Mercurial > hg > xemacs-beta
comparison src/fns.c @ 428:3ecd8885ac67 r21-2-22
Import from CVS: tag r21-2-22
author | cvs |
---|---|
date | Mon, 13 Aug 2007 11:28:15 +0200 |
parents | |
children | 9d177e8d4150 |
comparison
equal
deleted
inserted
replaced
427:0a0253eac470 | 428:3ecd8885ac67 |
---|---|
1 /* Random utility Lisp functions. | |
2 Copyright (C) 1985, 86, 87, 93, 94, 95 Free Software Foundation, Inc. | |
3 Copyright (C) 1995, 1996 Ben Wing. | |
4 | |
5 This file is part of XEmacs. | |
6 | |
7 XEmacs is free software; you can redistribute it and/or modify it | |
8 under the terms of the GNU General Public License as published by the | |
9 Free Software Foundation; either version 2, or (at your option) any | |
10 later version. | |
11 | |
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
15 for more details. | |
16 | |
17 You should have received a copy of the GNU General Public License | |
18 along with XEmacs; see the file COPYING. If not, write to | |
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
20 Boston, MA 02111-1307, USA. */ | |
21 | |
22 /* Synched up with: Mule 2.0, FSF 19.30. */ | |
23 | |
24 /* This file has been Mule-ized. */ | |
25 | |
26 /* Note: FSF 19.30 has bool vectors. We have bit vectors. */ | |
27 | |
28 /* Hacked on for Mule by Ben Wing, December 1994, January 1995. */ | |
29 | |
30 #include <config.h> | |
31 | |
32 /* Note on some machines this defines `vector' as a typedef, | |
33 so make sure we don't use that name in this file. */ | |
34 #undef vector | |
35 #define vector ***** | |
36 | |
37 #include "lisp.h" | |
38 | |
39 #ifdef HAVE_UNISTD_H | |
40 #include <unistd.h> | |
41 #endif | |
42 #include <errno.h> | |
43 | |
44 #include "buffer.h" | |
45 #include "bytecode.h" | |
46 #include "device.h" | |
47 #include "events.h" | |
48 #include "extents.h" | |
49 #include "frame.h" | |
50 #include "systime.h" | |
51 #include "insdel.h" | |
52 #include "lstream.h" | |
53 #include "opaque.h" | |
54 | |
55 /* NOTE: This symbol is also used in lread.c */ | |
56 #define FEATUREP_SYNTAX | |
57 | |
58 Lisp_Object Qstring_lessp; | |
59 Lisp_Object Qidentity; | |
60 | |
61 static int internal_old_equal (Lisp_Object, Lisp_Object, int); | |
62 | |
63 static Lisp_Object | |
64 mark_bit_vector (Lisp_Object obj) | |
65 { | |
66 return Qnil; | |
67 } | |
68 | |
69 static void | |
70 print_bit_vector (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag) | |
71 { | |
72 size_t i; | |
73 struct Lisp_Bit_Vector *v = XBIT_VECTOR (obj); | |
74 size_t len = bit_vector_length (v); | |
75 size_t last = len; | |
76 | |
77 if (INTP (Vprint_length)) | |
78 last = min (len, XINT (Vprint_length)); | |
79 write_c_string ("#*", printcharfun); | |
80 for (i = 0; i < last; i++) | |
81 { | |
82 if (bit_vector_bit (v, i)) | |
83 write_c_string ("1", printcharfun); | |
84 else | |
85 write_c_string ("0", printcharfun); | |
86 } | |
87 | |
88 if (last != len) | |
89 write_c_string ("...", printcharfun); | |
90 } | |
91 | |
92 static int | |
93 bit_vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
94 { | |
95 struct Lisp_Bit_Vector *v1 = XBIT_VECTOR (obj1); | |
96 struct Lisp_Bit_Vector *v2 = XBIT_VECTOR (obj2); | |
97 | |
98 return ((bit_vector_length (v1) == bit_vector_length (v2)) && | |
99 !memcmp (v1->bits, v2->bits, | |
100 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v1)) * | |
101 sizeof (long))); | |
102 } | |
103 | |
104 static unsigned long | |
105 bit_vector_hash (Lisp_Object obj, int depth) | |
106 { | |
107 struct Lisp_Bit_Vector *v = XBIT_VECTOR (obj); | |
108 return HASH2 (bit_vector_length (v), | |
109 memory_hash (v->bits, | |
110 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v)) * | |
111 sizeof (long))); | |
112 } | |
113 | |
114 static const struct lrecord_description bit_vector_description[] = { | |
115 { XD_LISP_OBJECT, offsetof(Lisp_Bit_Vector, next), 1 }, | |
116 { XD_END } | |
117 }; | |
118 | |
119 | |
120 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("bit-vector", bit_vector, | |
121 mark_bit_vector, print_bit_vector, 0, | |
122 bit_vector_equal, bit_vector_hash, | |
123 bit_vector_description, | |
124 struct Lisp_Bit_Vector); | |
125 | |
126 DEFUN ("identity", Fidentity, 1, 1, 0, /* | |
127 Return the argument unchanged. | |
128 */ | |
129 (arg)) | |
130 { | |
131 return arg; | |
132 } | |
133 | |
134 extern long get_random (void); | |
135 extern void seed_random (long arg); | |
136 | |
137 DEFUN ("random", Frandom, 0, 1, 0, /* | |
138 Return a pseudo-random number. | |
139 All integers representable in Lisp are equally likely. | |
140 On most systems, this is 28 bits' worth. | |
141 With positive integer argument N, return random number in interval [0,N). | |
142 With argument t, set the random number seed from the current time and pid. | |
143 */ | |
144 (limit)) | |
145 { | |
146 EMACS_INT val; | |
147 unsigned long denominator; | |
148 | |
149 if (EQ (limit, Qt)) | |
150 seed_random (getpid () + time (NULL)); | |
151 if (NATNUMP (limit) && !ZEROP (limit)) | |
152 { | |
153 /* Try to take our random number from the higher bits of VAL, | |
154 not the lower, since (says Gentzel) the low bits of `random' | |
155 are less random than the higher ones. We do this by using the | |
156 quotient rather than the remainder. At the high end of the RNG | |
157 it's possible to get a quotient larger than limit; discarding | |
158 these values eliminates the bias that would otherwise appear | |
159 when using a large limit. */ | |
160 denominator = ((unsigned long)1 << VALBITS) / XINT (limit); | |
161 do | |
162 val = get_random () / denominator; | |
163 while (val >= XINT (limit)); | |
164 } | |
165 else | |
166 val = get_random (); | |
167 | |
168 return make_int (val); | |
169 } | |
170 | |
171 /* Random data-structure functions */ | |
172 | |
173 #ifdef LOSING_BYTECODE | |
174 | |
175 /* #### Delete this shit */ | |
176 | |
177 /* Charcount is a misnomer here as we might be dealing with the | |
178 length of a vector or list, but emphasizes that we're not dealing | |
179 with Bytecounts in strings */ | |
180 static Charcount | |
181 length_with_bytecode_hack (Lisp_Object seq) | |
182 { | |
183 if (!COMPILED_FUNCTIONP (seq)) | |
184 return XINT (Flength (seq)); | |
185 else | |
186 { | |
187 struct Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (seq); | |
188 | |
189 return (f->flags.interactivep ? COMPILED_INTERACTIVE : | |
190 f->flags.domainp ? COMPILED_DOMAIN : | |
191 COMPILED_DOC_STRING) | |
192 + 1; | |
193 } | |
194 } | |
195 | |
196 #endif /* LOSING_BYTECODE */ | |
197 | |
198 void | |
199 check_losing_bytecode (CONST char *function, Lisp_Object seq) | |
200 { | |
201 if (COMPILED_FUNCTIONP (seq)) | |
202 error_with_frob | |
203 (seq, | |
204 "As of 20.3, `%s' no longer works with compiled-function objects", | |
205 function); | |
206 } | |
207 | |
208 DEFUN ("length", Flength, 1, 1, 0, /* | |
209 Return the length of vector, bit vector, list or string SEQUENCE. | |
210 */ | |
211 (sequence)) | |
212 { | |
213 retry: | |
214 if (STRINGP (sequence)) | |
215 return make_int (XSTRING_CHAR_LENGTH (sequence)); | |
216 else if (CONSP (sequence)) | |
217 { | |
218 size_t len; | |
219 GET_EXTERNAL_LIST_LENGTH (sequence, len); | |
220 return make_int (len); | |
221 } | |
222 else if (VECTORP (sequence)) | |
223 return make_int (XVECTOR_LENGTH (sequence)); | |
224 else if (NILP (sequence)) | |
225 return Qzero; | |
226 else if (BIT_VECTORP (sequence)) | |
227 return make_int (bit_vector_length (XBIT_VECTOR (sequence))); | |
228 else | |
229 { | |
230 check_losing_bytecode ("length", sequence); | |
231 sequence = wrong_type_argument (Qsequencep, sequence); | |
232 goto retry; | |
233 } | |
234 } | |
235 | |
236 DEFUN ("safe-length", Fsafe_length, 1, 1, 0, /* | |
237 Return the length of a list, but avoid error or infinite loop. | |
238 This function never gets an error. If LIST is not really a list, | |
239 it returns 0. If LIST is circular, it returns a finite value | |
240 which is at least the number of distinct elements. | |
241 */ | |
242 (list)) | |
243 { | |
244 Lisp_Object hare, tortoise; | |
245 size_t len; | |
246 | |
247 for (hare = tortoise = list, len = 0; | |
248 CONSP (hare) && (! EQ (hare, tortoise) || len == 0); | |
249 hare = XCDR (hare), len++) | |
250 { | |
251 if (len & 1) | |
252 tortoise = XCDR (tortoise); | |
253 } | |
254 | |
255 return make_int (len); | |
256 } | |
257 | |
258 /*** string functions. ***/ | |
259 | |
260 DEFUN ("string-equal", Fstring_equal, 2, 2, 0, /* | |
261 Return t if two strings have identical contents. | |
262 Case is significant. Text properties are ignored. | |
263 \(Under XEmacs, `equal' also ignores text properties and extents in | |
264 strings, but this is not the case under FSF Emacs 19. In FSF Emacs 20 | |
265 `equal' is the same as in XEmacs, in that respect.) | |
266 Symbols are also allowed; their print names are used instead. | |
267 */ | |
268 (s1, s2)) | |
269 { | |
270 Bytecount len; | |
271 struct Lisp_String *p1, *p2; | |
272 | |
273 if (SYMBOLP (s1)) | |
274 p1 = XSYMBOL (s1)->name; | |
275 else | |
276 { | |
277 CHECK_STRING (s1); | |
278 p1 = XSTRING (s1); | |
279 } | |
280 | |
281 if (SYMBOLP (s2)) | |
282 p2 = XSYMBOL (s2)->name; | |
283 else | |
284 { | |
285 CHECK_STRING (s2); | |
286 p2 = XSTRING (s2); | |
287 } | |
288 | |
289 return (((len = string_length (p1)) == string_length (p2)) && | |
290 !memcmp (string_data (p1), string_data (p2), len)) ? Qt : Qnil; | |
291 } | |
292 | |
293 | |
294 DEFUN ("string-lessp", Fstring_lessp, 2, 2, 0, /* | |
295 Return t if first arg string is less than second in lexicographic order. | |
296 If I18N2 support (but not Mule support) was compiled in, ordering is | |
297 determined by the locale. (Case is significant for the default C locale.) | |
298 In all other cases, comparison is simply done on a character-by- | |
299 character basis using the numeric value of a character. (Note that | |
300 this may not produce particularly meaningful results under Mule if | |
301 characters from different charsets are being compared.) | |
302 | |
303 Symbols are also allowed; their print names are used instead. | |
304 | |
305 The reason that the I18N2 locale-specific collation is not used under | |
306 Mule is that the locale model of internationalization does not handle | |
307 multiple charsets and thus has no hope of working properly under Mule. | |
308 What we really should do is create a collation table over all built-in | |
309 charsets. This is extremely difficult to do from scratch, however. | |
310 | |
311 Unicode is a good first step towards solving this problem. In fact, | |
312 it is quite likely that a collation table exists (or will exist) for | |
313 Unicode. When Unicode support is added to XEmacs/Mule, this problem | |
314 may be solved. | |
315 */ | |
316 (s1, s2)) | |
317 { | |
318 struct Lisp_String *p1, *p2; | |
319 Charcount end, len2; | |
320 int i; | |
321 | |
322 if (SYMBOLP (s1)) | |
323 p1 = XSYMBOL (s1)->name; | |
324 else | |
325 { | |
326 CHECK_STRING (s1); | |
327 p1 = XSTRING (s1); | |
328 } | |
329 | |
330 if (SYMBOLP (s2)) | |
331 p2 = XSYMBOL (s2)->name; | |
332 else | |
333 { | |
334 CHECK_STRING (s2); | |
335 p2 = XSTRING (s2); | |
336 } | |
337 | |
338 end = string_char_length (p1); | |
339 len2 = string_char_length (p2); | |
340 if (end > len2) | |
341 end = len2; | |
342 | |
343 #if defined (I18N2) && !defined (MULE) | |
344 /* There is no hope of this working under Mule. Even if we converted | |
345 the data into an external format so that strcoll() processed it | |
346 properly, it would still not work because strcoll() does not | |
347 handle multiple locales. This is the fundamental flaw in the | |
348 locale model. */ | |
349 { | |
350 Bytecount bcend = charcount_to_bytecount (string_data (p1), end); | |
351 /* Compare strings using collation order of locale. */ | |
352 /* Need to be tricky to handle embedded nulls. */ | |
353 | |
354 for (i = 0; i < bcend; i += strlen((char *) string_data (p1) + i) + 1) | |
355 { | |
356 int val = strcoll ((char *) string_data (p1) + i, | |
357 (char *) string_data (p2) + i); | |
358 if (val < 0) | |
359 return Qt; | |
360 if (val > 0) | |
361 return Qnil; | |
362 } | |
363 } | |
364 #else /* not I18N2, or MULE */ | |
365 { | |
366 Bufbyte *ptr1 = string_data (p1); | |
367 Bufbyte *ptr2 = string_data (p2); | |
368 | |
369 /* #### It is not really necessary to do this: We could compare | |
370 byte-by-byte and still get a reasonable comparison, since this | |
371 would compare characters with a charset in the same way. With | |
372 a little rearrangement of the leading bytes, we could make most | |
373 inter-charset comparisons work out the same, too; even if some | |
374 don't, this is not a big deal because inter-charset comparisons | |
375 aren't really well-defined anyway. */ | |
376 for (i = 0; i < end; i++) | |
377 { | |
378 if (charptr_emchar (ptr1) != charptr_emchar (ptr2)) | |
379 return charptr_emchar (ptr1) < charptr_emchar (ptr2) ? Qt : Qnil; | |
380 INC_CHARPTR (ptr1); | |
381 INC_CHARPTR (ptr2); | |
382 } | |
383 } | |
384 #endif /* not I18N2, or MULE */ | |
385 /* Can't do i < len2 because then comparison between "foo" and "foo^@" | |
386 won't work right in I18N2 case */ | |
387 return end < len2 ? Qt : Qnil; | |
388 } | |
389 | |
390 DEFUN ("string-modified-tick", Fstring_modified_tick, 1, 1, 0, /* | |
391 Return STRING's tick counter, incremented for each change to the string. | |
392 Each string has a tick counter which is incremented each time the contents | |
393 of the string are changed (e.g. with `aset'). It wraps around occasionally. | |
394 */ | |
395 (string)) | |
396 { | |
397 struct Lisp_String *s; | |
398 | |
399 CHECK_STRING (string); | |
400 s = XSTRING (string); | |
401 if (CONSP (s->plist) && INTP (XCAR (s->plist))) | |
402 return XCAR (s->plist); | |
403 else | |
404 return Qzero; | |
405 } | |
406 | |
407 void | |
408 bump_string_modiff (Lisp_Object str) | |
409 { | |
410 struct Lisp_String *s = XSTRING (str); | |
411 Lisp_Object *ptr = &s->plist; | |
412 | |
413 #ifdef I18N3 | |
414 /* #### remove the `string-translatable' property from the string, | |
415 if there is one. */ | |
416 #endif | |
417 /* skip over extent info if it's there */ | |
418 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr))) | |
419 ptr = &XCDR (*ptr); | |
420 if (CONSP (*ptr) && INTP (XCAR (*ptr))) | |
421 XSETINT (XCAR (*ptr), 1+XINT (XCAR (*ptr))); | |
422 else | |
423 *ptr = Fcons (make_int (1), *ptr); | |
424 } | |
425 | |
426 | |
427 enum concat_target_type { c_cons, c_string, c_vector, c_bit_vector }; | |
428 static Lisp_Object concat (int nargs, Lisp_Object *args, | |
429 enum concat_target_type target_type, | |
430 int last_special); | |
431 | |
432 Lisp_Object | |
433 concat2 (Lisp_Object s1, Lisp_Object s2) | |
434 { | |
435 Lisp_Object args[2]; | |
436 args[0] = s1; | |
437 args[1] = s2; | |
438 return concat (2, args, c_string, 0); | |
439 } | |
440 | |
441 Lisp_Object | |
442 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3) | |
443 { | |
444 Lisp_Object args[3]; | |
445 args[0] = s1; | |
446 args[1] = s2; | |
447 args[2] = s3; | |
448 return concat (3, args, c_string, 0); | |
449 } | |
450 | |
451 Lisp_Object | |
452 vconcat2 (Lisp_Object s1, Lisp_Object s2) | |
453 { | |
454 Lisp_Object args[2]; | |
455 args[0] = s1; | |
456 args[1] = s2; | |
457 return concat (2, args, c_vector, 0); | |
458 } | |
459 | |
460 Lisp_Object | |
461 vconcat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3) | |
462 { | |
463 Lisp_Object args[3]; | |
464 args[0] = s1; | |
465 args[1] = s2; | |
466 args[2] = s3; | |
467 return concat (3, args, c_vector, 0); | |
468 } | |
469 | |
470 DEFUN ("append", Fappend, 0, MANY, 0, /* | |
471 Concatenate all the arguments and make the result a list. | |
472 The result is a list whose elements are the elements of all the arguments. | |
473 Each argument may be a list, vector, bit vector, or string. | |
474 The last argument is not copied, just used as the tail of the new list. | |
475 Also see: `nconc'. | |
476 */ | |
477 (int nargs, Lisp_Object *args)) | |
478 { | |
479 return concat (nargs, args, c_cons, 1); | |
480 } | |
481 | |
482 DEFUN ("concat", Fconcat, 0, MANY, 0, /* | |
483 Concatenate all the arguments and make the result a string. | |
484 The result is a string whose elements are the elements of all the arguments. | |
485 Each argument may be a string or a list or vector of characters. | |
