Mercurial > hg > xemacs-beta
comparison src/hash.c @ 428:3ecd8885ac67 r21-2-22
Import from CVS: tag r21-2-22
author | cvs |
---|---|
date | Mon, 13 Aug 2007 11:28:15 +0200 |
parents | |
children | abe6d1db359e |
comparison
equal
deleted
inserted
replaced
427:0a0253eac470 | 428:3ecd8885ac67 |
---|---|
1 /* Hash tables. | |
2 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc. | |
3 | |
4 This file is part of XEmacs. | |
5 | |
6 XEmacs is free software; you can redistribute it and/or modify it | |
7 under the terms of the GNU General Public License as published by the | |
8 Free Software Foundation; either version 2, or (at your option) any | |
9 later version. | |
10 | |
11 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
14 for more details. | |
15 | |
16 You should have received a copy of the GNU General Public License | |
17 along with XEmacs; see the file COPYING. If not, write to | |
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
19 Boston, MA 02111-1307, USA. */ | |
20 | |
21 /* Synched up with: Not in FSF. */ | |
22 | |
23 #include <config.h> | |
24 #include "lisp.h" | |
25 #include "hash.h" | |
26 | |
27 #define NULL_ENTRY ((void *) 0xdeadbeef) | |
28 | |
29 #define COMFORTABLE_SIZE(size) (21 * (size) / 16) | |
30 | |
31 #define KEYS_DIFFER_P(old, new, testfun) \ | |
32 (((old) != (new)) && (!(testfun) || !(testfun) ((old),(new)))) | |
33 | |
34 static void rehash (hentry *harray, struct hash_table *ht, hash_size_t size); | |
35 | |
36 unsigned long | |
37 memory_hash (CONST void *xv, size_t size) | |
38 { | |
39 unsigned int h = 0; | |
40 unsigned CONST char *x = (unsigned CONST char *) xv; | |
41 | |
42 if (!x) return 0; | |
43 | |
44 while (size--) | |
45 { | |
46 unsigned int g; | |
47 h = (h << 4) + *x++; | |
48 if ((g = h & 0xf0000000) != 0) | |
49 h = (h ^ (g >> 24)) ^ g; | |
50 } | |
51 | |
52 return h; | |
53 } | |
54 | |
55 /* Return a suitable size for a hash table, with at least SIZE slots. */ | |
56 static size_t | |
57 hash_table_size (size_t requested_size) | |
58 { | |
59 /* Return some prime near, but greater than or equal to, SIZE. | |
60 Decades from the time of writing, someone will have a system large | |
61 enough that the list below will be too short... */ | |
62 static CONST size_t primes [] = | |
63 { | |
64 19, 29, 41, 59, 79, 107, 149, 197, 263, 347, 457, 599, 787, 1031, | |
65 1361, 1777, 2333, 3037, 3967, 5167, 6719, 8737, 11369, 14783, | |
66 19219, 24989, 32491, 42257, 54941, 71429, 92861, 120721, 156941, | |
67 204047, 265271, 344857, 448321, 582821, 757693, 985003, 1280519, | |
68 1664681, 2164111, 2813353, 3657361, 4754591, 6180989, 8035301, | |
69 10445899, 13579681, 17653589, 22949669, 29834603, 38784989, | |
70 50420551, 65546729, 85210757, 110774011, 144006217, 187208107, | |
71 243370577, 316381771, 411296309, 534685237, 695090819, 903618083, | |
72 1174703521, 1527114613, 1985248999, 2580823717UL, 3355070839UL | |
73 }; | |
74 /* We've heard of binary search. */ | |
75 int low, high; | |
76 for (low = 0, high = countof (primes) - 1; high - low > 1;) | |
77 { | |
78 /* Loop Invariant: size < primes [high] */ | |
79 int mid = (low + high) / 2; | |
80 if (primes [mid] < requested_size) | |
81 low = mid; | |
82 else | |
83 high = mid; | |
84 } | |
85 return primes [high]; | |
86 } | |
87 | |
88 CONST void * | |
89 gethash (CONST void *key, struct hash_table *hash_table, CONST void **ret_value) | |
90 { | |
91 if (!key) | |
92 { | |
93 *ret_value = hash_table->zero_entry; | |
94 return (void *) hash_table->zero_set; | |
95 } | |
96 else | |
97 { | |
98 hentry *harray = hash_table->harray; | |
99 hash_table_test_function test_function = hash_table->test_function; | |
100 hash_size_t size = hash_table->size; | |
101 unsigned int hcode_initial = | |
