 : -1; | |
4008 else | |
4009 return map_keymap_sort_predicate (obj1, obj2, pred); | |
4010 } | |
4011 | |
4012 /* Elide 2 or more consecutive numeric keysyms bound to the same thing, | |
4013 or 2 or more symbolic keysyms that are bound to the same thing and | |
4014 have consecutive character-set-properties. | |
4015 */ | |
4016 static int | |
4017 elide_next_two_p (Lisp_Object list) | |
4018 { | |
4019 Lisp_Object s1, s2; | |
4020 | |
4021 if (NILP (XCDR (list))) | |
4022 return 0; | |
4023 | |
4024 /* next two bindings differ */ | |
4025 if (!EQ (XCDR (XCAR (list)), | |
4026 XCDR (XCAR (XCDR (list))))) | |
4027 return 0; | |
4028 | |
4029 /* next two modifier-sets differ */ | |
4030 if (!EQ (XCDR (XCAR (XCAR (list))), | |
4031 XCDR (XCAR (XCAR (XCDR (list)))))) | |
4032 return 0; | |
4033 | |
4034 s1 = XCAR (XCAR (XCAR (list))); | |
4035 s2 = XCAR (XCAR (XCAR (XCDR (list)))); | |
4036 | |
4037 if (SYMBOLP (s1)) | |
4038 { | |
4039 Lisp_Object code = Fget (s1, Vcharacter_set_property, Qnil); | |
4040 if (CHAR_OR_CHAR_INTP (code)) | |
4041 { | |
4042 s1 = code; | |
4043 CHECK_CHAR_COERCE_INT (s1); | |
4044 } | |
4045 else return 0; | |
4046 } | |
4047 if (SYMBOLP (s2)) | |
4048 { | |
4049 Lisp_Object code = Fget (s2, Vcharacter_set_property, Qnil); | |
4050 if (CHAR_OR_CHAR_INTP (code)) | |
4051 { | |
4052 s2 = code; | |
4053 CHECK_CHAR_COERCE_INT (s2); | |
4054 } | |
4055 else return 0; | |
4056 } | |
4057 | |
4058 return (XCHAR (s1) == XCHAR (s2) || | |
4059 XCHAR (s1) + 1 == XCHAR (s2)); | |
4060 } | |
4061 | |
4062 | |
4063 static Lisp_Object | |
4064 describe_map_parent_mapper (Lisp_Object keymap, void *arg) | |
4065 { | |
4066 /* This function can GC */ | |
4067 struct describe_map_closure *describe_map_closure = | |
4068 (struct describe_map_closure *) arg; | |
4069 describe_map_closure->self = keymap; | |
4070 map_keymap (XKEYMAP (keymap)->table, | |
4071 0, /* don't sort: we'll do it later */ | |
4072 describe_map_mapper, describe_map_closure); | |
4073 return Qnil; | |
4074 } | |
4075 | |
4076 | |
4077 /* Describe the contents of map MAP, assuming that this map itself is | |
4078 reached by the sequence of prefix keys KEYS (a string or vector). | |
4079 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */ | |
4080 | |
4081 static void | |
4082 describe_map (Lisp_Object keymap, Lisp_Object elt_prefix, | |
4083 void (*elt_describer) (Lisp_Object, Lisp_Object), | |
4084 int partial, | |
4085 Lisp_Object shadow, | |
4086 int mice_only_p, | |
4087 Lisp_Object buffer) | |
4088 { | |
4089 /* This function can GC */ | |
4090 struct describe_map_closure describe_map_closure; | |
4091 Lisp_Object list = Qnil; | |
4092 struct buffer *buf = XBUFFER (buffer); | |
4093 Emchar printable_min = (CHAR_OR_CHAR_INTP (buf->ctl_arrow) | |
4094 ? XCHAR_OR_CHAR_INT (buf->ctl_arrow) | |
4095 : ((EQ (buf->ctl_arrow, Qt) | |
4096 || EQ (buf->ctl_arrow, Qnil)) | |
4097 ? 256 : 160)); | |
4098 int elided = 0; | |
4099 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4; | |
4100 | |
4101 keymap = get_keymap (keymap, 1, 1); | |
4102 describe_map_closure.partial = (partial ? Qsuppress_keymap : Qnil); | |
4103 describe_map_closure.shadow = shadow; | |