486 | |
487 As of XEmacs 21.0, this function does NOT accept individual integers | |
488 as arguments. Old code that relies on, for example, (concat "foo" 50) | |
489 returning "foo50" will fail. To fix such code, either apply | |
490 `int-to-string' to the integer argument, or use `format'. | |
491 */ | |
492 (int nargs, Lisp_Object *args)) | |
493 { | |
494 return concat (nargs, args, c_string, 0); | |
495 } | |
496 | |
497 DEFUN ("vconcat", Fvconcat, 0, MANY, 0, /* | |
498 Concatenate all the arguments and make the result a vector. | |
499 The result is a vector whose elements are the elements of all the arguments. | |
500 Each argument may be a list, vector, bit vector, or string. | |
501 */ | |
502 (int nargs, Lisp_Object *args)) | |
503 { | |
504 return concat (nargs, args, c_vector, 0); | |
505 } | |
506 | |
507 DEFUN ("bvconcat", Fbvconcat, 0, MANY, 0, /* | |
508 Concatenate all the arguments and make the result a bit vector. | |
509 The result is a bit vector whose elements are the elements of all the | |
510 arguments. Each argument may be a list, vector, bit vector, or string. | |
511 */ | |
512 (int nargs, Lisp_Object *args)) | |
513 { | |
514 return concat (nargs, args, c_bit_vector, 0); | |
515 } | |
516 | |
517 /* Copy a (possibly dotted) list. LIST must be a cons. | |
518 Can't use concat (1, &alist, c_cons, 0) - doesn't handle dotted lists. */ | |
519 static Lisp_Object | |
520 copy_list (Lisp_Object list) | |
521 { | |
522 Lisp_Object list_copy = Fcons (XCAR (list), XCDR (list)); | |
523 Lisp_Object last = list_copy; | |
524 Lisp_Object hare, tortoise; | |
525 size_t len; | |
526 | |
527 for (tortoise = hare = XCDR (list), len = 1; | |
528 CONSP (hare); | |
529 hare = XCDR (hare), len++) | |
530 { | |
531 XCDR (last) = Fcons (XCAR (hare), XCDR (hare)); | |
532 last = XCDR (last); | |
533 | |
534 if (len < CIRCULAR_LIST_SUSPICION_LENGTH) | |
535 continue; | |
536 if (len & 1) | |
537 tortoise = XCDR (tortoise); | |
538 if (EQ (tortoise, hare)) | |
539 signal_circular_list_error (list); | |
540 } | |
541 | |
542 return list_copy; | |
543 } | |
544 | |
545 DEFUN ("copy-list", Fcopy_list, 1, 1, 0, /* | |
546 Return a copy of list LIST, which may be a dotted list. | |
547 The elements of LIST are not copied; they are shared | |
548 with the original. | |
549 */ | |
550 (list)) | |
551 { | |
552 again: | |
553 if (NILP (list)) return list; | |
554 if (CONSP (list)) return copy_list (list); | |
555 | |
556 list = wrong_type_argument (Qlistp, list); | |
557 goto again; | |
558 } | |
559 | |
560 DEFUN ("copy-sequence", Fcopy_sequence, 1, 1, 0, /* | |
561 Return a copy of list, vector, bit vector or string SEQUENCE. | |
562 The elements of a list or vector are not copied; they are shared | |
563 with the original. SEQUENCE may be a dotted list. | |
564 */ | |
565 (sequence)) | |
566 { | |
567 again: | |
568 if (NILP (sequence)) return sequence; | |
569 if (CONSP (sequence)) return copy_list (sequence); | |
570 if (STRINGP (sequence)) return concat (1, &sequence, c_string, 0); | |
571 if (VECTORP (sequence)) return concat (1, &sequence, c_vector, 0); | |
572 if (BIT_VECTORP (sequence)) return concat (1, &sequence, c_bit_vector, 0); | |
573 | |
574 check_losing_bytecode ("copy-sequence", sequence); | |
575 sequence = wrong_type_argument (Qsequencep, sequence); | |
576 goto again; | |
577 } | |
578 | |
579 struct merge_string_extents_struct | |
580 { | |
581 Lisp_Object string; | |
582 Bytecount entry_offset; | |
583 Bytecount entry_length; | |
584 }; | |
585 | |
586 static Lisp_Object | |
587 concat (int nargs, Lisp_Object *args, | |
588 enum concat_target_type target_type, | |
589 int last_special) | |
590 { | |
591 Lisp_Object val; | |
592 Lisp_Object tail = Qnil; | |
593 int toindex; | |
594 int argnum; | |
595 Lisp_Object last_tail; | |
596 Lisp_Object prev; | |
597 struct merge_string_extents_struct *args_mse = 0; | |
598 Bufbyte *string_result = 0; | |
599 Bufbyte *string_result_ptr = 0; | |
600 struct gcpro gcpro1; | |
601 | |
602 /* The modus operandi in Emacs is "caller gc-protects args". | |
603 However, concat is called many times in Emacs on freshly | |
604 created stuff. So we help those callers out by protecting | |
605 the args ourselves to save them a lot of temporary-variable | |
606 grief. */ | |
607 | |
608 GCPRO1 (args[0]); | |
609 gcpro1.nvars = nargs; | |
610 | |
611 #ifdef I18N3 | |
612 /* #### if the result is a string and any of the strings have a string | |
613 for the `string-translatable' property, then concat should also | |
614 concat the args but use the `string-translatable' strings, and store | |
615 the result in the returned string's `string-translatable' property. */ | |
616 #endif | |
617 if (target_type == c_string) | |
618 args_mse = alloca_array (struct merge_string_extents_struct, nargs); | |
619 | |
620 /* In append, the last arg isn't treated like the others */ | |
621 if (last_special && nargs > 0) | |
622 { | |
623 nargs--; | |
624 last_tail = args[nargs]; | |
625 } | |
626 else | |
627 last_tail = Qnil; | |
628 | |
629 /* Check and coerce the arguments. */ | |
630 for (argnum = 0; argnum < nargs; argnum++) | |
631 { | |
632 Lisp_Object seq = args[argnum]; | |
633 if (LISTP (seq)) | |
634 ; | |
635 else if (VECTORP (seq) || STRINGP (seq) || BIT_VECTORP (seq)) | |
636 ; | |
637 #ifdef LOSING_BYTECODE | |
638 else if (COMPILED_FUNCTIONP (seq)) | |
639 /* Urk! We allow this, for "compatibility"... */ | |
640 ; | |
641 #endif | |
642 #if 0 /* removed for XEmacs 21 */ | |
643 else if (INTP (seq)) | |
644 /* This is too revolting to think about but maintains | |
645 compatibility with FSF (and lots and lots of old code). */ | |
646 args[argnum] = Fnumber_to_string (seq); | |
647 #endif | |
648 else | |
649 { | |
650 check_losing_bytecode ("concat", seq); | |
651 args[argnum] = wrong_type_argument (Qsequencep, seq); | |
652 } | |
653 | |
654 if (args_mse) | |
655 { | |
656 if (STRINGP (seq)) | |
657 args_mse[argnum].string = seq; | |
658 else | |
659 args_mse[argnum].string = Qnil; | |
660 } | |
661 } | |
662 | |
663 { | |
664 /* Charcount is a misnomer here as we might be dealing with the | |
665 length of a vector or list, but emphasizes that we're not dealing | |
666 with Bytecounts in strings */ | |
667 Charcount total_length; | |
668 | |
669 for (argnum = 0, total_length = 0; argnum < nargs; argnum++) | |
670 { | |
671 #ifdef LOSING_BYTECODE | |
672 Charcount thislen = length_with_bytecode_hack (args[argnum]); | |
673 #else | |
674 Charcount thislen = XINT (Flength (args[argnum])); | |
675 #endif | |
676 total_length += thislen; | |
677 } | |
678 | |
679 switch (target_type) | |
680 { | |
681 case c_cons: | |
682 if (total_length == 0) | |
683 /* In append, if all but last arg are nil, return last arg */ | |
684 RETURN_UNGCPRO (last_tail); | |
685 val = Fmake_list (make_int (total_length), Qnil); | |
686 break; | |
687 case c_vector: | |
688 val = make_vector (total_length, Qnil); | |
689 break; | |
690 case c_bit_vector: | |
691 val = make_bit_vector (total_length, Qzero); | |
692 break; | |
693 case c_string: | |
694 /* We don't make the string yet because we don't know the | |
695 actual number of bytes. This loop was formerly written | |
696 to call Fmake_string() here and then call set_string_char() | |
697 for each char. This seems logical enough but is waaaaaaaay | |
698 slow -- set_string_char() has to scan the whole string up | |
699 to the place where the substitution is called for in order | |
700 to find the place to change, and may have to do some | |
701 realloc()ing in order to make the char fit properly. | |
702 O(N^2) yuckage. */ | |
703 val = Qnil; | |
704 string_result = (Bufbyte *) alloca (total_length * MAX_EMCHAR_LEN); | |
705 string_result_ptr = string_result; | |
706 break; | |
707 default: | |
708 abort (); | |
709 } | |
710 } | |
711 | |
712 | |
713 if (CONSP (val)) | |
714 tail = val, toindex = -1; /* -1 in toindex is flag we are | |
715 making a list */ | |
716 else | |
717 toindex = 0; | |
718 | |
719 prev = Qnil; | |
720 | |
721 for (argnum = 0; argnum < nargs; argnum++) | |
722 { | |
723 Charcount thisleni = 0; | |
724 Charcount thisindex = 0; | |
725 Lisp_Object seq = args[argnum]; | |
726 Bufbyte *string_source_ptr = 0; | |
727 Bufbyte *string_prev_result_ptr = string_result_ptr; | |
728 | |
729 if (!CONSP (seq)) | |
730 { | |
731 #ifdef LOSING_BYTECODE | |
732 thisleni = length_with_bytecode_hack (seq); | |
733 #else | |
734 thisleni = XINT (Flength (seq)); | |
735 #endif | |
736 } | |
737 if (STRINGP (seq)) | |
738 string_source_ptr = XSTRING_DATA (seq); | |
739 | |
740 while (1) | |
741 { | |
742 Lisp_Object elt; | |
743 | |
744 /* We've come to the end of this arg, so exit. */ | |
745 if (NILP (seq)) | |
746 break; | |
747 | |
748 /* Fetch next element of `seq' arg into `elt' */ | |
749 if (CONSP (seq)) | |
750 { | |
751 elt = XCAR (seq); | |
752 seq = XCDR (seq); | |
753 } | |
754 else | |
755 { | |
756 if (thisindex >= thisleni) | |
757 break; | |
758 | |
759 if (STRINGP (seq)) | |
760 { | |
761 elt = make_char (charptr_emchar (string_source_ptr)); | |
762 INC_CHARPTR (string_source_ptr); | |
763 } | |
764 else if (VECTORP (seq)) | |
765 elt = XVECTOR_DATA (seq)[thisindex]; | |
766 else if (BIT_VECTORP (seq)) | |
767 elt = make_int (bit_vector_bit (XBIT_VECTOR (seq), | |
768 thisindex)); | |
769 else | |
770 elt = Felt (seq, make_int (thisindex)); | |
771 thisindex++; | |
772 } | |
773 | |
774 /* Store into result */ | |
775 if (toindex < 0) | |
776 { | |
777 /* toindex negative means we are making a list */ | |
778 XCAR (tail) = elt; | |
779 prev = tail; | |
780 tail = XCDR (tail); | |
781 } | |
782 else if (VECTORP (val)) | |
783 XVECTOR_DATA (val)[toindex++] = elt; | |
784 else if (BIT_VECTORP (val)) | |
785 { | |
786 CHECK_BIT (elt); | |
787 set_bit_vector_bit (XBIT_VECTOR (val), toindex++, XINT (elt)); | |
788 } | |
789 else | |
790 { | |
791 CHECK_CHAR_COERCE_INT (elt); | |
792 string_result_ptr += set_charptr_emchar (string_result_ptr, | |
793 XCHAR (elt)); | |
794 } | |
795 } | |
796 if (args_mse) | |
797 { | |
798 args_mse[argnum].entry_offset = | |
799 string_prev_result_ptr - string_result; | |
800 args_mse[argnum].entry_length = | |
801 string_result_ptr - string_prev_result_ptr; | |
802 } | |
803 } | |
804 | |
805 /* Now we finally make the string. */ | |
806 if (target_type == c_string) | |
807 { | |
808 val = make_string (string_result, string_result_ptr - string_result); | |
809 for (argnum = 0; argnum < nargs; argnum++) | |
810 { | |
811 if (STRINGP (args_mse[argnum].string)) | |
812 copy_string_extents (val, args_mse[argnum].string, | |
813 args_mse[argnum].entry_offset, 0, | |
814 args_mse[argnum].entry_length); | |
815 } | |
816 } | |
817 | |
818 if (!NILP (prev)) | |
819 XCDR (prev) = last_tail; | |
820 | |
821 RETURN_UNGCPRO (val); | |
822 } | |
823 | |
824 DEFUN ("copy-alist", Fcopy_alist, 1, 1, 0, /* | |
825 Return a copy of ALIST. | |
826 This is an alist which represents the same mapping from objects to objects, | |
827 but does not share the alist structure with ALIST. | |
828 The objects mapped (cars and cdrs of elements of the alist) | |
829 are shared, however. | |
830 Elements of ALIST that are not conses are also shared. | |
831 */ | |
832 (alist)) | |
833 { | |
834 Lisp_Object tail; | |
835 | |
836 if (NILP (alist)) | |
837 return alist; | |
838 CHECK_CONS (alist); | |
839 | |
840 alist = concat (1, &alist, c_cons, 0); | |
841 for (tail = alist; CONSP (tail); tail = XCDR (tail)) | |
842 { | |
843 Lisp_Object car = XCAR (tail); | |
844 | |
845 if (CONSP (car)) | |
846 XCAR (tail) = Fcons (XCAR (car), XCDR (car)); | |
847 } | |
848 return alist; | |
849 } | |
850 | |
851 DEFUN ("copy-tree", Fcopy_tree, 1, 2, 0, /* | |
852 Return a copy of a list and substructures. | |
853 The argument is copied, and any lists contained within it are copied | |
854 recursively. Circularities and shared substructures are not preserved. | |
855 Second arg VECP causes vectors to be copied, too. Strings and bit vectors | |
856 are not copied. | |
857 */ | |
858 (arg, vecp)) | |
859 { | |
860 if (CONSP (arg)) | |
861 { | |
862 Lisp_Object rest; | |
863 rest = arg = Fcopy_sequence (arg); | |
864 while (CONSP (rest)) | |
865 { | |
866 Lisp_Object elt = XCAR (rest); | |
867 QUIT; | |
868 if (CONSP (elt) || VECTORP (elt)) | |
869 XCAR (rest) = Fcopy_tree (elt, vecp); | |
870 if (VECTORP (XCDR (rest))) /* hack for (a b . [c d]) */ | |
871 XCDR (rest) = Fcopy_tree (XCDR (rest), vecp); | |
872 rest = XCDR (rest); | |
873 } | |
874 } | |
875 else if (VECTORP (arg) && ! NILP (vecp)) | |
876 { | |
877 int i = XVECTOR_LENGTH (arg); | |
878 int j; | |
879 arg = Fcopy_sequence (arg); | |
880 for (j = 0; j < i; j++) | |
881 { | |
882 Lisp_Object elt = XVECTOR_DATA (arg) [j]; | |
883 QUIT; | |
884 if (CONSP (elt) || VECTORP (elt)) | |
885 XVECTOR_DATA (arg) [j] = Fcopy_tree (elt, vecp); | |
886 } | |
887 } | |
888 return arg; | |
889 } | |
890 | |
891 DEFUN ("substring", Fsubstring, 2, 3, 0, /* | |
892 Return a substring of STRING, starting at index FROM and ending before TO. | |
893 TO may be nil or omitted; then the substring runs to the end of STRING. | |
894 If FROM or TO is negative, it counts from the end. | |
895 Relevant parts of the string-extent-data are copied in the new string. | |
896 */ | |
897 (string, from, to)) | |
898 { | |
899 Charcount ccfr, ccto; | |
900 Bytecount bfr, blen; | |
901 Lisp_Object val; | |
902 | |
903 CHECK_STRING (string); | |
904 CHECK_INT (from); | |
905 get_string_range_char (string, from, to, &ccfr, &ccto, | |
906 GB_HISTORICAL_STRING_BEHAVIOR); | |
907 bfr = charcount_to_bytecount (XSTRING_DATA (string), ccfr); | |
908 blen = charcount_to_bytecount (XSTRING_DATA (string) + bfr, ccto - ccfr); | |
909 val = make_string (XSTRING_DATA (string) + bfr, blen); | |
910 /* Copy any applicable extent information into the new string: */ | |
911 copy_string_extents (val, string, 0, bfr, blen); | |
912 return val; | |
913 } | |
914 | |
915 DEFUN ("subseq", Fsubseq, 2, 3, 0, /* | |
916 Return a subsequence of SEQ, starting at index FROM and ending before TO. | |
917 TO may be nil or omitted; then the subsequence runs to the end of SEQ. | |
918 If FROM or TO is negative, it counts from the end. | |
919 The resulting subsequence is always the same type as the original | |
920 sequence. | |
921 If SEQ is a string, relevant parts of the string-extent-data are copied | |
922 to the new string. | |
923 */ | |
924 (seq, from, to)) | |
925 { | |
926 EMACS_INT len, f, t; | |
927 | |
928 if (STRINGP (seq)) | |
929 return Fsubstring (seq, from, to); | |
930 | |
931 if (!LISTP (seq) && !VECTORP (seq) && !BIT_VECTORP (seq)) | |
932 { | |
933 check_losing_bytecode ("subseq", seq); | |
934 seq = wrong_type_argument (Qsequencep, seq); | |
935 } | |
936 | |
937 len = XINT (Flength (seq)); | |
938 | |
939 CHECK_INT (from); | |
940 f = XINT (from); | |
941 if (f < 0) | |
942 f = len + f; | |
943 | |
944 if (NILP (to)) | |
945 t = len; | |
946 else | |
947 { | |
948 CHECK_INT (to); | |
949 t = XINT (to); | |
950 if (t < 0) | |
951 t = len + t; | |
952 } | |
953 | |
954 if (!(0 <= f && f <= t && t <= len)) | |
955 args_out_of_range_3 (seq, make_int (f), make_int (t)); | |
956 | |
957 if (VECTORP (seq)) | |
958 { | |
959 Lisp_Object result = make_vector (t - f, Qnil); | |
960 EMACS_INT i; | |
961 Lisp_Object *in_elts = XVECTOR_DATA (seq); | |
962 Lisp_Object *out_elts = XVECTOR_DATA (result); | |
963 | |
964 for (i = f; i < t; i++) | |
965 out_elts[i - f] = in_elts[i]; | |
966 return result; | |
967 } | |
968 | |
969 if (LISTP (seq)) | |
970 { | |
971 Lisp_Object result = Qnil; | |
972 EMACS_INT i; | |
973 | |
974 seq = Fnthcdr (make_int (f), seq); | |
975 | |
976 for (i = f; i < t; i++) | |
977 { | |
978 result = Fcons (Fcar (seq), result); | |
979 seq = Fcdr (seq); | |
980 } | |
981 | |
982 return Fnreverse (result); | |
983 } | |
984 | |
985 /* bit vector */ | |
986 { | |
987 Lisp_Object result = make_bit_vector (t - f, Qzero); | |
988 EMACS_INT i; | |
989 | |
990 for (i = f; i < t; i++) | |
991 set_bit_vector_bit (XBIT_VECTOR (result), i - f, | |
992 bit_vector_bit (XBIT_VECTOR (seq), i)); | |
993 return result; | |
994 } | |
995 } | |
996 | |
997 | |
998 DEFUN ("nthcdr", Fnthcdr, 2, 2, 0, /* | |
999 Take cdr N times on LIST, and return the result. | |
1000 */ | |
1001 (n, list)) | |
1002 { | |
1003 REGISTER size_t i; | |
1004 REGISTER Lisp_Object tail = list; | |
1005 CHECK_NATNUM (n); | |
