comparison src/floatfns.c @ 428:3ecd8885ac67 r21-2-22

Import from CVS: tag r21-2-22
author cvs
date Mon, 13 Aug 2007 11:28:15 +0200
parents
children a5df635868b2
comparison
equal deleted inserted replaced
427:0a0253eac470 428:3ecd8885ac67
1 /* Primitive operations on floating point for XEmacs Lisp interpreter.
2 Copyright (C) 1988, 1993, 1994 Free Software Foundation, Inc.
3
4 This file is part of XEmacs.
5
6 XEmacs is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 2, or (at your option) any
9 later version.
10
11 XEmacs is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with XEmacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 /* Synched up with: FSF 19.30. */
22
23 /* ANSI C requires only these float functions:
24 acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
25 frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
26
27 Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
28 Define HAVE_CBRT if you have cbrt().
29 Define HAVE_RINT if you have rint().
30 If you don't define these, then the appropriate routines will be simulated.
31
32 Define HAVE_MATHERR if on a system supporting the SysV matherr() callback.
33 (This should happen automatically.)
34
35 Define FLOAT_CHECK_ERRNO if the float library routines set errno.
36 This has no effect if HAVE_MATHERR is defined.
37
38 Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
39 (What systems actually do this? Let me know. -jwz)
40
41 Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
42 either setting errno, or signalling SIGFPE/SIGILL. Otherwise, domain and
43 range checking will happen before calling the float routines. This has
44 no effect if HAVE_MATHERR is defined (since matherr will be called when
45 a domain error occurs).
46 */
47
48 #include <config.h>
49 #include "lisp.h"
50 #include "syssignal.h"
51
52 #ifdef LISP_FLOAT_TYPE
53
54 /* Need to define a differentiating symbol -- see sysfloat.h */
55 #define THIS_FILENAME floatfns
56 #include "sysfloat.h"
57
58 #ifndef HAVE_RINT
59 static double
60 rint (double x)
61 {
62 double r = floor (x + 0.5);
63 double diff = fabs (r - x);
64 /* Round to even and correct for any roundoff errors. */
65 if (diff >= 0.5 && (diff > 0.5 || r != 2.0 * floor (r / 2.0)))
66 r += r < x ? 1.0 : -1.0;
67 return r;
68 }
69 #endif
70
71 /* Nonzero while executing in floating point.
72 This tells float_error what to do. */
73 static int in_float;
74
75 /* If an argument is out of range for a mathematical function,
76 here is the actual argument value to use in the error message. */
77 static Lisp_Object float_error_arg, float_error_arg2;
78 static CONST char *float_error_fn_name;
79
80 /* Evaluate the floating point expression D, recording NUM
81 as the original argument for error messages.
82 D is normally an assignment expression.
83 Handle errors which may result in signals or may set errno.
84
85 Note that float_error may be declared to return void, so you can't
86 just cast the zero after the colon to (SIGTYPE) to make the types
87 check properly. */
88 #ifdef FLOAT_CHECK_ERRNO
89 #define IN_FLOAT(d, name, num) \
90 do { \
91 float_error_arg = num; \
92 float_error_fn_name = name; \
93 in_float = 1; errno = 0; (d); in_float = 0; \
94 if (errno != 0) in_float_error (); \
95 } while (0)
96 #define IN_FLOAT2(d, name, num, num2) \
97 do { \
98 float_error_arg = num; \
99 float_error_arg2 = num2; \
100 float_error_fn_name = name; \
101 in_float = 2; errno = 0; (d); in_float = 0; \
102 if (errno != 0) in_float_error (); \
103 } while (0)
104 #else
105 #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
106 #define IN_FLOAT2(d, name, num, num2) (in_float = 2, (d), in_float = 0)
107 #endif
108
109
110 #define arith_error(op,arg) \
111 Fsignal (Qarith_error, list2 (build_string (op), arg))
112 #define range_error(op,arg) \
113 Fsignal (Qrange_error, list2 (build_string (op), arg))
114 #define range_error2(op,a1,a2) \