4104 describe_map_closure.list = &list; | |
4105 describe_map_closure.self_root = keymap; | |
4106 describe_map_closure.mice_only_p = mice_only_p; | |
4107 | |
4108 GCPRO4 (keymap, elt_prefix, shadow, list); | |
4109 | |
4110 traverse_keymaps (keymap, Qnil, | |
4111 describe_map_parent_mapper, &describe_map_closure); | |
4112 | |
4113 if (!NILP (list)) | |
4114 { | |
4115 list = list_sort (list, Qnil, describe_map_sort_predicate); | |
4116 buffer_insert_c_string (buf, "\n"); | |
4117 while (!NILP (list)) | |
4118 { | |
4119 Lisp_Object elt = XCAR (XCAR (list)); | |
4120 Lisp_Object keysym = XCAR (elt); | |
4121 unsigned int modifiers = XINT (XCDR (elt)); | |
4122 | |
4123 if (!NILP (elt_prefix)) | |
4124 buffer_insert_lisp_string (buf, elt_prefix); | |
4125 | |
4126 if (modifiers & MOD_META) buffer_insert_c_string (buf, "M-"); | |
4127 if (modifiers & MOD_CONTROL) buffer_insert_c_string (buf, "C-"); | |
4128 if (modifiers & MOD_SUPER) buffer_insert_c_string (buf, "S-"); | |
4129 if (modifiers & MOD_HYPER) buffer_insert_c_string (buf, "H-"); | |
4130 if (modifiers & MOD_ALT) buffer_insert_c_string (buf, "Alt-"); | |
4131 if (modifiers & MOD_SHIFT) buffer_insert_c_string (buf, "Sh-"); | |
4132 if (SYMBOLP (keysym)) | |
4133 { | |
4134 Lisp_Object code = Fget (keysym, Vcharacter_set_property, Qnil); | |
4135 Emchar c = (CHAR_OR_CHAR_INTP (code) | |
4136 ? XCHAR_OR_CHAR_INT (code) : (Emchar) -1); | |
4137 /* Calling Fsingle_key_description() would cons more */ | |
4138 #if 0 /* This is bogus */ | |
4139 if (EQ (keysym, QKlinefeed)) | |
4140 buffer_insert_c_string (buf, "LFD"); | |
4141 else if (EQ (keysym, QKtab)) | |
4142 buffer_insert_c_string (buf, "TAB"); | |
4143 else if (EQ (keysym, QKreturn)) | |
4144 buffer_insert_c_string (buf, "RET"); | |
4145 else if (EQ (keysym, QKescape)) | |
4146 buffer_insert_c_string (buf, "ESC"); | |
4147 else if (EQ (keysym, QKdelete)) | |
4148 buffer_insert_c_string (buf, "DEL"); | |
4149 else if (EQ (keysym, QKspace)) | |
4150 buffer_insert_c_string (buf, "SPC"); | |
4151 else if (EQ (keysym, QKbackspace)) | |
4152 buffer_insert_c_string (buf, "BS"); | |
4153 else | |
4154 #endif | |
4155 if (c >= printable_min) | |
4156 buffer_insert_emacs_char (buf, c); | |
4157 else buffer_insert1 (buf, Fsymbol_name (keysym)); | |
4158 } | |
4159 else if (CHARP (keysym)) | |
4160 buffer_insert_emacs_char (buf, XCHAR (keysym)); | |
4161 else | |
4162 buffer_insert_c_string (buf, "---bad keysym---"); | |
4163 | |
4164 if (elided) | |
4165 elided = 0; | |
4166 else | |
4167 { | |
4168 int k = 0; | |
4169 | |
4170 while (elide_next_two_p (list)) | |
4171 { | |
4172 k++; | |
4173 list = XCDR (list); | |
4174 } | |
4175 if (k != 0) | |
4176 { | |
4177 if (k == 1) | |
4178 buffer_insert_c_string (buf, ", "); | |
4179 else | |
4180 buffer_insert_c_string (buf, " .. "); | |
4181 elided = 1; | |
4182 continue; | |
4183 } | |
4184 } | |
4185 | |
4186 /* Print a description of the definition of this character. */ | |
4187 (*elt_describer) (XCDR (XCAR (list)), buffer); | |
4188 list = XCDR (list); | |
4189 } | |
4190 } | |
4191 UNGCPRO; | |
4192 } | |
4193 | |
4194 | |
4195 void | |