1006 for (i = XINT (n); i; i--) | |
1007 { | |
1008 if (CONSP (tail)) | |
1009 tail = XCDR (tail); | |
1010 else if (NILP (tail)) | |
1011 return Qnil; | |
1012 else | |
1013 { | |
1014 tail = wrong_type_argument (Qlistp, tail); | |
1015 i++; | |
1016 } | |
1017 } | |
1018 return tail; | |
1019 } | |
1020 | |
1021 DEFUN ("nth", Fnth, 2, 2, 0, /* | |
1022 Return the Nth element of LIST. | |
1023 N counts from zero. If LIST is not that long, nil is returned. | |
1024 */ | |
1025 (n, list)) | |
1026 { | |
1027 return Fcar (Fnthcdr (n, list)); | |
1028 } | |
1029 | |
1030 DEFUN ("elt", Felt, 2, 2, 0, /* | |
1031 Return element of SEQUENCE at index N. | |
1032 */ | |
1033 (sequence, n)) | |
1034 { | |
1035 retry: | |
1036 CHECK_INT_COERCE_CHAR (n); /* yuck! */ | |
1037 if (LISTP (sequence)) | |
1038 { | |
1039 Lisp_Object tem = Fnthcdr (n, sequence); | |
1040 /* #### Utterly, completely, fucking disgusting. | |
1041 * #### The whole point of "elt" is that it operates on | |
1042 * #### sequences, and does error- (bounds-) checking. | |
1043 */ | |
1044 if (CONSP (tem)) | |
1045 return XCAR (tem); | |
1046 else | |
1047 #if 1 | |
1048 /* This is The Way It Has Always Been. */ | |
1049 return Qnil; | |
1050 #else | |
1051 /* This is The Way Mly and Cltl2 say It Should Be. */ | |
1052 args_out_of_range (sequence, n); | |
1053 #endif | |
1054 } | |
1055 else if (STRINGP (sequence) || | |
1056 VECTORP (sequence) || | |
1057 BIT_VECTORP (sequence)) | |
1058 return Faref (sequence, n); | |
1059 #ifdef LOSING_BYTECODE | |
1060 else if (COMPILED_FUNCTIONP (sequence)) | |
1061 { | |
1062 EMACS_INT idx = XINT (n); | |
1063 if (idx < 0) | |
1064 { | |
1065 lose: | |
1066 args_out_of_range (sequence, n); | |
1067 } | |
1068 /* Utter perversity */ | |
1069 { | |
1070 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (sequence); | |
1071 switch (idx) | |
1072 { | |
1073 case COMPILED_ARGLIST: | |
1074 return compiled_function_arglist (f); | |
1075 case COMPILED_INSTRUCTIONS: | |
1076 return compiled_function_instructions (f); | |
1077 case COMPILED_CONSTANTS: | |
1078 return compiled_function_constants (f); | |
1079 case COMPILED_STACK_DEPTH: | |
1080 return compiled_function_stack_depth (f); | |
1081 case COMPILED_DOC_STRING: | |
1082 return compiled_function_documentation (f); | |
1083 case COMPILED_DOMAIN: | |
1084 return compiled_function_domain (f); | |
1085 case COMPILED_INTERACTIVE: | |
1086 if (f->flags.interactivep) | |
1087 return compiled_function_interactive (f); | |
1088 /* if we return nil, can't tell interactive with no args | |
1089 from noninteractive. */ | |
1090 goto lose; | |
1091 default: | |
1092 goto lose; | |
1093 } | |
1094 } | |
1095 } | |
1096 #endif /* LOSING_BYTECODE */ | |
1097 else | |
1098 { | |
1099 check_losing_bytecode ("elt", sequence); | |
1100 sequence = wrong_type_argument (Qsequencep, sequence); | |
1101 goto retry; | |
1102 } | |
1103 } | |
1104 | |
1105 DEFUN ("last", Flast, 1, 2, 0, /* | |
1106 Return the tail of list LIST, of length N (default 1). | |
1107 LIST may be a dotted list, but not a circular list. | |
1108 Optional argument N must be a non-negative integer. | |
1109 If N is zero, then the atom that terminates the list is returned. | |
1110 If N is greater than the length of LIST, then LIST itself is returned. | |
1111 */ | |
1112 (list, n)) | |
1113 { | |
1114 EMACS_INT int_n, count; | |
1115 Lisp_Object retval, tortoise, hare; | |
1116 | |
1117 CHECK_LIST (list); | |
1118 | |
1119 if (NILP (n)) | |
1120 int_n = 1; | |
1121 else | |
1122 { | |
1123 CHECK_NATNUM (n); | |
1124 int_n = XINT (n); | |
1125 } | |
1126 | |
1127 for (retval = tortoise = hare = list, count = 0; | |
1128 CONSP (hare); | |
1129 hare = XCDR (hare), | |
1130 (int_n-- <= 0 ? ((void) (retval = XCDR (retval))) : (void)0), | |
1131 count++) | |
1132 { | |
1133 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue; | |
1134 | |
1135 if (count & 1) | |
1136 tortoise = XCDR (tortoise); | |
1137 if (EQ (hare, tortoise)) | |
1138 signal_circular_list_error (list); | |
1139 } | |
1140 | |
1141 return retval; | |
1142 } | |
1143 | |
1144 DEFUN ("nbutlast", Fnbutlast, 1, 2, 0, /* | |
1145 Modify LIST to remove the last N (default 1) elements. | |
1146 If LIST has N or fewer elements, nil is returned and LIST is unmodified. | |
1147 */ | |
1148 (list, n)) | |
1149 { | |
1150 EMACS_INT int_n; | |
1151 | |
1152 CHECK_LIST (list); | |
1153 | |
1154 if (NILP (n)) | |
1155 int_n = 1; | |
1156 else | |
1157 { | |
1158 CHECK_NATNUM (n); | |
1159 int_n = XINT (n); | |
1160 } | |
1161 | |
1162 { | |
1163 Lisp_Object last_cons = list; | |
1164 | |
1165 EXTERNAL_LIST_LOOP_1 (list) | |
1166 { | |
1167 if (int_n-- < 0) | |
1168 last_cons = XCDR (last_cons); | |
1169 } | |
1170 | |
1171 if (int_n >= 0) | |
1172 return Qnil; | |
1173 | |
1174 XCDR (last_cons) = Qnil; | |
1175 return list; | |
1176 } | |
1177 } | |
1178 | |
1179 DEFUN ("butlast", Fbutlast, 1, 2, 0, /* | |
1180 Return a copy of LIST with the last N (default 1) elements removed. | |
1181 If LIST has N or fewer elements, nil is returned. | |
1182 */ | |
1183 (list, n)) | |
1184 { | |
1185 int int_n; | |
1186 | |
1187 CHECK_LIST (list); | |
1188 | |
1189 if (NILP (n)) | |
1190 int_n = 1; | |
1191 else | |
1192 { | |
1193 CHECK_NATNUM (n); | |
1194 int_n = XINT (n); | |
1195 } | |
1196 | |
1197 { | |
1198 Lisp_Object retval = Qnil; | |
1199 Lisp_Object tail = list; | |
1200 | |
1201 EXTERNAL_LIST_LOOP_1 (list) | |
1202 { | |
1203 if (--int_n < 0) | |
1204 { | |
1205 retval = Fcons (XCAR (tail), retval); | |
1206 tail = XCDR (tail); | |
1207 } | |
1208 } | |
1209 | |
1210 return Fnreverse (retval); | |
1211 } | |
1212 } | |
1213 | |
1214 DEFUN ("member", Fmember, 2, 2, 0, /* | |
1215 Return non-nil if ELT is an element of LIST. Comparison done with `equal'. | |
1216 The value is actually the tail of LIST whose car is ELT. | |
1217 */ | |
1218 (elt, list)) | |
1219 { | |
1220 Lisp_Object list_elt, tail; | |
1221 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail) | |
1222 { | |
1223 if (internal_equal (elt, list_elt, 0)) | |
1224 return tail; | |
1225 } | |
1226 return Qnil; | |
1227 } | |
1228 | |
1229 DEFUN ("old-member", Fold_member, 2, 2, 0, /* | |
1230 Return non-nil if ELT is an element of LIST. Comparison done with `old-equal'. | |
1231 The value is actually the tail of LIST whose car is ELT. | |
1232 This function is provided only for byte-code compatibility with v19. | |
1233 Do not use it. | |
1234 */ | |
1235 (elt, list)) | |
1236 { | |
1237 Lisp_Object list_elt, tail; | |
1238 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail) | |
1239 { | |
1240 if (internal_old_equal (elt, list_elt, 0)) | |
1241 return tail; | |
1242 } | |
1243 return Qnil; | |
1244 } | |
1245 | |
1246 DEFUN ("memq", Fmemq, 2, 2, 0, /* | |
1247 Return non-nil if ELT is an element of LIST. Comparison done with `eq'. | |
1248 The value is actually the tail of LIST whose car is ELT. | |
1249 */ | |
1250 (elt, list)) | |
1251 { | |
1252 Lisp_Object list_elt, tail; | |
1253 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail) | |
1254 { | |
1255 if (EQ_WITH_EBOLA_NOTICE (elt, list_elt)) | |
1256 return tail; | |
1257 } | |
1258 return Qnil; | |
1259 } | |
1260 | |
1261 DEFUN ("old-memq", Fold_memq, 2, 2, 0, /* | |
1262 Return non-nil if ELT is an element of LIST. Comparison done with `old-eq'. | |
1263 The value is actually the tail of LIST whose car is ELT. | |
1264 This function is provided only for byte-code compatibility with v19. | |
1265 Do not use it. | |
1266 */ | |
1267 (elt, list)) | |
1268 { | |
1269 Lisp_Object list_elt, tail; | |
1270 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail) | |
1271 { | |
1272 if (HACKEQ_UNSAFE (elt, list_elt)) | |
1273 return tail; | |
1274 } | |
1275 return Qnil; | |
1276 } | |
1277 | |
1278 Lisp_Object | |
1279 memq_no_quit (Lisp_Object elt, Lisp_Object list) | |
1280 { | |
1281 Lisp_Object list_elt, tail; | |
1282 LIST_LOOP_3 (list_elt, list, tail) | |
1283 { | |
1284 if (EQ_WITH_EBOLA_NOTICE (elt, list_elt)) | |
1285 return tail; | |
1286 } | |
1287 return Qnil; | |
1288 } | |
1289 | |
1290 DEFUN ("assoc", Fassoc, 2, 2, 0, /* | |
1291 Return non-nil if KEY is `equal' to the car of an element of LIST. | |
1292 The value is actually the element of LIST whose car equals KEY. | |
1293 */ | |
1294 (key, list)) | |
1295 { | |
1296 /* This function can GC. */ | |
1297 Lisp_Object elt, elt_car, elt_cdr; | |
1298 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list) | |
1299 { | |
1300 if (internal_equal (key, elt_car, 0)) | |
1301 return elt; | |
1302 } | |
1303 return Qnil; | |
1304 } | |
1305 | |
1306 DEFUN ("old-assoc", Fold_assoc, 2, 2, 0, /* | |
1307 Return non-nil if KEY is `old-equal' to the car of an element of LIST. | |
1308 The value is actually the element of LIST whose car equals KEY. | |
1309 */ | |
1310 (key, list)) | |
1311 { | |
1312 /* This function can GC. */ | |
1313 Lisp_Object elt, elt_car, elt_cdr; | |
1314 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list) | |
1315 { | |
1316 if (internal_old_equal (key, elt_car, 0)) | |
1317 return elt; | |
1318 } | |
1319 return Qnil; | |
1320 } | |
1321 | |
1322 Lisp_Object | |
1323 assoc_no_quit (Lisp_Object key, Lisp_Object list) | |
1324 { | |
1325 int speccount = specpdl_depth (); | |
1326 specbind (Qinhibit_quit, Qt); | |
1327 return unbind_to (speccount, Fassoc (key, list)); | |
1328 } | |
1329 | |
1330 DEFUN ("assq", Fassq, 2, 2, 0, /* | |
1331 Return non-nil if KEY is `eq' to the car of an element of LIST. | |
1332 The value is actually the element of LIST whose car is KEY. | |
1333 Elements of LIST that are not conses are ignored. | |
1334 */ | |
1335 (key, list)) | |
1336 { | |
1337 Lisp_Object elt, elt_car, elt_cdr; | |
1338 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list) | |
1339 { | |
1340 if (EQ_WITH_EBOLA_NOTICE (key, elt_car)) | |
1341 return elt; | |
1342 } | |
1343 return Qnil; | |
1344 } | |
1345 | |
1346 DEFUN ("old-assq", Fold_assq, 2, 2, 0, /* | |
1347 Return non-nil if KEY is `old-eq' to the car of an element of LIST. | |
1348 The value is actually the element of LIST whose car is KEY. | |
1349 Elements of LIST that are not conses are ignored. | |
1350 This function is provided only for byte-code compatibility with v19. | |
1351 Do not use it. | |
1352 */ | |
1353 (key, list)) | |
1354 { | |
1355 Lisp_Object elt, elt_car, elt_cdr; | |
1356 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list) | |
1357 { | |
1358 if (HACKEQ_UNSAFE (key, elt_car)) | |
1359 return elt; | |
1360 } | |
1361 return Qnil; | |
1362 } | |
1363 | |
1364 /* Like Fassq but never report an error and do not allow quits. | |
1365 Use only on lists known never to be circular. */ | |
1366 | |
1367 Lisp_Object | |
1368 assq_no_quit (Lisp_Object key, Lisp_Object list) | |
1369 { | |
1370 /* This cannot GC. */ | |
1371 Lisp_Object elt; | |
1372 LIST_LOOP_2 (elt, list) | |
1373 { | |
1374 Lisp_Object elt_car = XCAR (elt); | |
1375 if (EQ_WITH_EBOLA_NOTICE (key, elt_car)) | |
1376 return elt; | |
1377 } | |
1378 return Qnil; | |
1379 } | |
1380 | |
1381 DEFUN ("rassoc", Frassoc, 2, 2, 0, /* | |
1382 Return non-nil if KEY is `equal' to the cdr of an element of LIST. | |
1383 The value is actually the element of LIST whose cdr equals KEY. | |
1384 */ | |
1385 (key, list)) | |
1386 { | |
1387 Lisp_Object elt, elt_car, elt_cdr; | |
1388 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list) | |
1389 { | |
1390 if (internal_equal (key, elt_cdr, 0)) | |
1391 return elt; | |
1392 } | |
1393 return Qnil; | |
1394 } | |
1395 | |
1396 DEFUN ("old-rassoc", Fold_rassoc, 2, 2, 0, /* | |
1397 Return non-nil if KEY is `old-equal' to the cdr of an element of LIST. | |
1398 The value is actually the element of LIST whose cdr equals KEY. | |
1399 */ | |
1400 (key, list)) | |
1401 { | |
1402 Lisp_Object elt, elt_car, elt_cdr; | |
1403 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list) | |
1404 { | |
1405 if (internal_old_equal (key, elt_cdr, 0)) | |
1406 return elt; | |
1407 } | |
1408 return Qnil; | |
1409 } | |
1410 | |
1411 DEFUN ("rassq", Frassq, 2, 2, 0, /* | |
1412 Return non-nil if KEY is `eq' to the cdr of an element of LIST. | |
1413 The value is actually the element of LIST whose cdr is KEY. | |
1414 */ | |
1415 (key, list)) | |
1416 { | |
1417 Lisp_Object elt, elt_car, elt_cdr; | |
1418 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list) | |
1419 { | |
1420 if (EQ_WITH_EBOLA_NOTICE (key, elt_cdr)) | |
1421 return elt; | |
1422 } | |
1423 return Qnil; | |
1424 } | |
1425 | |
1426 DEFUN ("old-rassq", Fold_rassq, 2, 2, 0, /* | |
1427 Return non-nil if KEY is `old-eq' to the cdr of an element of LIST. | |
1428 The value is actually the element of LIST whose cdr is KEY. | |
1429 */ | |
1430 (key, list)) | |
1431 { | |
1432 Lisp_Object elt, elt_car, elt_cdr; | |
1433 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list) | |
1434 { | |
1435 if (HACKEQ_UNSAFE (key, elt_cdr)) | |
1436 return elt; | |
1437 } | |
1438 return Qnil; | |
1439 } | |
1440 | |
1441 /* Like Frassq, but caller must ensure that LIST is properly | |
1442 nil-terminated and ebola-free. */ | |
1443 Lisp_Object | |
1444 rassq_no_quit (Lisp_Object key, Lisp_Object list) | |
1445 { | |
1446 Lisp_Object elt; | |
1447 LIST_LOOP_2 (elt, list) | |
1448 { | |
1449 Lisp_Object elt_cdr = XCDR (elt); | |
1450 if (EQ_WITH_EBOLA_NOTICE (key, elt_cdr)) | |
1451 return elt; | |
1452 } | |
1453 return Qnil; | |
1454 } | |
1455 | |
1456 | |
1457 DEFUN ("delete", Fdelete, 2, 2, 0, /* | |
1458 Delete by side effect any occurrences of ELT as a member of LIST. | |
1459 The modified LIST is returned. Comparison is done with `equal'. | |
1460 If the first member of LIST is ELT, there is no way to remove it by side | |
1461 effect; therefore, write `(setq foo (delete element foo))' to be sure | |
1462 of changing the value of `foo'. | |
1463 Also see: `remove'. | |
1464 */ | |
1465 (elt, list)) | |
1466 { | |
1467 Lisp_Object list_elt; | |
1468 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list, | |
1469 (internal_equal (elt, list_elt, 0))); | |
1470 return list; | |
1471 } | |
1472 | |
1473 DEFUN ("old-delete", Fold_delete, 2, 2, 0, /* | |
1474 Delete by side effect any occurrences of ELT as a member of LIST. | |
1475 The modified LIST is returned. Comparison is done with `old-equal'. | |
1476 If the first member of LIST is ELT, there is no way to remove it by side | |
1477 effect; therefore, write `(setq foo (old-delete element foo))' to be sure | |
1478 of changing the value of `foo'. | |
1479 */ | |
1480 (elt, list)) | |
1481 { | |
1482 Lisp_Object list_elt; | |
1483 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list, | |
1484 (internal_old_equal (elt, list_elt, 0))); | |
1485 return list; | |
1486 } | |
1487 | |
1488 DEFUN ("delq", Fdelq, 2, 2, 0, /* | |
1489 Delete by side effect any occurrences of ELT as a member of LIST. | |
1490 The modified LIST is returned. Comparison is done with `eq'. | |
1491 If the first member of LIST is ELT, there is no way to remove it by side | |
1492 effect; therefore, write `(setq foo (delq element foo))' to be sure of | |
1493 changing the value of `foo'. | |
1494 */ | |
1495 (elt, list)) | |
1496 { | |
1497 Lisp_Object list_elt; | |
1498 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list, | |
1499 (EQ_WITH_EBOLA_NOTICE (elt, list_elt))); | |
1500 return list; | |
1501 } | |
1502 | |
1503 DEFUN ("old-delq", Fold_delq, 2, 2, 0, /* | |
1504 Delete by side effect any occurrences of ELT as a member of LIST. | |
1505 The modified LIST is returned. Comparison is done with `old-eq'. | |
1506 If the first member of LIST is ELT, there is no way to remove it by side | |
1507 effect; therefore, write `(setq foo (old-delq element foo))' to be sure of | |
1508 changing the value of `foo'. | |
1509 */ | |
1510 (elt, list)) | |
1511 { | |
1512 Lisp_Object list_elt; | |
1513 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list, | |
1514 (HACKEQ_UNSAFE (elt, list_elt))); | |
1515 return list; | |
1516 } | |
1517 | |
1518 /* Like Fdelq, but caller must ensure that LIST is properly | |
1519 nil-terminated and ebola-free. */ | |
1520 | |
1521 Lisp_Object | |
1522 delq_no_quit (Lisp_Object elt, Lisp_Object list) | |
1523 { | |
1524 Lisp_Object list_elt; | |
1525 LIST_LOOP_DELETE_IF (list_elt, list, | |
1526 (EQ_WITH_EBOLA_NOTICE (elt, list_elt))); | |
1527 return list; | |
1528 } | |
1529 | |
1530 /* Be VERY careful with this. This is like delq_no_quit() but | |