115 Fsignal (Qrange_error, list3 (build_string (op), a1, a2))
116 #define domain_error(op,arg) \
117 Fsignal (Qdomain_error, list2 (build_string (op), arg))
118 #define domain_error2(op,a1,a2) \
119 Fsignal (Qdomain_error, list3 (build_string (op), a1, a2))
120
121
122 /* Convert float to Lisp Integer if it fits, else signal a range
123 error using the given arguments. */
124 static Lisp_Object
125 float_to_int (double x, CONST char *name, Lisp_Object num, Lisp_Object num2)
126 {
127 if (x >= ((EMACS_INT) 1 << (VALBITS-1))
128 || x <= - ((EMACS_INT) 1 << (VALBITS-1)) - (EMACS_INT) 1)
129 {
130 if (!UNBOUNDP (num2))
131 range_error2 (name, num, num2);
132 else
133 range_error (name, num);
134 }
135 return (make_int ((EMACS_INT) x));
136 }
137
138
139 static void
140 in_float_error (void)
141 {
142 switch (errno)
143 {
144 case 0:
145 break;
146 case EDOM:
147 if (in_float == 2)
148 domain_error2 (float_error_fn_name, float_error_arg, float_error_arg2);
149 else
150 domain_error (float_error_fn_name, float_error_arg);
151 break;
152 case ERANGE:
153 range_error (float_error_fn_name, float_error_arg);
154 break;
155 default:
156 arith_error (float_error_fn_name, float_error_arg);
157 break;
158 }
159 }
160
161
162 static Lisp_Object
163 mark_float (Lisp_Object obj)
164 {
165 return Qnil;
166 }
167
168 static int
169 float_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
170 {
171 return (extract_float (obj1) == extract_float (obj2));
172 }
173
174 static unsigned long
175 float_hash (Lisp_Object obj, int depth)
176 {
177 /* mod the value down to 32-bit range */
178 /* #### change for 64-bit machines */
179 return (unsigned long) fmod (extract_float (obj), 4e9);
180 }
181
182 static const struct lrecord_description float_description[] = {
183 { XD_END }
184 };
185
186 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("float", float,
187 mark_float, print_float, 0, float_equal,
188 float_hash, float_description,
189 struct Lisp_Float);
190
191 /* Extract a Lisp number as a `double', or signal an error. */
192
193 double
194 extract_float (Lisp_Object num)
195 {
196 if (FLOATP (num))
197 return XFLOAT_DATA (num);
198
199 if (INTP (num))
200 return (double) XINT (num);
201
202 return extract_float (wrong_type_argument (Qnumberp, num));
203 }
204 #endif /* LISP_FLOAT_TYPE */
205
206
207 /* Trig functions. */
208 #ifdef LISP_FLOAT_TYPE
209
210 DEFUN ("acos", Facos, 1, 1, 0, /*
211 Return the inverse cosine of ARG.
212 */
213 (arg))
214 {
215 double d = extract_float (arg);
216 #ifdef FLOAT_CHECK_DOMAIN
217 if (d > 1.0 || d < -1.0)
218 domain_error ("acos", arg);
219 #endif
220 IN_FLOAT (d = acos (d), "acos", arg);
221 return make_float (d);
222 }
223
224 DEFUN ("asin", Fasin, 1, 1, 0, /*
225 Return the inverse sine of ARG.
226 */
227 (arg))
228 {
229 double d = extract_float (arg);
230 #ifdef FLOAT_CHECK_DOMAIN
231 if (d > 1.0 || d < -1.0)
232 domain_error ("asin", arg);
233 #endif
234 IN_FLOAT (d = asin (d), "asin", arg);
235 return make_float (d);
236 }
237
238 DEFUN ("atan", Fatan, 1, 2, 0, /*
239 Return the inverse tangent of ARG.
240 */
241 (arg1, arg2))
242 {
243 double d = extract_float (arg1);
244
245 if (NILP (arg2))
246 IN_FLOAT (d = atan (d), "atan", arg1);
247 else
248 {
249 double d2 = extract_float (arg2);
250 #ifdef FLOAT_CHECK_DOMAIN
251 if (d == 0.0 && d2 == 0.0)
252 domain_error2 ("atan", arg1, arg2);
253 #endif
254 IN_FLOAT2 (d = atan2 (d, d2), "atan", arg1, arg2);
255 }
256 return make_float (d);
257 }
258
259 DEFUN ("cos", Fcos, 1, 1, 0, /*
260 Return the cosine of ARG.
261 */
262 (arg))
263 {
264 double d = extract_float (arg);
265 IN_FLOAT (d = cos (d), "cos", arg);
266 return make_float (d);
267 }
268
269 DEFUN ("sin", Fsin, 1, 1, 0, /*
270 Return the sine of ARG.
271 */
272 (arg))
273 {
274 double d = extract_float (arg);
275 IN_FLOAT (d = sin (d), "sin", arg);
276 return make_float (d);