4196 syms_of_keymap (void) | |
4197 { | |
4198 defsymbol (&Qminor_mode_map_alist, "minor-mode-map-alist"); | |
4199 | |
4200 defsymbol (&Qkeymapp, "keymapp"); | |
4201 | |
4202 defsymbol (&Qsuppress_keymap, "suppress-keymap"); | |
4203 | |
4204 defsymbol (&Qmodeline_map, "modeline-map"); | |
4205 defsymbol (&Qtoolbar_map, "toolbar-map"); | |
4206 | |
4207 DEFSUBR (Fkeymap_parents); | |
4208 DEFSUBR (Fset_keymap_parents); | |
4209 DEFSUBR (Fkeymap_name); | |
4210 DEFSUBR (Fset_keymap_name); | |
4211 DEFSUBR (Fkeymap_prompt); | |
4212 DEFSUBR (Fset_keymap_prompt); | |
4213 DEFSUBR (Fkeymap_default_binding); | |
4214 DEFSUBR (Fset_keymap_default_binding); | |
4215 | |
4216 DEFSUBR (Fkeymapp); | |
4217 DEFSUBR (Fmake_keymap); | |
4218 DEFSUBR (Fmake_sparse_keymap); | |
4219 | |
4220 DEFSUBR (Fcopy_keymap); | |
4221 DEFSUBR (Fkeymap_fullness); | |
4222 DEFSUBR (Fmap_keymap); | |
4223 DEFSUBR (Fevent_matches_key_specifier_p); | |
4224 DEFSUBR (Fdefine_key); | |
4225 DEFSUBR (Flookup_key); | |
4226 DEFSUBR (Fkey_binding); | |
4227 DEFSUBR (Fuse_global_map); | |
4228 DEFSUBR (Fuse_local_map); | |
4229 DEFSUBR (Fcurrent_local_map); | |
4230 DEFSUBR (Fcurrent_global_map); | |
4231 DEFSUBR (Fcurrent_keymaps); | |
4232 DEFSUBR (Faccessible_keymaps); | |
4233 DEFSUBR (Fkey_description); | |
4234 DEFSUBR (Fsingle_key_description); | |
4235 DEFSUBR (Fwhere_is_internal); | |
4236 DEFSUBR (Fdescribe_bindings_internal); | |
4237 | |
4238 DEFSUBR (Ftext_char_description); | |
4239 | |
4240 defsymbol (&Qcontrol, "control"); | |
4241 defsymbol (&Qctrl, "ctrl"); | |
4242 defsymbol (&Qmeta, "meta"); | |
4243 defsymbol (&Qsuper, "super"); | |
4244 defsymbol (&Qhyper, "hyper"); | |
4245 defsymbol (&Qalt, "alt"); | |
4246 defsymbol (&Qshift, "shift"); | |
4247 defsymbol (&Qbutton0, "button0"); | |
4248 defsymbol (&Qbutton1, "button1"); | |
4249 defsymbol (&Qbutton2, "button2"); | |
4250 defsymbol (&Qbutton3, "button3"); | |
4251 defsymbol (&Qbutton4, "button4"); | |
4252 defsymbol (&Qbutton5, "button5"); | |
4253 defsymbol (&Qbutton6, "button6"); | |
4254 defsymbol (&Qbutton7, "button7"); | |
4255 defsymbol (&Qbutton0up, "button0up"); | |
4256 defsymbol (&Qbutton1up, "button1up"); | |
4257 defsymbol (&Qbutton2up, "button2up"); | |
4258 defsymbol (&Qbutton3up, "button3up"); | |
4259 defsymbol (&Qbutton4up, "button4up"); | |
4260 defsymbol (&Qbutton5up, "button5up"); | |
4261 defsymbol (&Qbutton6up, "button6up"); | |
4262 defsymbol (&Qbutton7up, "button7up"); | |
4263 defsymbol (&Qmouse_1, "mouse-1"); | |
4264 defsymbol (&Qmouse_2, "mouse-2"); | |
4265 defsymbol (&Qmouse_3, "mouse-3"); | |
4266 defsymbol (&Qmouse_4, "mouse-4"); | |
4267 defsymbol (&Qmouse_5, "mouse-5"); | |
4268 defsymbol (&Qdown_mouse_1, "down-mouse-1"); | |
4269 defsymbol (&Qdown_mouse_2, "down-mouse-2"); | |
4270 defsymbol (&Qdown_mouse_3, "down-mouse-3"); | |
4271 defsymbol (&Qdown_mouse_4, "down-mouse-4"); | |
4272 defsymbol (&Qdown_mouse_5, "down-mouse-5"); | |
4273 defsymbol (&Qmenu_selection, "menu-selection"); | |
4274 defsymbol (&QLFD, "LFD"); | |
4275 defsymbol (&QTAB, "TAB"); | |
4276 defsymbol (&QRET, "RET"); | |
4277 defsymbol (&QESC, "ESC"); | |
4278 defsymbol (&QDEL, "DEL"); | |