1531 also calls free_cons() on the removed conses. You must be SURE | |
1532 that no pointers to the freed conses remain around (e.g. | |
1533 someone else is pointing to part of the list). This function | |
1534 is useful on internal lists that are used frequently and where | |
1535 the actual list doesn't escape beyond known code bounds. */ | |
1536 | |
1537 Lisp_Object | |
1538 delq_no_quit_and_free_cons (Lisp_Object elt, Lisp_Object list) | |
1539 { | |
1540 REGISTER Lisp_Object tail = list; | |
1541 REGISTER Lisp_Object prev = Qnil; | |
1542 | |
1543 while (!NILP (tail)) | |
1544 { | |
1545 REGISTER Lisp_Object tem = XCAR (tail); | |
1546 if (EQ (elt, tem)) | |
1547 { | |
1548 Lisp_Object cons_to_free = tail; | |
1549 if (NILP (prev)) | |
1550 list = XCDR (tail); | |
1551 else | |
1552 XCDR (prev) = XCDR (tail); | |
1553 tail = XCDR (tail); | |
1554 free_cons (XCONS (cons_to_free)); | |
1555 } | |
1556 else | |
1557 { | |
1558 prev = tail; | |
1559 tail = XCDR (tail); | |
1560 } | |
1561 } | |
1562 return list; | |
1563 } | |
1564 | |
1565 DEFUN ("remassoc", Fremassoc, 2, 2, 0, /* | |
1566 Delete by side effect any elements of LIST whose car is `equal' to KEY. | |
1567 The modified LIST is returned. If the first member of LIST has a car | |
1568 that is `equal' to KEY, there is no way to remove it by side effect; | |
1569 therefore, write `(setq foo (remassoc key foo))' to be sure of changing | |
1570 the value of `foo'. | |
1571 */ | |
1572 (key, list)) | |
1573 { | |
1574 Lisp_Object elt; | |
1575 EXTERNAL_LIST_LOOP_DELETE_IF (elt, list, | |
1576 (CONSP (elt) && | |
1577 internal_equal (key, XCAR (elt), 0))); | |
1578 return list; | |
1579 } | |
1580 | |
1581 Lisp_Object | |
1582 remassoc_no_quit (Lisp_Object key, Lisp_Object list) | |
1583 { | |
1584 int speccount = specpdl_depth (); | |
1585 specbind (Qinhibit_quit, Qt); | |
1586 return unbind_to (speccount, Fremassoc (key, list)); | |
1587 } | |
1588 | |
1589 DEFUN ("remassq", Fremassq, 2, 2, 0, /* | |
1590 Delete by side effect any elements of LIST whose car is `eq' to KEY. | |
1591 The modified LIST is returned. If the first member of LIST has a car | |
1592 that is `eq' to KEY, there is no way to remove it by side effect; | |
1593 therefore, write `(setq foo (remassq key foo))' to be sure of changing | |
1594 the value of `foo'. | |
1595 */ | |
1596 (key, list)) | |
1597 { | |
1598 Lisp_Object elt; | |
1599 EXTERNAL_LIST_LOOP_DELETE_IF (elt, list, | |
1600 (CONSP (elt) && | |
1601 EQ_WITH_EBOLA_NOTICE (key, XCAR (elt)))); | |
1602 return list; | |
1603 } | |
1604 | |
1605 /* no quit, no errors; be careful */ | |
1606 | |
1607 Lisp_Object | |
1608 remassq_no_quit (Lisp_Object key, Lisp_Object list) | |
1609 { | |
1610 Lisp_Object elt; | |
1611 LIST_LOOP_DELETE_IF (elt, list, | |
1612 (CONSP (elt) && | |
1613 EQ_WITH_EBOLA_NOTICE (key, XCAR (elt)))); | |
1614 return list; | |
1615 } | |
1616 | |
1617 DEFUN ("remrassoc", Fremrassoc, 2, 2, 0, /* | |
1618 Delete by side effect any elements of LIST whose cdr is `equal' to VALUE. | |
1619 The modified LIST is returned. If the first member of LIST has a car | |
1620 that is `equal' to VALUE, there is no way to remove it by side effect; | |
1621 therefore, write `(setq foo (remrassoc value foo))' to be sure of changing | |
1622 the value of `foo'. | |
1623 */ | |
1624 (value, list)) | |
1625 { | |
1626 Lisp_Object elt; | |
1627 EXTERNAL_LIST_LOOP_DELETE_IF (elt, list, | |
1628 (CONSP (elt) && | |
1629 internal_equal (value, XCDR (elt), 0))); | |
1630 return list; | |
1631 } | |
1632 | |
1633 DEFUN ("remrassq", Fremrassq, 2, 2, 0, /* | |
1634 Delete by side effect any elements of LIST whose cdr is `eq' to VALUE. | |
1635 The modified LIST is returned. If the first member of LIST has a car | |
1636 that is `eq' to VALUE, there is no way to remove it by side effect; | |
1637 therefore, write `(setq foo (remrassq value foo))' to be sure of changing | |
1638 the value of `foo'. | |
1639 */ | |
1640 (value, list)) | |
1641 { | |
1642 Lisp_Object elt; | |
1643 EXTERNAL_LIST_LOOP_DELETE_IF (elt, list, | |
1644 (CONSP (elt) && | |
1645 EQ_WITH_EBOLA_NOTICE (value, XCDR (elt)))); | |
1646 return list; | |
1647 } | |
1648 | |
1649 /* Like Fremrassq, fast and unsafe; be careful */ | |
1650 Lisp_Object | |
1651 remrassq_no_quit (Lisp_Object value, Lisp_Object list) | |
1652 { | |
1653 Lisp_Object elt; | |
1654 LIST_LOOP_DELETE_IF (elt, list, | |
1655 (CONSP (elt) && | |
1656 EQ_WITH_EBOLA_NOTICE (value, XCDR (elt)))); | |
1657 return list; | |
1658 } | |
1659 | |
1660 DEFUN ("nreverse", Fnreverse, 1, 1, 0, /* | |
1661 Reverse LIST by destructively modifying cdr pointers. | |
1662 Return the beginning of the reversed list. | |
1663 Also see: `reverse'. | |
1664 */ | |
1665 (list)) | |
1666 { | |
1667 struct gcpro gcpro1, gcpro2; | |
1668 REGISTER Lisp_Object prev = Qnil; | |
1669 REGISTER Lisp_Object tail = list; | |
1670 | |
1671 /* We gcpro our args; see `nconc' */ | |
1672 GCPRO2 (prev, tail); | |
1673 while (!NILP (tail)) | |
1674 { | |
1675 REGISTER Lisp_Object next; | |
1676 CONCHECK_CONS (tail); | |
1677 next = XCDR (tail); | |
1678 XCDR (tail) = prev; | |
1679 prev = tail; | |
1680 tail = next; | |
1681 } | |
1682 UNGCPRO; | |
1683 return prev; | |
1684 } | |
1685 | |
1686 DEFUN ("reverse", Freverse, 1, 1, 0, /* | |
1687 Reverse LIST, copying. Return the beginning of the reversed list. | |
1688 See also the function `nreverse', which is used more often. | |
1689 */ | |
1690 (list)) | |
1691 { | |
1692 Lisp_Object reversed_list = Qnil; | |
1693 Lisp_Object elt; | |
1694 EXTERNAL_LIST_LOOP_2 (elt, list) | |
1695 { | |
1696 reversed_list = Fcons (elt, reversed_list); | |
1697 } | |
1698 return reversed_list; | |
1699 } | |
1700 | |
1701 static Lisp_Object list_merge (Lisp_Object org_l1, Lisp_Object org_l2, | |
1702 Lisp_Object lisp_arg, | |
1703 int (*pred_fn) (Lisp_Object, Lisp_Object, | |
1704 Lisp_Object lisp_arg)); | |
1705 | |
1706 Lisp_Object | |
1707 list_sort (Lisp_Object list, | |
1708 Lisp_Object lisp_arg, | |
1709 int (*pred_fn) (Lisp_Object, Lisp_Object, | |
1710 Lisp_Object lisp_arg)) | |
1711 { | |
1712 struct gcpro gcpro1, gcpro2, gcpro3; | |
1713 Lisp_Object back, tem; | |
1714 Lisp_Object front = list; | |
1715 Lisp_Object len = Flength (list); | |
1716 int length = XINT (len); | |
1717 | |
1718 if (length < 2) | |
1719 return list; | |
1720 | |
1721 XSETINT (len, (length / 2) - 1); | |
1722 tem = Fnthcdr (len, list); | |
1723 back = Fcdr (tem); | |
1724 Fsetcdr (tem, Qnil); | |
1725 | |
1726 GCPRO3 (front, back, lisp_arg); | |
1727 front = list_sort (front, lisp_arg, pred_fn); | |
1728 back = list_sort (back, lisp_arg, pred_fn); | |
1729 UNGCPRO; | |
1730 return list_merge (front, back, lisp_arg, pred_fn); | |
1731 } | |
1732 | |
1733 | |
1734 static int | |
1735 merge_pred_function (Lisp_Object obj1, Lisp_Object obj2, | |
1736 Lisp_Object pred) | |
1737 { | |
1738 Lisp_Object tmp; | |
1739 | |
1740 /* prevents the GC from happening in call2 */ | |
1741 int speccount = specpdl_depth (); | |
1742 /* Emacs' GC doesn't actually relocate pointers, so this probably | |
1743 isn't strictly necessary */ | |
1744 record_unwind_protect (restore_gc_inhibit, | |
1745 make_int (gc_currently_forbidden)); | |
1746 gc_currently_forbidden = 1; | |
1747 tmp = call2 (pred, obj1, obj2); | |
1748 unbind_to (speccount, Qnil); | |
1749 | |
1750 if (NILP (tmp)) | |
1751 return -1; | |
1752 else | |
1753 return 1; | |
1754 } | |
1755 | |
1756 DEFUN ("sort", Fsort, 2, 2, 0, /* | |
1757 Sort LIST, stably, comparing elements using PREDICATE. | |
1758 Returns the sorted list. LIST is modified by side effects. | |
1759 PREDICATE is called with two elements of LIST, and should return T | |
1760 if the first element is "less" than the second. | |
1761 */ | |
1762 (list, pred)) | |
1763 { | |
1764 return list_sort (list, pred, merge_pred_function); | |
1765 } | |
1766 | |
1767 Lisp_Object | |
1768 merge (Lisp_Object org_l1, Lisp_Object org_l2, | |
1769 Lisp_Object pred) | |
1770 { | |
1771 return list_merge (org_l1, org_l2, pred, merge_pred_function); | |
1772 } | |
1773 | |
1774 | |
1775 static Lisp_Object | |
1776 list_merge (Lisp_Object org_l1, Lisp_Object org_l2, | |
1777 Lisp_Object lisp_arg, | |
1778 int (*pred_fn) (Lisp_Object, Lisp_Object, Lisp_Object lisp_arg)) | |
1779 { | |
1780 Lisp_Object value; | |
1781 Lisp_Object tail; | |
1782 Lisp_Object tem; | |
1783 Lisp_Object l1, l2; | |
1784 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4; | |
1785 | |
1786 l1 = org_l1; | |
1787 l2 = org_l2; | |
1788 tail = Qnil; | |
1789 value = Qnil; | |
1790 | |
1791 /* It is sufficient to protect org_l1 and org_l2. | |
1792 When l1 and l2 are updated, we copy the new values | |
1793 back into the org_ vars. */ | |
1794 | |
1795 GCPRO4 (org_l1, org_l2, lisp_arg, value); | |
1796 | |
1797 while (1) | |
1798 { | |
1799 if (NILP (l1)) | |
1800 { | |
1801 UNGCPRO; | |
1802 if (NILP (tail)) | |
1803 return l2; | |
1804 Fsetcdr (tail, l2); | |
1805 return value; | |
1806 } | |
1807 if (NILP (l2)) | |
1808 { | |
1809 UNGCPRO; | |
1810 if (NILP (tail)) | |
1811 return l1; | |
1812 Fsetcdr (tail, l1); | |
1813 return value; | |
1814 } | |
1815 | |
1816 if (((*pred_fn) (Fcar (l2), Fcar (l1), lisp_arg)) < 0) | |
1817 { | |
1818 tem = l1; | |
1819 l1 = Fcdr (l1); | |
1820 org_l1 = l1; | |
1821 } | |
1822 else | |
1823 { | |
1824 tem = l2; | |
1825 l2 = Fcdr (l2); | |
1826 org_l2 = l2; | |
1827 } | |
1828 if (NILP (tail)) | |
1829 value = tem; | |
1830 else | |
1831 Fsetcdr (tail, tem); | |
1832 tail = tem; | |
1833 } | |
1834 } | |
1835 | |
1836 | |
1837 /************************************************************************/ | |
1838 /* property-list functions */ | |
1839 /************************************************************************/ | |
1840 | |
1841 /* For properties of text, we need to do order-insensitive comparison of | |
1842 plists. That is, we need to compare two plists such that they are the | |
1843 same if they have the same set of keys, and equivalent values. | |
1844 So (a 1 b 2) would be equal to (b 2 a 1). | |
1845 | |
1846 NIL_MEANS_NOT_PRESENT is as in `plists-eq' etc. | |
1847 LAXP means use `equal' for comparisons. | |
1848 */ | |
1849 int | |
1850 plists_differ (Lisp_Object a, Lisp_Object b, int nil_means_not_present, | |
1851 int laxp, int depth) | |
1852 { | |
1853 int eqp = (depth == -1); /* -1 as depth means us eq, not equal. */ | |
1854 int la, lb, m, i, fill; | |
1855 Lisp_Object *keys, *vals; | |
1856 char *flags; | |
1857 Lisp_Object rest; | |
1858 | |
1859 if (NILP (a) && NILP (b)) | |
1860 return 0; | |
1861 | |
1862 Fcheck_valid_plist (a); | |
1863 Fcheck_valid_plist (b); | |
1864 | |
1865 la = XINT (Flength (a)); | |
1866 lb = XINT (Flength (b)); | |
1867 m = (la > lb ? la : lb); | |
1868 fill = 0; | |
1869 keys = alloca_array (Lisp_Object, m); | |
1870 vals = alloca_array (Lisp_Object, m); | |
1871 flags = alloca_array (char, m); | |
1872 | |
1873 /* First extract the pairs from A. */ | |
1874 for (rest = a; !NILP (rest); rest = XCDR (XCDR (rest))) | |
1875 { | |
1876 Lisp_Object k = XCAR (rest); | |
1877 Lisp_Object v = XCAR (XCDR (rest)); | |
1878 /* Maybe be Ebolified. */ | |
1879 if (nil_means_not_present && NILP (v)) continue; | |
1880 keys [fill] = k; | |
1881 vals [fill] = v; | |
1882 flags[fill] = 0; | |
1883 fill++; | |
1884 } | |
1885 /* Now iterate over B, and stop if we find something that's not in A, | |
1886 or that doesn't match. As we match, mark them. */ | |
1887 for (rest = b; !NILP (rest); rest = XCDR (XCDR (rest))) | |
1888 { | |
1889 Lisp_Object k = XCAR (rest); | |
1890 Lisp_Object v = XCAR (XCDR (rest)); | |
1891 /* Maybe be Ebolified. */ | |
1892 if (nil_means_not_present && NILP (v)) continue; | |
1893 for (i = 0; i < fill; i++) | |
1894 { | |
1895 if (!laxp ? EQ (k, keys [i]) : internal_equal (k, keys [i], depth)) | |
1896 { | |
1897 if ((eqp | |
1898 /* We narrowly escaped being Ebolified here. */ | |
1899 ? !EQ_WITH_EBOLA_NOTICE (v, vals [i]) | |
1900 : !internal_equal (v, vals [i], depth))) | |
1901 /* a property in B has a different value than in A */ | |
1902 goto MISMATCH; | |
1903 flags [i] = 1; | |
1904 break; | |
1905 } | |
1906 } | |
1907 if (i == fill) | |
1908 /* there are some properties in B that are not in A */ | |
1909 goto MISMATCH; | |
1910 } | |
1911 /* Now check to see that all the properties in A were also in B */ | |
1912 for (i = 0; i < fill; i++) | |
1913 if (flags [i] == 0) | |
1914 goto MISMATCH; | |
1915 | |
1916 /* Ok. */ | |
1917 return 0; | |
1918 | |
1919 MISMATCH: | |
1920 return 1; | |
1921 } | |
1922 | |
1923 DEFUN ("plists-eq", Fplists_eq, 2, 3, 0, /* | |
1924 Return non-nil if property lists A and B are `eq'. | |
1925 A property list is an alternating list of keywords and values. | |
1926 This function does order-insensitive comparisons of the property lists: | |
1927 For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal. | |
1928 Comparison between values is done using `eq'. See also `plists-equal'. | |
1929 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
1930 a nil value is ignored. This feature is a virus that has infected | |
1931 old Lisp implementations, but should not be used except for backward | |
1932 compatibility. | |
1933 */ | |
1934 (a, b, nil_means_not_present)) | |
1935 { | |
1936 return (plists_differ (a, b, !NILP (nil_means_not_present), 0, -1) | |
1937 ? Qnil : Qt); | |
1938 } | |
1939 | |
1940 DEFUN ("plists-equal", Fplists_equal, 2, 3, 0, /* | |
1941 Return non-nil if property lists A and B are `equal'. | |
1942 A property list is an alternating list of keywords and values. This | |
1943 function does order-insensitive comparisons of the property lists: For | |
1944 example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal. | |
1945 Comparison between values is done using `equal'. See also `plists-eq'. | |
1946 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
1947 a nil value is ignored. This feature is a virus that has infected | |
1948 old Lisp implementations, but should not be used except for backward | |
1949 compatibility. | |
1950 */ | |
1951 (a, b, nil_means_not_present)) | |
1952 { | |
1953 return (plists_differ (a, b, !NILP (nil_means_not_present), 0, 1) | |
1954 ? Qnil : Qt); | |
1955 } | |
1956 | |
1957 | |
1958 DEFUN ("lax-plists-eq", Flax_plists_eq, 2, 3, 0, /* | |
1959 Return non-nil if lax property lists A and B are `eq'. | |
1960 A property list is an alternating list of keywords and values. | |
1961 This function does order-insensitive comparisons of the property lists: | |
1962 For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal. | |
1963 Comparison between values is done using `eq'. See also `plists-equal'. | |
1964 A lax property list is like a regular one except that comparisons between | |
1965 keywords is done using `equal' instead of `eq'. | |
1966 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
1967 a nil value is ignored. This feature is a virus that has infected | |
1968 old Lisp implementations, but should not be used except for backward | |
1969 compatibility. | |
1970 */ | |
1971 (a, b, nil_means_not_present)) | |
1972 { | |
1973 return (plists_differ (a, b, !NILP (nil_means_not_present), 1, -1) | |
1974 ? Qnil : Qt); | |
1975 } | |
1976 | |
1977 DEFUN ("lax-plists-equal", Flax_plists_equal, 2, 3, 0, /* | |
1978 Return non-nil if lax property lists A and B are `equal'. | |
1979 A property list is an alternating list of keywords and values. This | |
1980 function does order-insensitive comparisons of the property lists: For | |
1981 example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal. | |
1982 Comparison between values is done using `equal'. See also `plists-eq'. | |
1983 A lax property list is like a regular one except that comparisons between | |
1984 keywords is done using `equal' instead of `eq'. | |
1985 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
1986 a nil value is ignored. This feature is a virus that has infected | |
1987 old Lisp implementations, but should not be used except for backward | |
1988 compatibility. | |
1989 */ | |
1990 (a, b, nil_means_not_present)) | |
1991 { | |
1992 return (plists_differ (a, b, !NILP (nil_means_not_present), 1, 1) | |
1993 ? Qnil : Qt); | |
1994 } | |
1995 | |
1996 /* Return the value associated with key PROPERTY in property list PLIST. | |
1997 Return nil if key not found. This function is used for internal | |
1998 property lists that cannot be directly manipulated by the user. | |