102 hash_table->hash_function ? | |
103 hash_table->hash_function (key) : | |
104 (unsigned long) key; | |
105 unsigned int hcode = hcode_initial % size; | |
106 hentry *e = &harray [hcode]; | |
107 CONST void *e_key = e->key; | |
108 | |
109 if (e_key ? | |
110 KEYS_DIFFER_P (e_key, key, test_function) : | |
111 e->contents == NULL_ENTRY) | |
112 { | |
113 size_t h2 = size - 2; | |
114 unsigned int incr = 1 + (hcode_initial % h2); | |
115 do | |
116 { | |
117 hcode += incr; if (hcode >= size) hcode -= size; | |
118 e = &harray [hcode]; | |
119 e_key = e->key; | |
120 } | |
121 while (e_key ? | |
122 KEYS_DIFFER_P (e_key, key, test_function) : | |
123 e->contents == NULL_ENTRY); | |
124 } | |
125 | |
126 *ret_value = e->contents; | |
127 return e->key; | |
128 } | |
129 } | |
130 | |
131 void | |
132 clrhash (struct hash_table *hash_table) | |
133 { | |
134 memset (hash_table->harray, 0, sizeof (hentry) * hash_table->size); | |
135 hash_table->zero_entry = 0; | |
136 hash_table->zero_set = 0; | |
137 hash_table->fullness = 0; | |
138 } | |
139 | |
140 void | |
141 free_hash_table (struct hash_table *hash_table) | |
142 { | |
143 xfree (hash_table->harray); | |
144 xfree (hash_table); | |
145 } | |
146 | |
147 struct hash_table* | |
148 make_hash_table (hash_size_t size) | |
149 { | |
150 struct hash_table *hash_table = xnew_and_zero (struct hash_table); | |
151 hash_table->size = hash_table_size (COMFORTABLE_SIZE (size)); | |
152 hash_table->harray = xnew_array (hentry, hash_table->size); | |
153 clrhash (hash_table); | |
154 return hash_table; | |
155 } | |
156 | |
157 struct hash_table * | |
158 make_general_hash_table (hash_size_t size, | |
159 hash_table_hash_function hash_function, | |
160 hash_table_test_function test_function) | |
161 { | |
162 struct hash_table* hash_table = make_hash_table (size); | |
163 hash_table->hash_function = hash_function; | |
164 hash_table->test_function = test_function; | |
165 return hash_table; | |
166 } | |
167 | |
168 static void | |
169 grow_hash_table (struct hash_table *hash_table, hash_size_t new_size) | |
170 { | |
171 hash_size_t old_size = hash_table->size; | |
172 hentry *old_harray = hash_table->harray; | |
173 | |
174 hash_table->size = hash_table_size (new_size); | |
175 hash_table->harray = xnew_array (hentry, hash_table->size); | |
176 | |
177 /* do the rehash on the "grown" table */ | |
178 { | |
179 long old_zero_set = hash_table->zero_set; | |
180 void *old_zero_entry = hash_table->zero_entry; | |
181 clrhash (hash_table); | |
182 hash_table->zero_set = old_zero_set; | |
183 hash_table->zero_entry = old_zero_entry; | |
184 rehash (old_harray, hash_table, old_size); | |
185 } | |
186 | |
187 xfree (old_harray); | |
188 } | |
189 | |
190 void | |
191 puthash (CONST void *key, void *contents, struct hash_table *hash_table) | |
192 { | |
193 if (!key) | |
194 { | |
195 hash_table->zero_entry = contents; | |
196 hash_table->zero_set = 1; | |
197 } | |
198 else | |
199 { | |
200 hash_table_test_function test_function = hash_table->test_function; | |
201 hash_size_t size = hash_table->size; | |
202 hentry *harray = hash_table->harray; | |
203 unsigned int hcode_initial = | |
204 hash_table->hash_function ? | |
205 hash_table->hash_function (key) : | |
206 (unsigned long) key; | |
207 unsigned int hcode = hcode_initial % size; | |
208 size_t h2 = size - 2; | |
209 unsigned int incr = 1 + (hcode_initial % h2); | |
210 CONST void *e_key = harray [hcode].key; | |
211 CONST void *oldcontents; | |
212 | |
213 if (e_key && KEYS_DIFFER_P (e_key, key, test_function)) | |
214 { | |
215 do | |
216 { | |
217 hcode += incr; if (hcode >= size) hcode -= size; | |
218 e_key = harray [hcode].key; | |
219 } | |
220 while (e_key && KEYS_DIFFER_P (e_key, key, test_function)); | |