4279 defsymbol (&QSPC, "SPC"); | |
4280 defsymbol (&QBS, "BS"); | |
4281 } | |
4282 | |
4283 void | |
4284 vars_of_keymap (void) | |
4285 { | |
4286 DEFVAR_LISP ("meta-prefix-char", &Vmeta_prefix_char /* | |
4287 Meta-prefix character. | |
4288 This character followed by some character `foo' turns into `Meta-foo'. | |
4289 This can be any form recognized as a single key specifier. | |
4290 To disable the meta-prefix-char, set it to a negative number. | |
4291 */ ); | |
4292 Vmeta_prefix_char = make_char (033); | |
4293 | |
4294 DEFVAR_LISP ("mouse-grabbed-buffer", &Vmouse_grabbed_buffer /* | |
4295 A buffer which should be consulted first for all mouse activity. | |
4296 When a mouse-click is processed, it will first be looked up in the | |
4297 local-map of this buffer, and then through the normal mechanism if there | |
4298 is no binding for that click. This buffer's value of `mode-motion-hook' | |
4299 will be consulted instead of the `mode-motion-hook' of the buffer of the | |
4300 window under the mouse. You should *bind* this, not set it. | |
4301 */ ); | |
4302 Vmouse_grabbed_buffer = Qnil; | |
4303 | |
4304 DEFVAR_LISP ("overriding-local-map", &Voverriding_local_map /* | |
4305 Keymap that overrides all other local keymaps. | |
4306 If this variable is non-nil, it is used as a keymap instead of the | |
4307 buffer's local map, and the minor mode keymaps and extent-local keymaps. | |
4308 You should *bind* this, not set it. | |
4309 */ ); | |
4310 Voverriding_local_map = Qnil; | |
4311 | |
4312 Fset (Qminor_mode_map_alist, Qnil); | |
4313 | |
4314 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map /* | |
4315 Keymap of key translations that can override keymaps. | |
4316 This keymap works like `function-key-map', but comes after that, | |
4317 and applies even for keys that have ordinary bindings. | |
4318 */ ); | |
4319 Vkey_translation_map = Qnil; | |
4320 | |
4321 DEFVAR_LISP ("vertical-divider-map", &Vvertical_divider_map /* | |
4322 Keymap which handles mouse clicks over vertical dividers. | |
4323 */ ); | |
4324 Vvertical_divider_map = Qnil; | |
4325 | |
4326 DEFVAR_INT ("keymap-tick", &keymap_tick /* | |
4327 Incremented for each change to any keymap. | |
4328 */ ); | |
4329 keymap_tick = 0; | |
4330 | |
4331 staticpro (&Vcurrent_global_map); | |
4332 | |
4333 Vsingle_space_string = make_string ((CONST Bufbyte *) " ", 1); | |
4334 staticpro (&Vsingle_space_string); | |
4335 } | |
4336 | |
4337 void | |
4338 complex_vars_of_keymap (void) | |
4339 { | |
4340 /* This function can GC */ | |
4341 Lisp_Object ESC_prefix = intern ("ESC-prefix"); | |
4342 Lisp_Object meta_disgustitute; | |
4343 | |
4344 Vcurrent_global_map = Fmake_keymap (Qnil); | |
4345 | |
4346 meta_disgustitute = Fmake_keymap (Qnil); | |
4347 Ffset (ESC_prefix, meta_disgustitute); | |
4348 /* no need to protect meta_disgustitute, though */ | |
4349 keymap_store_internal (MAKE_MODIFIER_HASH_KEY (MOD_META), | |
4350 XKEYMAP (Vcurrent_global_map), | |
4351 meta_disgustitute); | |
4352 XKEYMAP (Vcurrent_global_map)->sub_maps_cache = Qt; | |
4353 | |
4354 Vkey_translation_map = Fmake_sparse_keymap (intern ("key-translation-map")); | |
4355 } |