1999 */ | |
2000 | |
2001 Lisp_Object | |
2002 internal_plist_get (Lisp_Object plist, Lisp_Object property) | |
2003 { | |
2004 Lisp_Object tail; | |
2005 | |
2006 for (tail = plist; !NILP (tail); tail = XCDR (XCDR (tail))) | |
2007 { | |
2008 if (EQ (XCAR (tail), property)) | |
2009 return XCAR (XCDR (tail)); | |
2010 } | |
2011 | |
2012 return Qunbound; | |
2013 } | |
2014 | |
2015 /* Set PLIST's value for PROPERTY to VALUE. Analogous to | |
2016 internal_plist_get(). */ | |
2017 | |
2018 void | |
2019 internal_plist_put (Lisp_Object *plist, Lisp_Object property, | |
2020 Lisp_Object value) | |
2021 { | |
2022 Lisp_Object tail; | |
2023 | |
2024 for (tail = *plist; !NILP (tail); tail = XCDR (XCDR (tail))) | |
2025 { | |
2026 if (EQ (XCAR (tail), property)) | |
2027 { | |
2028 XCAR (XCDR (tail)) = value; | |
2029 return; | |
2030 } | |
2031 } | |
2032 | |
2033 *plist = Fcons (property, Fcons (value, *plist)); | |
2034 } | |
2035 | |
2036 int | |
2037 internal_remprop (Lisp_Object *plist, Lisp_Object property) | |
2038 { | |
2039 Lisp_Object tail, prev; | |
2040 | |
2041 for (tail = *plist, prev = Qnil; | |
2042 !NILP (tail); | |
2043 tail = XCDR (XCDR (tail))) | |
2044 { | |
2045 if (EQ (XCAR (tail), property)) | |
2046 { | |
2047 if (NILP (prev)) | |
2048 *plist = XCDR (XCDR (tail)); | |
2049 else | |
2050 XCDR (XCDR (prev)) = XCDR (XCDR (tail)); | |
2051 return 1; | |
2052 } | |
2053 else | |
2054 prev = tail; | |
2055 } | |
2056 | |
2057 return 0; | |
2058 } | |
2059 | |
2060 /* Called on a malformed property list. BADPLACE should be some | |
2061 place where truncating will form a good list -- i.e. we shouldn't | |
2062 result in a list with an odd length. */ | |
2063 | |
2064 static Lisp_Object | |
2065 bad_bad_bunny (Lisp_Object *plist, Lisp_Object *badplace, Error_behavior errb) | |
2066 { | |
2067 if (ERRB_EQ (errb, ERROR_ME)) | |
2068 return Fsignal (Qmalformed_property_list, list2 (*plist, *badplace)); | |
2069 else | |
2070 { | |
2071 if (ERRB_EQ (errb, ERROR_ME_WARN)) | |
2072 { | |
2073 warn_when_safe_lispobj | |
2074 (Qlist, Qwarning, | |
2075 list2 (build_string | |
2076 ("Malformed property list -- list has been truncated"), | |
2077 *plist)); | |
2078 *badplace = Qnil; | |
2079 } | |
2080 return Qunbound; | |
2081 } | |
2082 } | |
2083 | |
2084 /* Called on a circular property list. BADPLACE should be some place | |
2085 where truncating will result in an even-length list, as above. | |
2086 If doesn't particularly matter where we truncate -- anywhere we | |
2087 truncate along the entire list will break the circularity, because | |
2088 it will create a terminus and the list currently doesn't have one. | |
2089 */ | |
2090 | |
2091 static Lisp_Object | |
2092 bad_bad_turtle (Lisp_Object *plist, Lisp_Object *badplace, Error_behavior errb) | |
2093 { | |
2094 if (ERRB_EQ (errb, ERROR_ME)) | |
2095 /* #### Eek, this will probably result in another error | |
2096 when PLIST is printed out */ | |
2097 return Fsignal (Qcircular_property_list, list1 (*plist)); | |
2098 else | |
2099 { | |
2100 if (ERRB_EQ (errb, ERROR_ME_WARN)) | |
2101 { | |
2102 warn_when_safe_lispobj | |
2103 (Qlist, Qwarning, | |
2104 list2 (build_string | |
2105 ("Circular property list -- list has been truncated"), | |
2106 *plist)); | |
2107 *badplace = Qnil; | |
2108 } | |
2109 return Qunbound; | |
2110 } | |
2111 } | |
2112 | |
2113 /* Advance the tortoise pointer by two (one iteration of a property-list | |
2114 loop) and the hare pointer by four and verify that no malformations | |
2115 or circularities exist. If so, return zero and store a value into | |
2116 RETVAL that should be returned by the calling function. Otherwise, | |
2117 return 1. See external_plist_get(). | |
2118 */ | |
2119 | |
2120 static int | |
2121 advance_plist_pointers (Lisp_Object *plist, | |
2122 Lisp_Object **tortoise, Lisp_Object **hare, | |
2123 Error_behavior errb, Lisp_Object *retval) | |
2124 { | |
2125 int i; | |
2126 Lisp_Object *tortsave = *tortoise; | |
2127 | |
2128 /* Note that our "fixing" may be more brutal than necessary, | |
2129 but it's the user's own problem, not ours, if they went in and | |
2130 manually fucked up a plist. */ | |
2131 | |
2132 for (i = 0; i < 2; i++) | |
2133 { | |
2134 /* This is a standard iteration of a defensive-loop-checking | |
2135 loop. We just do it twice because we want to advance past | |
2136 both the property and its value. | |
2137 | |
2138 If the pointer indirection is confusing you, remember that | |
2139 one level of indirection on the hare and tortoise pointers | |
2140 is only due to pass-by-reference for this function. The other | |
2141 level is so that the plist can be fixed in place. */ | |
2142 | |
2143 /* When we reach the end of a well-formed plist, **HARE is | |
2144 nil. In that case, we don't do anything at all except | |
2145 advance TORTOISE by one. Otherwise, we advance HARE | |
2146 by two (making sure it's OK to do so), then advance | |
2147 TORTOISE by one (it will always be OK to do so because | |
2148 the HARE is always ahead of the TORTOISE and will have | |
2149 already verified the path), then make sure TORTOISE and | |
2150 HARE don't contain the same non-nil object -- if the | |
2151 TORTOISE and the HARE ever meet, then obviously we're | |
2152 in a circularity, and if we're in a circularity, then | |
2153 the TORTOISE and the HARE can't cross paths without | |
2154 meeting, since the HARE only gains one step over the | |
2155 TORTOISE per iteration. */ | |
2156 | |
2157 if (!NILP (**hare)) | |
2158 { | |
2159 Lisp_Object *haresave = *hare; | |
2160 if (!CONSP (**hare)) | |
2161 { | |
2162 *retval = bad_bad_bunny (plist, haresave, errb); | |
2163 return 0; | |
2164 } | |
2165 *hare = &XCDR (**hare); | |
2166 /* In a non-plist, we'd check here for a nil value for | |
2167 **HARE, which is OK (it just means the list has an | |
2168 odd number of elements). In a plist, it's not OK | |
2169 for the list to have an odd number of elements. */ | |
2170 if (!CONSP (**hare)) | |
2171 { | |
2172 *retval = bad_bad_bunny (plist, haresave, errb); | |
2173 return 0; | |
2174 } | |
2175 *hare = &XCDR (**hare); | |
2176 } | |
2177 | |
2178 *tortoise = &XCDR (**tortoise); | |
2179 if (!NILP (**hare) && EQ (**tortoise, **hare)) | |
2180 { | |
2181 *retval = bad_bad_turtle (plist, tortsave, errb); | |
2182 return 0; | |
2183 } | |
2184 } | |
2185 | |
2186 return 1; | |
2187 } | |
2188 | |
2189 /* Return the value of PROPERTY from PLIST, or Qunbound if | |
2190 property is not on the list. | |
2191 | |
2192 PLIST is a Lisp-accessible property list, meaning that it | |
2193 has to be checked for malformations and circularities. | |
2194 | |
2195 If ERRB is ERROR_ME, an error will be signalled. Otherwise, the | |
2196 function will never signal an error; and if ERRB is ERROR_ME_WARN, | |
2197 on finding a malformation or a circularity, it issues a warning and | |
2198 attempts to silently fix the problem. | |
2199 | |
2200 A pointer to PLIST is passed in so that PLIST can be successfully | |
2201 "fixed" even if the error is at the beginning of the plist. */ | |
2202 | |
2203 Lisp_Object | |
2204 external_plist_get (Lisp_Object *plist, Lisp_Object property, | |
2205 int laxp, Error_behavior errb) | |
2206 { | |
2207 Lisp_Object *tortoise = plist; | |
2208 Lisp_Object *hare = plist; | |
2209 | |
2210 while (!NILP (*tortoise)) | |
2211 { | |
2212 Lisp_Object *tortsave = tortoise; | |
2213 Lisp_Object retval; | |
2214 | |
2215 /* We do the standard tortoise/hare march. We isolate the | |
2216 grungy stuff to do this in advance_plist_pointers(), though. | |
2217 To us, all this function does is advance the tortoise | |
2218 pointer by two and the hare pointer by four and make sure | |
2219 everything's OK. We first advance the pointers and then | |
2220 check if a property matched; this ensures that our | |
2221 check for a matching property is safe. */ | |
2222 | |
2223 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval)) | |
2224 return retval; | |
2225 | |
2226 if (!laxp ? EQ (XCAR (*tortsave), property) | |
2227 : internal_equal (XCAR (*tortsave), property, 0)) | |
2228 return XCAR (XCDR (*tortsave)); | |
2229 } | |
2230 | |
2231 return Qunbound; | |
2232 } | |
2233 | |
2234 /* Set PLIST's value for PROPERTY to VALUE, given a possibly | |
2235 malformed or circular plist. Analogous to external_plist_get(). */ | |
2236 | |
2237 void | |
2238 external_plist_put (Lisp_Object *plist, Lisp_Object property, | |
2239 Lisp_Object value, int laxp, Error_behavior errb) | |
2240 { | |
2241 Lisp_Object *tortoise = plist; | |
2242 Lisp_Object *hare = plist; | |
2243 | |
2244 while (!NILP (*tortoise)) | |
2245 { | |
2246 Lisp_Object *tortsave = tortoise; | |
2247 Lisp_Object retval; | |
2248 | |
2249 /* See above */ | |
2250 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval)) | |
2251 return; | |
2252 | |
2253 if (!laxp ? EQ (XCAR (*tortsave), property) | |
2254 : internal_equal (XCAR (*tortsave), property, 0)) | |
2255 { | |
2256 XCAR (XCDR (*tortsave)) = value; | |
2257 return; | |
2258 } | |
2259 } | |
2260 | |
2261 *plist = Fcons (property, Fcons (value, *plist)); | |
2262 } | |
2263 | |
2264 int | |
2265 external_remprop (Lisp_Object *plist, Lisp_Object property, | |
2266 int laxp, Error_behavior errb) | |
2267 { | |
2268 Lisp_Object *tortoise = plist; | |
2269 Lisp_Object *hare = plist; | |
2270 | |
2271 while (!NILP (*tortoise)) | |
2272 { | |
2273 Lisp_Object *tortsave = tortoise; | |
2274 Lisp_Object retval; | |
2275 | |
2276 /* See above */ | |
2277 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval)) | |
2278 return 0; | |
2279 | |
2280 if (!laxp ? EQ (XCAR (*tortsave), property) | |
2281 : internal_equal (XCAR (*tortsave), property, 0)) | |
2282 { | |
2283 /* Now you see why it's so convenient to have that level | |
2284 of indirection. */ | |
2285 *tortsave = XCDR (XCDR (*tortsave)); | |
2286 return 1; | |
2287 } | |
2288 } | |
2289 | |
2290 return 0; | |
2291 } | |
2292 | |
2293 DEFUN ("plist-get", Fplist_get, 2, 3, 0, /* | |
2294 Extract a value from a property list. | |
2295 PLIST is a property list, which is a list of the form | |
2296 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value | |
2297 corresponding to the given PROP, or DEFAULT if PROP is not | |
2298 one of the properties on the list. | |
2299 */ | |
2300 (plist, prop, default_)) | |
2301 { | |
2302 Lisp_Object val = external_plist_get (&plist, prop, 0, ERROR_ME); | |
2303 return UNBOUNDP (val) ? default_ : val; | |
2304 } | |
2305 | |
2306 DEFUN ("plist-put", Fplist_put, 3, 3, 0, /* | |
2307 Change value in PLIST of PROP to VAL. | |
2308 PLIST is a property list, which is a list of the form \(PROP1 VALUE1 | |
2309 PROP2 VALUE2 ...). PROP is usually a symbol and VAL is any object. | |
2310 If PROP is already a property on the list, its value is set to VAL, | |
2311 otherwise the new PROP VAL pair is added. The new plist is returned; | |
2312 use `(setq x (plist-put x prop val))' to be sure to use the new value. | |
2313 The PLIST is modified by side effects. | |
2314 */ | |
2315 (plist, prop, val)) | |
2316 { | |
2317 external_plist_put (&plist, prop, val, 0, ERROR_ME); | |
2318 return plist; | |
2319 } | |
2320 | |
2321 DEFUN ("plist-remprop", Fplist_remprop, 2, 2, 0, /* | |
2322 Remove from PLIST the property PROP and its value. | |
2323 PLIST is a property list, which is a list of the form \(PROP1 VALUE1 | |
2324 PROP2 VALUE2 ...). PROP is usually a symbol. The new plist is | |
2325 returned; use `(setq x (plist-remprop x prop val))' to be sure to use | |
2326 the new value. The PLIST is modified by side effects. | |
2327 */ | |
2328 (plist, prop)) | |
2329 { | |
2330 external_remprop (&plist, prop, 0, ERROR_ME); | |
2331 return plist; | |
2332 } | |
2333 | |
2334 DEFUN ("plist-member", Fplist_member, 2, 2, 0, /* | |
2335 Return t if PROP has a value specified in PLIST. | |
2336 */ | |
2337 (plist, prop)) | |
2338 { | |
2339 Lisp_Object val = Fplist_get (plist, prop, Qunbound); | |
2340 return UNBOUNDP (val) ? Qnil : Qt; | |
2341 } | |
2342 | |
2343 DEFUN ("check-valid-plist", Fcheck_valid_plist, 1, 1, 0, /* | |
2344 Given a plist, signal an error if there is anything wrong with it. | |
2345 This means that it's a malformed or circular plist. | |
2346 */ | |
2347 (plist)) | |
2348 { | |
2349 Lisp_Object *tortoise; | |
2350 Lisp_Object *hare; | |
2351 | |
2352 start_over: | |
2353 tortoise = &plist; | |
2354 hare = &plist; | |
2355 while (!NILP (*tortoise)) | |
2356 { | |
2357 Lisp_Object retval; | |
2358 | |
2359 /* See above */ | |
2360 if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME, | |
2361 &retval)) | |
2362 goto start_over; | |
2363 } | |
2364 | |
2365 return Qnil; | |
2366 } | |
2367 | |
2368 DEFUN ("valid-plist-p", Fvalid_plist_p, 1, 1, 0, /* | |
2369 Given a plist, return non-nil if its format is correct. | |
2370 If it returns nil, `check-valid-plist' will signal an error when given | |
2371 the plist; that means it's a malformed or circular plist or has non-symbols | |
2372 as keywords. | |
2373 */ | |
2374 (plist)) | |
2375 { | |
2376 Lisp_Object *tortoise; | |
2377 Lisp_Object *hare; | |
2378 | |
2379 tortoise = &plist; | |
2380 hare = &plist; | |
2381 while (!NILP (*tortoise)) | |
2382 { | |
2383 Lisp_Object retval; | |
2384 | |
2385 /* See above */ | |
2386 if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME_NOT, | |
2387 &retval)) | |
2388 return Qnil; | |
2389 } | |
2390 | |
2391 return Qt; | |
2392 } | |
2393 | |
2394 DEFUN ("canonicalize-plist", Fcanonicalize_plist, 1, 2, 0, /* | |
2395 Destructively remove any duplicate entries from a plist. | |
2396 In such cases, the first entry applies. | |
2397 | |
2398 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
2399 a nil value is removed. This feature is a virus that has infected | |
2400 old Lisp implementations, but should not be used except for backward | |
2401 compatibility. | |
2402 | |
2403 The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the | |
2404 return value may not be EQ to the passed-in value, so make sure to | |
2405 `setq' the value back into where it came from. | |
2406 */ | |
2407 (plist, nil_means_not_present)) | |
2408 { | |
2409 Lisp_Object head = plist; | |
2410 | |
2411 Fcheck_valid_plist (plist); | |
2412 | |
2413 while (!NILP (plist)) | |
2414 { | |
2415 Lisp_Object prop = Fcar (plist); | |
2416 Lisp_Object next = Fcdr (plist); | |
2417 | |
2418 CHECK_CONS (next); /* just make doubly sure we catch any errors */ | |
2419 if (!NILP (nil_means_not_present) && NILP (Fcar (next))) | |
2420 { | |
2421 if (EQ (head, plist)) | |
2422 head = Fcdr (next); | |
2423 plist = Fcdr (next); | |
2424 continue; | |
2425 } | |
2426 /* external_remprop returns 1 if it removed any property. | |
2427 We have to loop till it didn't remove anything, in case | |
2428 the property occurs many times. */ | |
2429 while (external_remprop (&XCDR (next), prop, 0, ERROR_ME)) | |
2430 DO_NOTHING; | |
2431 plist = Fcdr (next); | |
2432 } | |
2433 | |
2434 return head; | |
2435 } | |
2436 | |
2437 DEFUN ("lax-plist-get", Flax_plist_get, 2, 3, 0, /* | |
2438 Extract a value from a lax property list. | |
2439 | |
2440 LAX-PLIST is a lax property list, which is a list of the form \(PROP1 | |
2441 VALUE1 PROP2 VALUE2...), where comparisons between properties is done | |
2442 using `equal' instead of `eq'. This function returns the value | |
2443 corresponding to the given PROP, or DEFAULT if PROP is not one of the | |
2444 properties on the list. | |
2445 */ | |
2446 (lax_plist, prop, default_)) | |
2447 { | |
2448 Lisp_Object val = external_plist_get (&lax_plist, prop, 1, ERROR_ME); | |
2449 if (UNBOUNDP (val)) | |
2450 return default_; | |
2451 return val; | |
2452 } | |
2453 | |
2454 DEFUN ("lax-plist-put", Flax_plist_put, 3, 3, 0, /* | |
2455 Change value in LAX-PLIST of PROP to VAL. | |
2456 LAX-PLIST is a lax property list, which is a list of the form \(PROP1 | |
2457 VALUE1 PROP2 VALUE2...), where comparisons between properties is done | |
2458 using `equal' instead of `eq'. PROP is usually a symbol and VAL is | |
2459 any object. If PROP is already a property on the list, its value is | |
2460 set to VAL, otherwise the new PROP VAL pair is added. The new plist | |
2461 is returned; use `(setq x (lax-plist-put x prop val))' to be sure to | |
2462 use the new value. The LAX-PLIST is modified by side effects. | |
2463 */ | |
2464 (lax_plist, prop, val)) | |
2465 { | |