221 } | |
222 oldcontents = harray [hcode].contents; | |
223 harray [hcode].key = key; | |
224 harray [hcode].contents = contents; | |
225 /* If the entry that we used was a deleted entry, | |
226 check for a non deleted entry of the same key, | |
227 then delete it. */ | |
228 if (!e_key && oldcontents == NULL_ENTRY) | |
229 { | |
230 hentry *e; | |
231 | |
232 do | |
233 { | |
234 hcode += incr; if (hcode >= size) hcode -= size; | |
235 e = &harray [hcode]; | |
236 e_key = e->key; | |
237 } | |
238 while (e_key ? | |
239 KEYS_DIFFER_P (e_key, key, test_function): | |
240 e->contents == NULL_ENTRY); | |
241 | |
242 if (e_key) | |
243 { | |
244 e->key = 0; | |
245 e->contents = NULL_ENTRY; | |
246 } | |
247 } | |
248 | |
249 /* only increment the fullness when we used up a new hentry */ | |
250 if (!e_key || KEYS_DIFFER_P (e_key, key, test_function)) | |
251 { | |
252 hash_size_t comfortable_size = COMFORTABLE_SIZE (++(hash_table->fullness)); | |
253 if (hash_table->size < comfortable_size) | |
254 grow_hash_table (hash_table, comfortable_size + 1); | |
255 } | |
256 } | |
257 } | |
258 | |
259 static void | |
260 rehash (hentry *harray, struct hash_table *hash_table, hash_size_t size) | |
261 { | |
262 hentry *limit = harray + size; | |
263 hentry *e; | |
264 for (e = harray; e < limit; e++) | |
265 { | |
266 if (e->key) | |
267 puthash (e->key, e->contents, hash_table); | |
268 } | |
269 } | |
270 | |
271 void | |
272 remhash (CONST void *key, struct hash_table *hash_table) | |
273 { | |
274 if (!key) | |
275 { | |
276 hash_table->zero_entry = 0; | |
277 hash_table->zero_set = 0; | |
278 } | |
279 else | |
280 { | |
281 hentry *harray = hash_table->harray; | |
282 hash_table_test_function test_function = hash_table->test_function; | |
283 hash_size_t size = hash_table->size; | |
284 unsigned int hcode_initial = | |
285 (hash_table->hash_function) ? | |
286 (hash_table->hash_function (key)) : | |
287 ((unsigned long) key); | |
288 unsigned int hcode = hcode_initial % size; | |
289 hentry *e = &harray [hcode]; | |
290 CONST void *e_key = e->key; | |
291 | |
292 if (e_key ? | |
293 KEYS_DIFFER_P (e_key, key, test_function) : | |
294 e->contents == NULL_ENTRY) | |
295 { | |
296 size_t h2 = size - 2; | |
297 unsigned int incr = 1 + (hcode_initial % h2); | |
298 do | |
299 { | |
300 hcode += incr; if (hcode >= size) hcode -= size; | |
301 e = &harray [hcode]; | |
302 e_key = e->key; | |
303 } | |
304 while (e_key? | |
305 KEYS_DIFFER_P (e_key, key, test_function): | |
306 e->contents == NULL_ENTRY); | |
307 } | |
308 if (e_key) | |
309 { | |
310 e->key = 0; | |
311 e->contents = NULL_ENTRY; | |
312 /* Note: you can't do fullness-- here, it breaks the world. */ | |
313 } | |
314 } | |
315 } | |
316 | |
317 void | |
318 maphash (maphash_function mf, struct hash_table *hash_table, void *arg) | |
319 { | |
320 hentry *e; | |
321 hentry *limit; | |
322 | |
323 if (hash_table->zero_set) | |
324 { | |
325 if (mf (0, hash_table->zero_entry, arg)) | |
326 return; | |
327 } | |
328 | |
329 for (e = hash_table->harray, limit = e + hash_table->size; e < limit; e++) | |
330 { | |
331 if (e->key && mf (e->key, e->contents, arg)) | |
332 return; | |
333 } | |
334 } | |
335 | |
336 void | |
337 map_remhash (remhash_predicate predicate, struct hash_table *hash_table, void *arg) | |
338 { | |
339 hentry *e; | |
340 hentry *limit; | |
341 | |
342 if (hash_table->zero_set && predicate (0, hash_table->zero_entry, arg)) | |
343 { | |
344 hash_table->zero_set = 0; | |
345 hash_table->zero_entry = 0; | |
346 } | |
347 | |
348 for (e = hash_table->harray, limit = e + hash_table->size; e < limit; e++) | |
349 if (predicate (e->key, e->contents, arg)) | |
350 { | |
351 e->key = 0; | |
352 e->contents = NULL_ENTRY; | |
353 } | |
354 } |