2466 external_plist_put (&lax_plist, prop, val, 1, ERROR_ME); | |
2467 return lax_plist; | |
2468 } | |
2469 | |
2470 DEFUN ("lax-plist-remprop", Flax_plist_remprop, 2, 2, 0, /* | |
2471 Remove from LAX-PLIST the property PROP and its value. | |
2472 LAX-PLIST is a lax property list, which is a list of the form \(PROP1 | |
2473 VALUE1 PROP2 VALUE2...), where comparisons between properties is done | |
2474 using `equal' instead of `eq'. PROP is usually a symbol. The new | |
2475 plist is returned; use `(setq x (lax-plist-remprop x prop val))' to be | |
2476 sure to use the new value. The LAX-PLIST is modified by side effects. | |
2477 */ | |
2478 (lax_plist, prop)) | |
2479 { | |
2480 external_remprop (&lax_plist, prop, 1, ERROR_ME); | |
2481 return lax_plist; | |
2482 } | |
2483 | |
2484 DEFUN ("lax-plist-member", Flax_plist_member, 2, 2, 0, /* | |
2485 Return t if PROP has a value specified in LAX-PLIST. | |
2486 LAX-PLIST is a lax property list, which is a list of the form \(PROP1 | |
2487 VALUE1 PROP2 VALUE2...), where comparisons between properties is done | |
2488 using `equal' instead of `eq'. | |
2489 */ | |
2490 (lax_plist, prop)) | |
2491 { | |
2492 return UNBOUNDP (Flax_plist_get (lax_plist, prop, Qunbound)) ? Qnil : Qt; | |
2493 } | |
2494 | |
2495 DEFUN ("canonicalize-lax-plist", Fcanonicalize_lax_plist, 1, 2, 0, /* | |
2496 Destructively remove any duplicate entries from a lax plist. | |
2497 In such cases, the first entry applies. | |
2498 | |
2499 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
2500 a nil value is removed. This feature is a virus that has infected | |
2501 old Lisp implementations, but should not be used except for backward | |
2502 compatibility. | |
2503 | |
2504 The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the | |
2505 return value may not be EQ to the passed-in value, so make sure to | |
2506 `setq' the value back into where it came from. | |
2507 */ | |
2508 (lax_plist, nil_means_not_present)) | |
2509 { | |
2510 Lisp_Object head = lax_plist; | |
2511 | |
2512 Fcheck_valid_plist (lax_plist); | |
2513 | |
2514 while (!NILP (lax_plist)) | |
2515 { | |
2516 Lisp_Object prop = Fcar (lax_plist); | |
2517 Lisp_Object next = Fcdr (lax_plist); | |
2518 | |
2519 CHECK_CONS (next); /* just make doubly sure we catch any errors */ | |
2520 if (!NILP (nil_means_not_present) && NILP (Fcar (next))) | |
2521 { | |
2522 if (EQ (head, lax_plist)) | |
2523 head = Fcdr (next); | |
2524 lax_plist = Fcdr (next); | |
2525 continue; | |
2526 } | |
2527 /* external_remprop returns 1 if it removed any property. | |
2528 We have to loop till it didn't remove anything, in case | |
2529 the property occurs many times. */ | |
2530 while (external_remprop (&XCDR (next), prop, 1, ERROR_ME)) | |
2531 DO_NOTHING; | |
2532 lax_plist = Fcdr (next); | |
2533 } | |
2534 | |
2535 return head; | |
2536 } | |
2537 | |
2538 /* In C because the frame props stuff uses it */ | |
2539 | |
2540 DEFUN ("destructive-alist-to-plist", Fdestructive_alist_to_plist, 1, 1, 0, /* | |
2541 Convert association list ALIST into the equivalent property-list form. | |
2542 The plist is returned. This converts from | |
2543 | |
2544 \((a . 1) (b . 2) (c . 3)) | |
2545 | |
2546 into | |
2547 | |
2548 \(a 1 b 2 c 3) | |
2549 | |
2550 The original alist is destroyed in the process of constructing the plist. | |
2551 See also `alist-to-plist'. | |
2552 */ | |
2553 (alist)) | |
2554 { | |
2555 Lisp_Object head = alist; | |
2556 while (!NILP (alist)) | |
2557 { | |
2558 /* remember the alist element. */ | |
2559 Lisp_Object el = Fcar (alist); | |
2560 | |
2561 Fsetcar (alist, Fcar (el)); | |
2562 Fsetcar (el, Fcdr (el)); | |
2563 Fsetcdr (el, Fcdr (alist)); | |
2564 Fsetcdr (alist, el); | |
2565 alist = Fcdr (Fcdr (alist)); | |
2566 } | |
2567 | |
2568 return head; | |
2569 } | |
2570 | |
2571 /* Symbol plists are directly accessible, so we need to protect against | |
2572 invalid property list structure */ | |
2573 | |
2574 static Lisp_Object | |
2575 symbol_getprop (Lisp_Object sym, Lisp_Object propname, Lisp_Object default_) | |
2576 { | |
2577 Lisp_Object val = external_plist_get (&XSYMBOL (sym)->plist, propname, | |
2578 0, ERROR_ME); | |
2579 return UNBOUNDP (val) ? default_ : val; | |
2580 } | |
2581 | |
2582 static void | |
2583 symbol_putprop (Lisp_Object sym, Lisp_Object propname, Lisp_Object value) | |
2584 { | |
2585 external_plist_put (&XSYMBOL (sym)->plist, propname, value, 0, ERROR_ME); | |
2586 } | |
2587 | |
2588 static int | |
2589 symbol_remprop (Lisp_Object symbol, Lisp_Object propname) | |
2590 { | |
2591 return external_remprop (&XSYMBOL (symbol)->plist, propname, 0, ERROR_ME); | |
2592 } | |
2593 | |
2594 /* We store the string's extent info as the first element of the string's | |
2595 property list; and the string's MODIFF as the first or second element | |
2596 of the string's property list (depending on whether the extent info | |
2597 is present), but only if the string has been modified. This is ugly | |
2598 but it reduces the memory allocated for the string in the vast | |
2599 majority of cases, where the string is never modified and has no | |
2600 extent info. */ | |
2601 | |
2602 | |
2603 static Lisp_Object * | |
2604 string_plist_ptr (struct Lisp_String *s) | |
2605 { | |
2606 Lisp_Object *ptr = &s->plist; | |
2607 | |
2608 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr))) | |
2609 ptr = &XCDR (*ptr); | |
2610 if (CONSP (*ptr) && INTP (XCAR (*ptr))) | |
2611 ptr = &XCDR (*ptr); | |
2612 return ptr; | |
2613 } | |
2614 | |
2615 static Lisp_Object | |
2616 string_getprop (struct Lisp_String *s, Lisp_Object property, | |
2617 Lisp_Object default_) | |
2618 { | |
2619 Lisp_Object val = external_plist_get (string_plist_ptr (s), property, 0, | |
2620 ERROR_ME); | |
2621 return UNBOUNDP (val) ? default_ : val; | |
2622 } | |
2623 | |
2624 static void | |
2625 string_putprop (struct Lisp_String *s, Lisp_Object property, | |
2626 Lisp_Object value) | |
2627 { | |
2628 external_plist_put (string_plist_ptr (s), property, value, 0, ERROR_ME); | |
2629 } | |
2630 | |
2631 static int | |
2632 string_remprop (struct Lisp_String *s, Lisp_Object property) | |
2633 { | |
2634 return external_remprop (string_plist_ptr (s), property, 0, ERROR_ME); | |
2635 } | |
2636 | |
2637 static Lisp_Object | |
2638 string_plist (struct Lisp_String *s) | |
2639 { | |
2640 return *string_plist_ptr (s); | |
2641 } | |
2642 | |
2643 DEFUN ("get", Fget, 2, 3, 0, /* | |
2644 Return the value of OBJECT's PROPNAME property. | |
2645 This is the last VALUE stored with `(put OBJECT PROPNAME VALUE)'. | |
2646 If there is no such property, return optional third arg DEFAULT | |
2647 \(which defaults to `nil'). OBJECT can be a symbol, face, extent, | |
2648 or string. See also `put', `remprop', and `object-plist'. | |
2649 */ | |
2650 (object, propname, default_)) | |
2651 { | |
2652 /* Various places in emacs call Fget() and expect it not to quit, | |
2653 so don't quit. */ | |
2654 | |
2655 /* It's easiest to treat symbols specially because they may not | |
2656 be an lrecord */ | |
2657 if (SYMBOLP (object)) | |
2658 return symbol_getprop (object, propname, default_); | |
2659 else if (STRINGP (object)) | |
2660 return string_getprop (XSTRING (object), propname, default_); | |
2661 else if (LRECORDP (object)) | |
2662 { | |
2663 CONST struct lrecord_implementation *imp | |
2664 = XRECORD_LHEADER_IMPLEMENTATION (object); | |
2665 if (!imp->getprop) | |
2666 goto noprops; | |
2667 | |
2668 { | |
2669 Lisp_Object val = (imp->getprop) (object, propname); | |
2670 if (UNBOUNDP (val)) | |
2671 val = default_; | |
2672 return val; | |
2673 } | |
2674 } | |
2675 else | |
2676 { | |
2677 noprops: | |
2678 signal_simple_error ("Object type has no properties", object); | |
2679 return Qnil; /* Not reached */ | |
2680 } | |
2681 } | |
2682 | |
2683 DEFUN ("put", Fput, 3, 3, 0, /* | |
2684 Store OBJECT's PROPNAME property with value VALUE. | |
2685 It can be retrieved with `(get OBJECT PROPNAME)'. OBJECT can be a | |
2686 symbol, face, extent, or string. | |
2687 | |
2688 For a string, no properties currently have predefined meanings. | |
2689 For the predefined properties for extents, see `set-extent-property'. | |
2690 For the predefined properties for faces, see `set-face-property'. | |
2691 | |
2692 See also `get', `remprop', and `object-plist'. | |
2693 */ | |
2694 (object, propname, value)) | |
2695 { | |
2696 CHECK_SYMBOL (propname); | |
2697 CHECK_LISP_WRITEABLE (object); | |
2698 | |
2699 if (SYMBOLP (object)) | |
2700 symbol_putprop (object, propname, value); | |
2701 else if (STRINGP (object)) | |
2702 string_putprop (XSTRING (object), propname, value); | |
2703 else if (LRECORDP (object)) | |
2704 { | |
2705 CONST struct lrecord_implementation | |
2706 *imp = XRECORD_LHEADER_IMPLEMENTATION (object); | |
2707 if (imp->putprop) | |
2708 { | |
2709 if (! (imp->putprop) (object, propname, value)) | |
2710 signal_simple_error ("Can't set property on object", propname); | |
2711 } | |
2712 else | |
2713 goto noprops; | |
2714 } | |
2715 else | |
2716 { | |
2717 noprops: | |
2718 signal_simple_error ("Object type has no settable properties", object); | |
2719 } | |
2720 | |
2721 return value; | |
2722 } | |
2723 | |
2724 DEFUN ("remprop", Fremprop, 2, 2, 0, /* | |
2725 Remove from OBJECT's property list the property PROPNAME and its | |
2726 value. OBJECT can be a symbol, face, extent, or string. Returns | |
2727 non-nil if the property list was actually changed (i.e. if PROPNAME | |
2728 was present in the property list). See also `get', `put', and | |
2729 `object-plist'. | |
2730 */ | |
2731 (object, propname)) | |
2732 { | |
2733 int retval = 0; | |
2734 | |
2735 CHECK_SYMBOL (propname); | |
2736 CHECK_LISP_WRITEABLE (object); | |
2737 | |
2738 if (SYMBOLP (object)) | |
2739 retval = symbol_remprop (object, propname); | |
2740 else if (STRINGP (object)) | |
2741 retval = string_remprop (XSTRING (object), propname); | |
2742 else if (LRECORDP (object)) | |
2743 { | |
2744 CONST struct lrecord_implementation | |
2745 *imp = XRECORD_LHEADER_IMPLEMENTATION (object); | |
2746 if (imp->remprop) | |
2747 { | |
2748 retval = (imp->remprop) (object, propname); | |
2749 if (retval == -1) | |
2750 signal_simple_error ("Can't remove property from object", | |
2751 propname); | |
2752 } | |
2753 else | |
2754 goto noprops; | |
2755 } | |
2756 else | |
2757 { | |
2758 noprops: | |
2759 signal_simple_error ("Object type has no removable properties", object); | |
2760 } | |
2761 | |
2762 return retval ? Qt : Qnil; | |
2763 } | |
2764 | |
2765 DEFUN ("object-plist", Fobject_plist, 1, 1, 0, /* | |
2766 Return a property list of OBJECT's props. | |
2767 For a symbol this is equivalent to `symbol-plist'. | |
2768 Do not modify the property list directly; this may or may not have | |
2769 the desired effects. (In particular, for a property with a special | |
2770 interpretation, this will probably have no effect at all.) | |
2771 */ | |
2772 (object)) | |
2773 { | |
2774 if (SYMBOLP (object)) | |
2775 return Fsymbol_plist (object); | |
2776 else if (STRINGP (object)) | |
2777 return string_plist (XSTRING (object)); | |
2778 else if (LRECORDP (object)) | |
2779 { | |
2780 CONST struct lrecord_implementation | |
2781 *imp = XRECORD_LHEADER_IMPLEMENTATION (object); | |
2782 if (imp->plist) | |
2783 return (imp->plist) (object); | |
2784 else | |
2785 signal_simple_error ("Object type has no properties", object); | |
2786 } | |
2787 else | |
2788 signal_simple_error ("Object type has no properties", object); | |
2789 | |
2790 return Qnil; | |
2791 } | |
2792 | |
2793 | |
2794 int | |
2795 internal_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
2796 { | |
2797 if (depth > 200) | |
2798 error ("Stack overflow in equal"); | |
2799 QUIT; | |
2800 if (EQ_WITH_EBOLA_NOTICE (obj1, obj2)) | |
2801 return 1; | |
2802 /* Note that (equal 20 20.0) should be nil */ | |
2803 if (XTYPE (obj1) != XTYPE (obj2)) | |
2804 return 0; | |
2805 if (LRECORDP (obj1)) | |
2806 { | |
2807 CONST struct lrecord_implementation | |
2808 *imp1 = XRECORD_LHEADER_IMPLEMENTATION (obj1), | |
2809 *imp2 = XRECORD_LHEADER_IMPLEMENTATION (obj2); | |
2810 | |
2811 return (imp1 == imp2) && | |
2812 /* EQ-ness of the objects was noticed above */ | |
2813 (imp1->equal && (imp1->equal) (obj1, obj2, depth)); | |
2814 } | |
2815 | |
2816 return 0; | |
2817 } | |
2818 | |
2819 /* Note that we may be calling sub-objects that will use | |
2820 internal_equal() (instead of internal_old_equal()). Oh well. | |
2821 We will get an Ebola note if there's any possibility of confusion, | |
2822 but that seems unlikely. */ | |
2823 | |
2824 static int | |
2825 internal_old_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
2826 { | |
2827 if (depth > 200) | |
2828 error ("Stack overflow in equal"); | |
2829 QUIT; | |
2830 if (HACKEQ_UNSAFE (obj1, obj2)) | |
2831 return 1; | |
2832 /* Note that (equal 20 20.0) should be nil */ | |
2833 if (XTYPE (obj1) != XTYPE (obj2)) | |
2834 return 0; | |
2835 | |
2836 return internal_equal (obj1, obj2, depth); | |
2837 } | |
2838 | |
2839 DEFUN ("equal", Fequal, 2, 2, 0, /* | |
2840 Return t if two Lisp objects have similar structure and contents. | |
2841 They must have the same data type. | |
2842 Conses are compared by comparing the cars and the cdrs. | |
2843 Vectors and strings are compared element by element. | |
2844 Numbers are compared by value. Symbols must match exactly. | |
2845 */ | |
2846 (obj1, obj2)) | |
2847 { | |
2848 return internal_equal (obj1, obj2, 0) ? Qt : Qnil; | |
2849 } | |
2850 | |
2851 DEFUN ("old-equal", Fold_equal, 2, 2, 0, /* | |
2852 Return t if two Lisp objects have similar structure and contents. | |
2853 They must have the same data type. | |
2854 \(Note, however, that an exception is made for characters and integers; | |
2855 this is known as the "char-int confoundance disease." See `eq' and | |
2856 `old-eq'.) | |
2857 This function is provided only for byte-code compatibility with v19. | |
2858 Do not use it. | |
2859 */ | |
2860 (obj1, obj2)) | |
2861 { | |
2862 return internal_old_equal (obj1, obj2, 0) ? Qt : Qnil; | |
2863 } | |
2864 | |
2865 | |
2866 DEFUN ("fillarray", Ffillarray, 2, 2, 0, /* | |
2867 Store each element of ARRAY with ITEM. | |
2868 ARRAY is a vector, bit vector, or string. | |
2869 */ | |
2870 (array, item)) | |
2871 { | |
2872 retry: | |
2873 if (STRINGP (array)) | |
2874 { | |
2875 Emchar charval; | |
2876 struct Lisp_String *s = XSTRING (array); | |
2877 Charcount len = string_char_length (s); | |
2878 Charcount i; | |
2879 CHECK_CHAR_COERCE_INT (item); | |
2880 CHECK_LISP_WRITEABLE (array); | |
2881 charval = XCHAR (item); | |
2882 for (i = 0; i < len; i++) | |
2883 set_string_char (s, i, charval); | |
2884 bump_string_modiff (array); | |
2885 } | |
2886 else if (VECTORP (array)) | |
2887 { | |
2888 Lisp_Object *p = XVECTOR_DATA (array); | |
2889 int len = XVECTOR_LENGTH (array); | |
2890 CHECK_LISP_WRITEABLE (array); | |
2891 while (len--) | |
2892 *p++ = item; | |
2893 } | |
2894 else if (BIT_VECTORP (array)) | |
2895 { | |
2896 struct Lisp_Bit_Vector *v = XBIT_VECTOR (array); | |
2897 int len = bit_vector_length (v); | |
2898 int bit; | |
2899 CHECK_BIT (item); | |
2900 CHECK_LISP_WRITEABLE (array); | |
2901 bit = XINT (item); | |
2902 while (len--) | |
2903 set_bit_vector_bit (v, len, bit); | |
2904 } | |
2905 else | |
2906 { | |
2907 array = wrong_type_argument (Qarrayp, array); | |
2908 goto retry; | |
2909 } | |
2910 return array; | |
2911 } | |
2912 | |
2913 Lisp_Object | |
2914 nconc2 (Lisp_Object arg1, Lisp_Object arg2) | |
2915 { | |
2916 Lisp_Object args[2]; | |
2917 struct gcpro gcpro1; | |
2918 args[0] = arg1; | |
2919 args[1] = arg2; | |
2920 | |
2921 GCPRO1 (args[0]); | |
2922 gcpro1.nvars = 2; | |
2923 | |
2924 RETURN_UNGCPRO (bytecode_nconc2 (args)); | |
2925 } | |
2926 | |
2927 Lisp_Object | |
2928 bytecode_nconc2 (Lisp_Object *args) | |
2929 { | |
2930 retry: | |
2931 | |
2932 if (CONSP (args[0])) | |
2933 { | |
2934 /* (setcdr (last args[0]) args[1]) */ | |
2935 Lisp_Object tortoise, hare; | |
2936 int count; | |
2937 | |
2938 for (hare = tortoise = args[0], count = 0; | |
2939 CONSP (XCDR (hare)); | |
2940 hare = XCDR (hare), count++) | |
2941 { | |
2942 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue; | |
2943 | |
2944 if (count & 1) | |
2945 tortoise = XCDR (tortoise); | |
2946 if (EQ (hare, tortoise)) | |
2947 signal_circular_list_error (args[0]); | |
2948 } | |
2949 XCDR (hare) = args[1]; | |
2950 return args[0]; | |
2951 } | |
2952 else if (NILP (args[0])) | |
2953 { | |
2954 return args[1]; | |
2955 } | |
2956 else | |
2957 { | |
2958 args[0] = wrong_type_argument (args[0], Qlistp); | |
2959 goto retry; | |
2960 } | |
2961 } | |
2962 | |
2963 DEFUN ("nconc", Fnconc, 0, MANY, 0, /* | |
2964 Concatenate any number of lists by altering them. | |
2965 Only the last argument is not altered, and need not be a list. | |
2966 Also see: `append'. | |
2967 If the first argument is nil, there is no way to modify it by side | |
2968 effect; therefore, write `(setq foo (nconc foo list))' to be sure of | |
2969 changing the value of `foo'. | |
2970 */ | |
2971 (int nargs, Lisp_Object *args)) | |
2972 { | |
2973 int argnum = 0; | |
2974 struct gcpro gcpro1; | |
2975 | |
2976 /* The modus operandi in Emacs is "caller gc-protects args". | |
2977 However, nconc (particularly nconc2 ()) is called many times | |
2978 in Emacs on freshly created stuff (e.g. you see the idiom | |
2979 nconc2 (Fcopy_sequence (foo), bar) a lot). So we help those | |
2980 callers out by protecting the args ourselves to save them | |
2981 a lot of temporary-variable grief. */ | |
2982 | |
2983 GCPRO1 (args[0]); | |
2984 gcpro1.nvars = nargs; | |
2985 | |
2986 while (argnum < nargs) | |
2987 { | |
2988 Lisp_Object val; | |
2989 retry: | |
2990 val = args[argnum]; | |
2991 if (CONSP (val)) | |
2992 { | |
2993 /* `val' is the first cons, which will be our return value. */ | |
2994 /* `last_cons' will be the cons cell to mutate. */ | |
2995 Lisp_Object last_cons = val; | |
2996 Lisp_Object tortoise = val; | |
2997 | |
2998 for (argnum++; argnum < nargs; argnum++) | |
2999 { | |
3000 Lisp_Object next = args[argnum]; | |
3001 retry_next: | |
3002 if (CONSP (next) || argnum == nargs -1) | |
3003 { | |
3004 /* (setcdr (last val) next) */ | |
3005 int count; | |
3006 | |
3007 for (count = 0; | |
3008 CONSP (XCDR (last_cons)); | |
3009 last_cons = XCDR (last_cons), count++) | |
3010 { | |
3011 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue; | |
3012 | |
3013 if (count & 1) | |
3014 tortoise = XCDR (tortoise); | |
3015 if (EQ (last_cons, tortoise)) | |
3016 signal_circular_list_error (args[argnum-1]); | |
3017 } | |
3018 XCDR (last_cons) = next; | |
3019 } | |
3020 else if (NILP (next)) | |
3021 { | |
3022 continue; | |
3023 } | |
3024 else | |
3025 { | |
3026 next = wrong_type_argument (Qlistp, next); | |
3027 goto retry_next; | |
3028 } | |
3029 } | |
3030 RETURN_UNGCPRO (val); | |
3031 } | |
3032 else if (NILP (val)) | |
3033 argnum++; | |
3034 else if (argnum == nargs - 1) /* last arg? */ | |
3035 RETURN_UNGCPRO (val); | |
3036 else | |
3037 { | |
3038 args[argnum] = wrong_type_argument (Qlistp, val); | |
3039 goto retry; | |
3040 } | |
3041 } | |
3042 RETURN_UNGCPRO (Qnil); /* No non-nil args provided. */ | |
3043 } | |
3044 | |
3045 | |
3046 /* This is the guts of all mapping functions. | |
3047 Apply fn to each element of seq, one by one, | |
3048 storing the results into elements of vals, a C vector of Lisp_Objects. | |
3049 leni is the length of vals, which should also be the length of seq. | |
3050 | |
3051 If VALS is a null pointer, do not accumulate the results. */ | |
3052 | |
3053 static void | |
3054 mapcar1 (size_t leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq) | |
3055 { | |
3056 Lisp_Object result; | |
3057 Lisp_Object args[2]; | |
3058 int i; | |
3059 struct gcpro gcpro1; | |
3060 | |
3061 if (vals) | |
3062 { | |
3063 GCPRO1 (vals[0]); | |
3064 gcpro1.nvars = 0; | |
3065 } | |
3066 | |
3067 args[0] = fn; | |
3068 | |
3069 if (LISTP (seq)) | |
3070 { | |
3071 for (i = 0; i < leni; i++) | |
3072 { | |
3073 args[1] = XCAR (seq); | |
3074 seq = XCDR (seq); | |
3075 result = Ffuncall (2, args); | |
3076 if (vals) vals[gcpro1.nvars++] = result; | |
3077 } | |
3078 } | |
3079 else if (VECTORP (seq)) | |
3080 { | |
3081 Lisp_Object *objs = XVECTOR_DATA (seq); | |
3082 for (i = 0; i < leni; i++) | |
3083 { | |
3084 args[1] = *objs++; | |
3085 result = Ffuncall (2, args); | |
3086 if (vals) vals[gcpro1.nvars++] = result; | |
3087 } | |
3088 } | |
3089 else if (STRINGP (seq)) | |
3090 { | |
3091 Bufbyte *p = XSTRING_DATA (seq); | |
3092 for (i = 0; i < leni; i++) | |
3093 { | |
3094 args[1] = make_char (charptr_emchar (p)); | |
3095 INC_CHARPTR (p); | |
3096 result = Ffuncall (2, args); | |
3097 if (vals) vals[gcpro1.nvars++] = result; | |
3098 } | |
3099 } | |
3100 else if (BIT_VECTORP (seq)) | |
3101 { | |
3102 struct Lisp_Bit_Vector *v = XBIT_VECTOR (seq); | |
3103 for (i = 0; i < leni; i++) | |
3104 { | |
3105 args[1] = make_int (bit_vector_bit (v, i)); | |
3106 result = Ffuncall (2, args); | |
3107 if (vals) vals[gcpro1.nvars++] = result; | |
3108 } | |
3109 } | |
3110 else | |
3111 abort(); /* cannot get here since Flength(seq) did not get an error */ | |
3112 | |
3113 if (vals) | |
3114 UNGCPRO; | |
3115 } | |
3116 | |
3117 DEFUN ("mapconcat", Fmapconcat, 3, 3, 0, /* | |
3118 Apply FN to each element of SEQ, and concat the results as strings. | |
3119 In between each pair of results, stick in SEP. | |
3120 Thus, " " as SEP results in spaces between the values returned by FN. | |
3121 */ | |
3122 (fn, seq, sep)) | |
3123 { | |
3124 size_t len = XINT (Flength (seq)); | |
3125 Lisp_Object *args; | |
3126 int i; | |
3127 struct gcpro gcpro1; | |
3128 int nargs = len + len - 1; | |
3129 | |
3130 if (nargs < 0) return build_string (""); | |
3131 | |
3132 args = alloca_array (Lisp_Object, nargs); | |
3133 | |
3134 GCPRO1 (sep); | |
3135 mapcar1 (len, args, fn, seq); | |
3136 UNGCPRO; | |
3137 | |
3138 for (i = len - 1; i >= 0; i--) | |
3139 args[i + i] = args[i]; | |
3140 | |
3141 for (i = 1; i < nargs; i += 2) | |
3142 args[i] = sep; | |
3143 | |
3144 return Fconcat (nargs, args); | |
3145 } | |
3146 | |
3147 DEFUN ("mapcar", Fmapcar, 2, 2, 0, /* | |
3148 Apply FUNCTION to each element of SEQUENCE, and make a list of the results. | |
3149 The result is a list just as long as SEQUENCE. | |
3150 SEQUENCE may be a list, a vector, a bit vector, or a string. | |
3151 */ | |
3152 (fn, seq)) | |
3153 { | |
3154 size_t len = XINT (Flength (seq)); | |
3155 Lisp_Object *args = alloca_array (Lisp_Object, len); | |
3156 | |
3157 mapcar1 (len, args, fn, seq); | |
3158 | |
3159 return Flist (len, args); | |
3160 } | |
3161 | |
3162 DEFUN ("mapvector", Fmapvector, 2, 2, 0, /* | |
3163 Apply FUNCTION to each element of SEQUENCE, making a vector of the results. | |
3164 The result is a vector of the same length as SEQUENCE. | |
3165 SEQUENCE may be a list, a vector or a string. | |
3166 */ | |
3167 (fn, seq)) | |
3168 { | |
3169 size_t len = XINT (Flength (seq)); | |
3170 Lisp_Object result = make_vector (len, Qnil); | |
3171 struct gcpro gcpro1; | |
3172 | |
3173 GCPRO1 (result); | |
3174 mapcar1 (len, XVECTOR_DATA (result), fn, seq); | |
3175 UNGCPRO; | |
3176 | |
3177 return result; | |
3178 } | |
3179 | |
3180 DEFUN ("mapc-internal", Fmapc_internal, 2, 2, 0, /* | |
3181 Apply FUNCTION to each element of SEQUENCE. | |
3182 SEQUENCE may be a list, a vector, a bit vector, or a string. | |
3183 This function is like `mapcar' but does not accumulate the results, | |
3184 which is more efficient if you do not use the results. | |
3185 | |
3186 The difference between this and `mapc' is that `mapc' supports all | |
3187 the spiffy Common Lisp arguments. You should normally use `mapc'. | |
3188 */ | |
3189 (fn, seq)) | |
3190 { | |
3191 mapcar1 (XINT (Flength (seq)), 0, fn, seq); | |
3192 | |
3193 return seq; | |
3194 } | |
3195 | |
3196 | |
3197 /* #### this function doesn't belong in this file! */ | |
3198 | |
3199 DEFUN ("load-average", Fload_average, 0, 1, 0, /* | |
3200 Return list of 1 minute, 5 minute and 15 minute load averages. | |
3201 Each of the three load averages is multiplied by 100, | |
3202 then converted to integer. | |
3203 | |
3204 When USE-FLOATS is non-nil, floats will be used instead of integers. | |
3205 These floats are not multiplied by 100. | |
3206 | |
3207 If the 5-minute or 15-minute load averages are not available, return a | |
3208 shortened list, containing only those averages which are available. | |
3209 | |
3210 On some systems, this won't work due to permissions on /dev/kmem, | |
3211 in which case you can't use this. | |
3212 */ | |
3213 (use_floats)) | |
3214 { | |
3215 double load_ave[3]; | |
3216 int loads = getloadavg (load_ave, countof (load_ave)); | |
3217 Lisp_Object ret = Qnil; | |
3218 | |
3219 if (loads == -2) | |
3220 error ("load-average not implemented for this operating system"); | |
3221 else if (loads < 0) | |
3222 signal_simple_error ("Could not get load-average", | |
3223 lisp_strerror (errno)); | |
3224 | |
3225 while (loads-- > 0) | |
3226 { | |
3227 Lisp_Object load = (NILP (use_floats) ? | |
3228 make_int ((int) (100.0 * load_ave[loads])) | |
3229 : make_float (load_ave[loads])); | |
3230 ret = Fcons (load, ret); | |
3231 } | |
3232 return ret; | |
3233 } | |
3234 | |
3235 | |
3236 Lisp_Object Vfeatures; | |
3237 | |
3238 DEFUN ("featurep", Ffeaturep, 1, 1, 0, /* | |
3239 Return non-nil if feature FEXP is present in this Emacs. | |
3240 Use this to conditionalize execution of lisp code based on the | |
3241 presence or absence of emacs or environment extensions. | |
3242 FEXP can be a symbol, a number, or a list. | |
3243 If it is a symbol, that symbol is looked up in the `features' variable, | |
3244 and non-nil will be returned if found. | |
3245 If it is a number, the function will return non-nil if this Emacs | |
3246 has an equal or greater version number than FEXP. | |
3247 If it is a list whose car is the symbol `and', it will return | |
3248 non-nil if all the features in its cdr are non-nil. | |
3249 If it is a list whose car is the symbol `or', it will return non-nil | |
3250 if any of the features in its cdr are non-nil. | |
3251 If it is a list whose car is the symbol `not', it will return | |
3252 non-nil if the feature is not present. | |
3253 | |
3254 Examples: | |
3255 | |
3256 (featurep 'xemacs) | |
3257 => ; Non-nil on XEmacs. | |
3258 | |
3259 (featurep '(and xemacs gnus)) | |
3260 => ; Non-nil on XEmacs with Gnus loaded. | |
3261 | |
3262 (featurep '(or tty-frames (and emacs 19.30))) | |
3263 => ; Non-nil if this Emacs supports TTY frames. | |
3264 | |
3265 (featurep '(or (and xemacs 19.15) (and emacs 19.34))) | |
3266 => ; Non-nil on XEmacs 19.15 and later, or FSF Emacs 19.34 and later. | |
3267 | |
3268 NOTE: The advanced arguments of this function (anything other than a | |
3269 symbol) are not yet supported by FSF Emacs. If you feel they are useful | |
3270 for supporting multiple Emacs variants, lobby Richard Stallman at | |
3271 <bug-gnu-emacs@prep.ai.mit.edu>. | |
3272 */ | |
3273 (fexp)) | |
3274 { | |
3275 #ifndef FEATUREP_SYNTAX | |
3276 CHECK_SYMBOL (fexp); | |
3277 return NILP (Fmemq (fexp, Vfeatures)) ? Qnil : Qt; | |
3278 #else /* FEATUREP_SYNTAX */ | |
3279 static double featurep_emacs_version; | |
3280 | |
3281 /* Brute force translation from Erik Naggum's lisp function. */ | |
3282 if (SYMBOLP (fexp)) | |
3283 { | |
3284 /* Original definition */ | |
3285 return NILP (Fmemq (fexp, Vfeatures)) ? Qnil : Qt; | |
3286 } | |
3287 else if (INTP (fexp) || FLOATP (fexp)) | |
3288 { | |
3289 double d = extract_float (fexp); | |
3290 | |
3291 if (featurep_emacs_version == 0.0) | |
3292 { | |
3293 featurep_emacs_version = XINT (Vemacs_major_version) + | |
3294 (XINT (Vemacs_minor_version) / 100.0); | |
3295 } | |
3296 return featurep_emacs_version >= d ? Qt : Qnil; | |
3297 } | |
3298 else if (CONSP (fexp)) | |
3299 { | |
3300 Lisp_Object tem = XCAR (fexp); | |
3301 if (EQ (tem, Qnot)) | |
3302 { | |
3303 Lisp_Object negate; | |
3304 | |
3305 tem = XCDR (fexp); | |
3306 negate = Fcar (tem); | |
3307 if (!NILP (tem)) | |
3308 return NILP (call1 (Qfeaturep, negate)) ? Qt : Qnil; | |
3309 else | |
3310 return Fsignal (Qinvalid_read_syntax, list1 (tem)); | |
3311 } | |
3312 else if (EQ (tem, Qand)) | |
3313 { | |
3314 tem = XCDR (fexp); | |
3315 /* Use Fcar/Fcdr for error-checking. */ | |
3316 while (!NILP (tem) && !NILP (call1 (Qfeaturep, Fcar (tem)))) | |
3317 { | |
3318 tem = Fcdr (tem); | |
3319 } | |
3320 return NILP (tem) ? Qt : Qnil; | |
3321 } | |
3322 else if (EQ (tem, Qor)) | |
3323 { | |
3324 tem = XCDR (fexp); | |
3325 /* Use Fcar/Fcdr for error-checking. */ | |
3326 while (!NILP (tem) && NILP (call1 (Qfeaturep, Fcar (tem)))) | |
3327 { | |
3328 tem = Fcdr (tem); | |
3329 } | |
3330 return NILP (tem) ? Qnil : Qt; | |
3331 } | |
3332 else | |
3333 { | |
3334 return Fsignal (Qinvalid_read_syntax, list1 (XCDR (fexp))); | |
3335 } | |
3336 } | |
3337 else | |
3338 { | |
3339 return Fsignal (Qinvalid_read_syntax, list1 (fexp)); | |
3340 } | |
3341 } | |
3342 #endif /* FEATUREP_SYNTAX */ | |
3343 | |
3344 DEFUN ("provide", Fprovide, 1, 1, 0, /* | |
3345 Announce that FEATURE is a feature of the current Emacs. | |
3346 This function updates the value of the variable `features'. | |
3347 */ | |
3348 (feature)) | |
3349 { | |
3350 Lisp_Object tem; | |
3351 CHECK_SYMBOL (feature); | |
3352 if (!NILP (Vautoload_queue)) | |
3353 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue); | |
3354 tem = Fmemq (feature, Vfeatures); | |
3355 if (NILP (tem)) | |
3356 Vfeatures = Fcons (feature, Vfeatures); | |
3357 LOADHIST_ATTACH (Fcons (Qprovide, feature)); | |
3358 return feature; | |
3359 } | |
3360 | |
3361 DEFUN ("require", Frequire, 1, 2, 0, /* | |
3362 If feature FEATURE is not loaded, load it from FILENAME. | |
3363 If FEATURE is not a member of the list `features', then the feature | |
3364 is not loaded; so load the file FILENAME. | |
3365 If FILENAME is omitted, the printname of FEATURE is used as the file name. | |
3366 */ | |
3367 (feature, file_name)) | |
3368 { | |
3369 Lisp_Object tem; | |
3370 CHECK_SYMBOL (feature); | |
3371 tem = Fmemq (feature, Vfeatures); | |
3372 LOADHIST_ATTACH (Fcons (Qrequire, feature)); | |
3373 if (!NILP (tem)) | |
3374 return feature; | |
3375 else | |
3376 { | |
3377 int speccount = specpdl_depth (); | |
3378 | |
3379 /* Value saved here is to be restored into Vautoload_queue */ | |
3380 record_unwind_protect (un_autoload, Vautoload_queue); | |
3381 Vautoload_queue = Qt; | |
3382 | |
3383 call4 (Qload, NILP (file_name) ? Fsymbol_name (feature) : file_name, | |
3384 Qnil, Qt, Qnil); | |
3385 | |
3386 tem = Fmemq (feature, Vfeatures); | |
3387 if (NILP (tem)) | |
3388 error ("Required feature %s was not provided", | |
3389 string_data (XSYMBOL (feature)->name)); | |
3390 | |
3391 /* Once loading finishes, don't undo it. */ | |
3392 Vautoload_queue = Qt; | |
3393 return unbind_to (speccount, feature); | |
3394 } | |
3395 } | |
3396 | |
3397 /* base64 encode/decode functions. | |
3398 | |
3399 Originally based on code from GNU recode. Ported to FSF Emacs by | |
3400 Lars Magne Ingebrigtsen and Karl Heuer. Ported to XEmacs and | |
3401 subsequently heavily hacked by Hrvoje Niksic. */ | |
3402 | |
3403 #define MIME_LINE_LENGTH 72 | |
3404 | |
3405 #define IS_ASCII(Character) \ | |
3406 ((Character) < 128) | |
3407 #define IS_BASE64(Character) \ | |
3408 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0) | |
3409 | |
3410 /* Table of characters coding the 64 values. */ | |
3411 static char base64_value_to_char[64] = | |
3412 { | |
3413 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */ | |
3414 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */ | |
3415 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */ | |
3416 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */ | |
3417 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */ | |
3418 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */ | |
3419 '8', '9', '+', '/' /* 60-63 */ | |
3420 }; | |
3421 | |
3422 /* Table of base64 values for first 128 characters. */ | |
3423 static short base64_char_to_value[128] = | |
3424 { | |
3425 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */ | |
3426 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */ | |
3427 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */ | |
3428 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */ | |
3429 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */ | |
3430 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */ | |
3431 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */ | |
3432 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */ | |
3433 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */ | |
3434 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */ | |
3435 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */ | |
3436 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */ | |
3437 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */ | |
3438 }; | |
3439 | |
3440 /* The following diagram shows the logical steps by which three octets | |
3441 get transformed into four base64 characters. | |
3442 | |
3443 .--------. .--------. .--------. | |
3444 |aaaaaabb| |bbbbcccc| |ccdddddd| | |
3445 `--------' `--------' `--------' | |
3446 6 2 4 4 2 6 | |
3447 .--------+--------+--------+--------. | |
3448 |00aaaaaa|00bbbbbb|00cccccc|00dddddd| | |
3449 `--------+--------+--------+--------' | |
3450 | |
3451 .--------+--------+--------+--------. | |
3452 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD| | |
3453 `--------+--------+--------+--------' | |
3454 | |
3455 The octets are divided into 6 bit chunks, which are then encoded into | |
3456 base64 characters. */ | |
3457 | |
3458 #define ADVANCE_INPUT(c, stream) \ | |
3459 ((ec = Lstream_get_emchar (stream)) == -1 ? 0 : \ | |
3460 ((ec > 255) ? \ | |
3461 (signal_simple_error ("Non-ascii character in base64 input", \ | |
3462 make_char (ec)), 0) \ | |
3463 : (c = (Bufbyte)ec), 1)) | |
3464 | |
3465 static Bytind | |
3466 base64_encode_1 (Lstream *istream, Bufbyte *to, int line_break) | |
3467 { | |
3468 EMACS_INT counter = 0; | |
3469 Bufbyte *e = to; | |
3470 Emchar ec; | |
3471 unsigned int value; | |
3472 | |
3473 while (1) | |
3474 { | |
3475 Bufbyte c; | |
3476 if (!ADVANCE_INPUT (c, istream)) | |
3477 break; | |
3478 | |
3479 /* Wrap line every 76 characters. */ | |
3480 if (line_break) | |
3481 { | |
3482 if (counter < MIME_LINE_LENGTH / 4) | |
3483 counter++; | |
3484 else | |
3485 { | |
3486 *e++ = '\n'; | |
3487 counter = 1; | |
3488 } | |
3489 } | |
3490 | |
3491 /* Process first byte of a triplet. */ | |
3492 *e++ = base64_value_to_char[0x3f & c >> 2]; | |
3493 value = (0x03 & c) << 4; | |
3494 | |
3495 /* Process second byte of a triplet. */ | |
3496 if (!ADVANCE_INPUT (c, istream)) | |
3497 { | |
3498 *e++ = base64_value_to_char[value]; | |
3499 *e++ = '='; | |
3500 *e++ = '='; | |
3501 break; | |
3502 } | |
3503 | |
3504 *e++ = base64_value_to_char[value | (0x0f & c >> 4)]; | |
3505 value = (0x0f & c) << 2; | |
3506 | |
3507 /* Process third byte of a triplet. */ | |
3508 if (!ADVANCE_INPUT (c, istream)) | |
3509 { | |
3510 *e++ = base64_value_to_char[value]; | |
3511 *e++ = '='; | |
3512 break; | |
3513 } | |
3514 | |
3515 *e++ = base64_value_to_char[value | (0x03 & c >> 6)]; | |
3516 *e++ = base64_value_to_char[0x3f & c]; | |
3517 } | |
3518 | |
3519 return e - to; | |
3520 } | |
3521 #undef ADVANCE_INPUT | |
3522 | |
3523 /* Get next character from the stream, except that non-base64 | |
3524 characters are ignored. This is in accordance with rfc2045. EC | |
3525 should be an Emchar, so that it can hold -1 as the value for EOF. */ | |
3526 #define ADVANCE_INPUT_IGNORE_NONBASE64(ec, stream, streampos) do { \ | |
3527 ec = Lstream_get_emchar (stream); \ | |
3528 ++streampos; \ | |
3529 /* IS_BASE64 may not be called with negative arguments so check for \ | |
3530 EOF first. */ \ | |
3531 if (ec < 0 || IS_BASE64 (ec) || ec == '=') \ | |
3532 break; \ | |
3533 } while (1) | |
3534 | |
3535 #define STORE_BYTE(pos, val, ccnt) do { \ | |
3536 pos += set_charptr_emchar (pos, (Emchar)((unsigned char)(val))); \ | |
3537 ++ccnt; \ | |
3538 } while (0) | |
3539 | |
3540 static Bytind | |
3541 base64_decode_1 (Lstream *istream, Bufbyte *to, Charcount *ccptr) | |
3542 { | |
3543 Charcount ccnt = 0; | |
3544 Bufbyte *e = to; | |
3545 EMACS_INT streampos = 0; | |
3546 | |
3547 while (1) | |
3548 { | |
3549 Emchar ec; | |
3550 unsigned long value; | |
3551 | |
3552 /* Process first byte of a quadruplet. */ | |
3553 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); | |
3554 if (ec < 0) | |
3555 break; | |
3556 if (ec == '=') | |
3557 signal_simple_error ("Illegal `=' character while decoding base64", | |
3558 make_int (streampos)); | |
3559 value = base64_char_to_value[ec] << 18; | |
3560 | |
3561 /* Process second byte of a quadruplet. */ | |
3562 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); | |
3563 if (ec < 0) | |
3564 error ("Premature EOF while decoding base64"); | |
3565 if (ec == '=') | |
3566 signal_simple_error ("Illegal `=' character while decoding base64", | |
3567 make_int (streampos)); | |
3568 value |= base64_char_to_value[ec] << 12; | |
3569 STORE_BYTE (e, value >> 16, ccnt); | |
3570 | |
3571 /* Process third byte of a quadruplet. */ | |
3572 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); | |
3573 if (ec < 0) | |
3574 error ("Premature EOF while decoding base64"); | |
3575 | |
3576 if (ec == '=') | |
3577 { | |
3578 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); | |
3579 if (ec < 0) | |
3580 error ("Premature EOF while decoding base64"); | |
3581 if (ec != '=') | |
3582 signal_simple_error ("Padding `=' expected but not found while decoding base64", | |
3583 make_int (streampos)); | |
3584 continue; | |
3585 } | |
3586 | |
3587 value |= base64_char_to_value[ec] << 6; | |
3588 STORE_BYTE (e, 0xff & value >> 8, ccnt); | |
3589 | |
3590 /* Process fourth byte of a quadruplet. */ | |
3591 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); | |
3592 if (ec < 0) | |
3593 error ("Premature EOF while decoding base64"); | |
3594 if (ec == '=') | |
3595 continue; | |
3596 | |
3597 value |= base64_char_to_value[ec]; | |
3598 STORE_BYTE (e, 0xff & value, ccnt); | |
3599 } | |
3600 | |
3601 *ccptr = ccnt; | |
3602 return e - to; | |
3603 } | |
3604 #undef ADVANCE_INPUT | |
3605 #undef ADVANCE_INPUT_IGNORE_NONBASE64 | |
3606 #undef STORE_BYTE | |
3607 | |
3608 static Lisp_Object | |
3609 free_malloced_ptr (Lisp_Object unwind_obj) | |
3610 { | |
3611 void *ptr = (void *)get_opaque_ptr (unwind_obj); | |
3612 xfree (ptr); | |
3613 free_opaque_ptr (unwind_obj); | |
3614 return Qnil; | |
3615 } | |
3616 | |
3617 /* Don't use alloca for regions larger than this, lest we overflow | |
3618 the stack. */ | |
3619 #define MAX_ALLOCA 65536 | |
3620 | |
3621 /* We need to setup proper unwinding, because there is a number of | |
3622 ways these functions can blow up, and we don't want to have memory | |
3623 leaks in those cases. */ | |
3624 #define XMALLOC_OR_ALLOCA(ptr, len, type) do { \ | |
3625 size_t XOA_len = (len); \ | |
3626 if (XOA_len > MAX_ALLOCA) \ | |
3627 { \ | |
3628 ptr = xnew_array (type, XOA_len); \ | |
3629 record_unwind_protect (free_malloced_ptr, \ | |
3630 make_opaque_ptr ((void *)ptr)); \ | |
3631 } \ | |
3632 else \ | |
3633 ptr = alloca_array (type, XOA_len); \ | |
3634 } while (0) | |
3635 | |
3636 #define XMALLOC_UNBIND(ptr, len, speccount) do { \ | |
3637 if ((len) > MAX_ALLOCA) \ | |
3638 unbind_to (speccount, Qnil); \ | |
3639 } while (0) | |
3640 | |
3641 DEFUN ("base64-encode-region", Fbase64_encode_region, 2, 3, "r", /* | |
3642 Base64-encode the region between BEG and END. | |
3643 Return the length of the encoded text. | |
3644 Optional third argument NO-LINE-BREAK means do not break long lines | |
3645 into shorter lines. | |
3646 */ | |
3647 (beg, end, no_line_break)) | |
3648 { | |
3649 Bufbyte *encoded; | |
3650 Bytind encoded_length; | |
3651 Charcount allength, length; | |
3652 struct buffer *buf = current_buffer; | |
3653 Bufpos begv, zv, old_pt = BUF_PT (buf); | |
3654 Lisp_Object input; | |
3655 int speccount = specpdl_depth(); | |
3656 | |
3657 get_buffer_range_char (buf, beg, end, &begv, &zv, 0); | |
3658 barf_if_buffer_read_only (buf, begv, zv); | |
3659 | |
3660 /* We need to allocate enough room for encoding the text. | |
3661 We need 33 1/3% more space, plus a newline every 76 | |
3662 characters, and then we round up. */ | |
3663 length = zv - begv; | |
3664 allength = length + length/3 + 1; | |
3665 allength += allength / MIME_LINE_LENGTH + 1 + 6; | |
3666 | |
3667 input = make_lisp_buffer_input_stream (buf, begv, zv, 0); | |
3668 /* We needn't multiply allength with MAX_EMCHAR_LEN because all the | |
3669 base64 characters will be single-byte. */ | |
3670 XMALLOC_OR_ALLOCA (encoded, allength, Bufbyte); | |
3671 encoded_length = base64_encode_1 (XLSTREAM (input), encoded, | |
3672 NILP (no_line_break)); | |
3673 if (encoded_length > allength) | |
3674 abort (); | |
3675 Lstream_delete (XLSTREAM (input)); | |
3676 | |
3677 /* Now we have encoded the region, so we insert the new contents | |
3678 and delete the old. (Insert first in order to preserve markers.) */ | |
3679 buffer_insert_raw_string_1 (buf, begv, encoded, encoded_length, 0); | |
3680 XMALLOC_UNBIND (encoded, allength, speccount); | |
3681 buffer_delete_range (buf, begv + encoded_length, zv + encoded_length, 0); | |
3682 | |
3683 /* Simulate FSF Emacs implementation of this function: if point was | |
3684 in the region, place it at the beginning. */ | |
3685 if (old_pt >= begv && old_pt < zv) | |
3686 BUF_SET_PT (buf, begv); | |
3687 | |
3688 /* We return the length of the encoded text. */ | |
3689 return make_int (encoded_length); | |
3690 } | |
3691 | |
3692 DEFUN ("base64-encode-string", Fbase64_encode_string, 1, 2, 0, /* | |
3693 Base64 encode STRING and return the result. | |
3694 */ | |
3695 (string, no_line_break)) | |
3696 { | |
3697 Charcount allength, length; | |
3698 Bytind encoded_length; | |
3699 Bufbyte *encoded; | |
3700 Lisp_Object input, result; | |
3701 int speccount = specpdl_depth(); | |
3702 | |
3703 CHECK_STRING (string); | |
3704 | |
3705 length = XSTRING_CHAR_LENGTH (string); | |
3706 allength = length + length/3 + 1; | |
3707 allength += allength / MIME_LINE_LENGTH + 1 + 6; | |
3708 | |
3709 input = make_lisp_string_input_stream (string, 0, -1); | |
3710 XMALLOC_OR_ALLOCA (encoded, allength, Bufbyte); | |
3711 encoded_length = base64_encode_1 (XLSTREAM (input), encoded, | |
3712 NILP (no_line_break)); | |
3713 if (encoded_length > allength) | |
3714 abort (); | |
3715 Lstream_delete (XLSTREAM (input)); | |
3716 result = make_string (encoded, encoded_length); | |
3717 XMALLOC_UNBIND (encoded, allength, speccount); | |
3718 return result; | |
3719 } | |
3720 | |
3721 DEFUN ("base64-decode-region", Fbase64_decode_region, 2, 2, "r", /* | |
3722 Base64-decode the region between BEG and END. | |
3723 Return the length of the decoded text. | |
3724 If the region can't be decoded, return nil and don't modify the buffer. | |
3725 Characters out of the base64 alphabet are ignored. | |
3726 */ | |
3727 (beg, end)) | |
3728 { | |
3729 struct buffer *buf = current_buffer; | |
3730 Bufpos begv, zv, old_pt = BUF_PT (buf); | |
3731 Bufbyte *decoded; | |
3732 Bytind decoded_length; | |
3733 Charcount length, cc_decoded_length; | |
3734 Lisp_Object input; | |
3735 int speccount = specpdl_depth(); | |
3736 | |
3737 get_buffer_range_char (buf, beg, end, &begv, &zv, 0); | |
3738 barf_if_buffer_read_only (buf, begv, zv); | |
3739 | |
3740 length = zv - begv; | |
3741 | |
3742 input = make_lisp_buffer_input_stream (buf, begv, zv, 0); | |
3743 /* We need to allocate enough room for decoding the text. */ | |
3744 XMALLOC_OR_ALLOCA (decoded, length * MAX_EMCHAR_LEN, Bufbyte); | |
3745 decoded_length = base64_decode_1 (XLSTREAM (input), decoded, &cc_decoded_length); | |
3746 if (decoded_length > length * MAX_EMCHAR_LEN) | |
3747 abort (); | |
3748 Lstream_delete (XLSTREAM (input)); | |
3749 | |
3750 /* Now we have decoded the region, so we insert the new contents | |
3751 and delete the old. (Insert first in order to preserve markers.) */ | |
3752 BUF_SET_PT (buf, begv); | |
3753 buffer_insert_raw_string_1 (buf, begv, decoded, decoded_length, 0); | |
3754 XMALLOC_UNBIND (decoded, length * MAX_EMCHAR_LEN, speccount); | |
3755 buffer_delete_range (buf, begv + cc_decoded_length, | |
3756 zv + cc_decoded_length, 0); | |
3757 | |
3758 /* Simulate FSF Emacs implementation of this function: if point was | |
3759 in the region, place it at the beginning. */ | |
3760 if (old_pt >= begv && old_pt < zv) | |
3761 BUF_SET_PT (buf, begv); | |
3762 | |
3763 return make_int (cc_decoded_length); | |
3764 } | |
3765 | |
3766 DEFUN ("base64-decode-string", Fbase64_decode_string, 1, 1, 0, /* | |
3767 Base64-decode STRING and return the result. | |
3768 Characters out of the base64 alphabet are ignored. | |
3769 */ | |
3770 (string)) | |
3771 { | |
3772 Bufbyte *decoded; | |
3773 Bytind decoded_length; | |
3774 Charcount length, cc_decoded_length; | |
3775 Lisp_Object input, result; | |
3776 int speccount = specpdl_depth(); | |
3777 | |
3778 CHECK_STRING (string); | |
3779 | |
3780 length = XSTRING_CHAR_LENGTH (string); | |
3781 /* We need to allocate enough room for decoding the text. */ | |
3782 XMALLOC_OR_ALLOCA (decoded, length * MAX_EMCHAR_LEN, Bufbyte); | |
3783 | |
3784 input = make_lisp_string_input_stream (string, 0, -1); | |
3785 decoded_length = base64_decode_1 (XLSTREAM (input), decoded, | |
3786 &cc_decoded_length); | |
3787 if (decoded_length > length * MAX_EMCHAR_LEN) | |
3788 abort (); | |
3789 Lstream_delete (XLSTREAM (input)); | |
3790 | |
3791 result = make_string (decoded, decoded_length); | |
3792 XMALLOC_UNBIND (decoded, length * MAX_EMCHAR_LEN, speccount); | |
3793 return result; | |
3794 } | |
3795 | |
3796 Lisp_Object Qyes_or_no_p; | |
3797 | |
3798 void | |
3799 syms_of_fns (void) | |
3800 { | |
3801 defsymbol (&Qstring_lessp, "string-lessp"); | |
3802 defsymbol (&Qidentity, "identity"); | |
3803 defsymbol (&Qyes_or_no_p, "yes-or-no-p"); | |
3804 | |
3805 DEFSUBR (Fidentity); | |
3806 DEFSUBR (Frandom); | |
3807 DEFSUBR (Flength); | |
3808 DEFSUBR (Fsafe_length); | |
3809 DEFSUBR (Fstring_equal); | |
3810 DEFSUBR (Fstring_lessp); | |
3811 DEFSUBR (Fstring_modified_tick); | |
3812 DEFSUBR (Fappend); | |
3813 DEFSUBR (Fconcat); | |
3814 DEFSUBR (Fvconcat); | |
3815 DEFSUBR (Fbvconcat); | |
3816 DEFSUBR (Fcopy_list); | |
3817 DEFSUBR (Fcopy_sequence); | |
3818 DEFSUBR (Fcopy_alist); | |
3819 DEFSUBR (Fcopy_tree); | |
3820 DEFSUBR (Fsubstring); | |
3821 DEFSUBR (Fsubseq); | |
3822 DEFSUBR (Fnthcdr); | |
3823 DEFSUBR (Fnth); | |
3824 DEFSUBR (Felt); | |
3825 DEFSUBR (Flast); | |
3826 DEFSUBR (Fbutlast); | |
3827 DEFSUBR (Fnbutlast); | |
3828 DEFSUBR (Fmember); | |
3829 DEFSUBR (Fold_member); | |
3830 DEFSUBR (Fmemq); | |
3831 DEFSUBR (Fold_memq); | |
3832 DEFSUBR (Fassoc); | |
3833 DEFSUBR (Fold_assoc); | |
3834 DEFSUBR (Fassq); | |
3835 DEFSUBR (Fold_assq); | |
3836 DEFSUBR (Frassoc); | |
3837 DEFSUBR (Fold_rassoc); | |
3838 DEFSUBR (Frassq); | |
3839 DEFSUBR (Fold_rassq); | |
3840 DEFSUBR (Fdelete); | |
3841 DEFSUBR (Fold_delete); | |
3842 DEFSUBR (Fdelq); | |
3843 DEFSUBR (Fold_delq); | |
3844 DEFSUBR (Fremassoc); | |
3845 DEFSUBR (Fremassq); | |
3846 DEFSUBR (Fremrassoc); | |
3847 DEFSUBR (Fremrassq); | |
3848 DEFSUBR (Fnreverse); | |
3849 DEFSUBR (Freverse); | |
3850 DEFSUBR (Fsort); | |
3851 DEFSUBR (Fplists_eq); | |
3852 DEFSUBR (Fplists_equal); | |
3853 DEFSUBR (Flax_plists_eq); | |
3854 DEFSUBR (Flax_plists_equal); | |
3855 DEFSUBR (Fplist_get); | |
3856 DEFSUBR (Fplist_put); | |
3857 DEFSUBR (Fplist_remprop); | |
3858 DEFSUBR (Fplist_member); | |
3859 DEFSUBR (Fcheck_valid_plist); | |
3860 DEFSUBR (Fvalid_plist_p); | |
3861 DEFSUBR (Fcanonicalize_plist); | |
3862 DEFSUBR (Flax_plist_get); | |
3863 DEFSUBR (Flax_plist_put); | |
3864 DEFSUBR (Flax_plist_remprop); | |
3865 DEFSUBR (Flax_plist_member); | |
3866 DEFSUBR (Fcanonicalize_lax_plist); | |
3867 DEFSUBR (Fdestructive_alist_to_plist); | |
3868 DEFSUBR (Fget); | |
3869 DEFSUBR (Fput); | |
3870 DEFSUBR (Fremprop); | |
3871 DEFSUBR (Fobject_plist); | |
3872 DEFSUBR (Fequal); | |
3873 DEFSUBR (Fold_equal); | |
3874 DEFSUBR (Ffillarray); | |
3875 DEFSUBR (Fnconc); | |
3876 DEFSUBR (Fmapcar); | |
3877 DEFSUBR (Fmapvector); | |
3878 DEFSUBR (Fmapc_internal); | |
3879 DEFSUBR (Fmapconcat); | |
3880 DEFSUBR (Fload_average); | |
3881 DEFSUBR (Ffeaturep); | |
3882 DEFSUBR (Frequire); | |
3883 DEFSUBR (Fprovide); | |
3884 DEFSUBR (Fbase64_encode_region); | |
3885 DEFSUBR (Fbase64_encode_string); | |
3886 DEFSUBR (Fbase64_decode_region); | |
3887 DEFSUBR (Fbase64_decode_string); | |
3888 } | |
3889 | |
3890 void | |
3891 init_provide_once (void) | |
3892 { | |
3893 DEFVAR_LISP ("features", &Vfeatures /* | |
3894 A list of symbols which are the features of the executing emacs. | |
3895 Used by `featurep' and `require', and altered by `provide'. | |
3896 */ ); | |
3897 Vfeatures = Qnil; | |
3898 | |
3899 Fprovide (intern ("base64")); | |
3900 } |