277 }
278
279 DEFUN ("tan", Ftan, 1, 1, 0, /*
280 Return the tangent of ARG.
281 */
282 (arg))
283 {
284 double d = extract_float (arg);
285 double c = cos (d);
286 #ifdef FLOAT_CHECK_DOMAIN
287 if (c == 0.0)
288 domain_error ("tan", arg);
289 #endif
290 IN_FLOAT (d = (sin (d) / c), "tan", arg);
291 return make_float (d);
292 }
293 #endif /* LISP_FLOAT_TYPE (trig functions) */
294
295
296 /* Bessel functions */
297 #if 0 /* Leave these out unless we find there's a reason for them. */
298 /* #ifdef LISP_FLOAT_TYPE */
299
300 DEFUN ("bessel-j0", Fbessel_j0, 1, 1, 0, /*
301 Return the bessel function j0 of ARG.
302 */
303 (arg))
304 {
305 double d = extract_float (arg);
306 IN_FLOAT (d = j0 (d), "bessel-j0", arg);
307 return make_float (d);
308 }
309
310 DEFUN ("bessel-j1", Fbessel_j1, 1, 1, 0, /*
311 Return the bessel function j1 of ARG.
312 */
313 (arg))
314 {
315 double d = extract_float (arg);
316 IN_FLOAT (d = j1 (d), "bessel-j1", arg);
317 return make_float (d);
318 }
319
320 DEFUN ("bessel-jn", Fbessel_jn, 2, 2, 0, /*
321 Return the order N bessel function output jn of ARG.
322 The first arg (the order) is truncated to an integer.
323 */
324 (arg1, arg2))
325 {
326 int i1 = extract_float (arg1);
327 double f2 = extract_float (arg2);
328
329 IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", arg1);
330 return make_float (f2);
331 }
332
333 DEFUN ("bessel-y0", Fbessel_y0, 1, 1, 0, /*
334 Return the bessel function y0 of ARG.
335 */
336 (arg))
337 {
338 double d = extract_float (arg);
339 IN_FLOAT (d = y0 (d), "bessel-y0", arg);
340 return make_float (d);
341 }
342
343 DEFUN ("bessel-y1", Fbessel_y1, 1, 1, 0, /*
344 Return the bessel function y1 of ARG.
345 */
346 (arg))
347 {
348 double d = extract_float (arg);
349 IN_FLOAT (d = y1 (d), "bessel-y0", arg);
350 return make_float (d);
351 }
352
353 DEFUN ("bessel-yn", Fbessel_yn, 2, 2, 0, /*
354 Return the order N bessel function output yn of ARG.
355 The first arg (the order) is truncated to an integer.
356 */
357 (arg1, arg2))
358 {
359 int i1 = extract_float (arg1);
360 double f2 = extract_float (arg2);
361
362 IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", arg1);
363 return make_float (f2);
364 }
365
366 #endif /* 0 (bessel functions) */
367
368 /* Error functions. */
369 #if 0 /* Leave these out unless we see they are worth having. */
370 /* #ifdef LISP_FLOAT_TYPE */
371
372 DEFUN ("erf", Ferf, 1, 1, 0, /*
373 Return the mathematical error function of ARG.
374 */
375 (arg))
376 {
377 double d = extract_float (arg);
378 IN_FLOAT (d = erf (d), "erf", arg);
379 return make_float (d);
380 }
381
382 DEFUN ("erfc", Ferfc, 1, 1, 0, /*
383 Return the complementary error function of ARG.
384 */
385 (arg))
386 {
387 double d = extract_float (arg);
388 IN_FLOAT (d = erfc (d), "erfc", arg);
389 return make_float (d);
390 }
391
392 DEFUN ("log-gamma", Flog_gamma, 1, 1, 0, /*
393 Return the log gamma of ARG.
394 */
395 (arg))
396 {
397 double d = extract_float (arg);
398 IN_FLOAT (d = lgamma (d), "log-gamma", arg);
399 return make_float (d);
400 }
401
402 #endif /* 0 (error functions) */
403
404
405 /* Root and Log functions. */
406
407 #ifdef LISP_FLOAT_TYPE
408 DEFUN ("exp", Fexp, 1, 1, 0, /*
409 Return the exponential base e of ARG.
410 */
411 (arg))
412 {
413 double d = extract_float (arg);
414 #ifdef FLOAT_CHECK_DOMAIN
415 if (d > 709.7827) /* Assume IEEE doubles here */
416 range_error ("exp", arg);
417 else if (d < -709.0)
418 return make_float (0.0);
419 else
420 #endif
421 IN_FLOAT (d = exp (d), "exp", arg);
422 return make_float (d);
423 }
424 #endif /* LISP_FLOAT_TYPE */
425
426
427 DEFUN ("expt", Fexpt, 2, 2, 0, /*
428 Return the exponential ARG1 ** ARG2.
429 */
430 (arg1, arg2))
431 {
432 if (INTP (arg1) && /* common lisp spec */
433 INTP (arg2)) /* don't promote, if both are ints */
434 {
435 EMACS_INT retval;
436 EMACS_INT x = XINT (arg1);
437 EMACS_INT y = XINT (arg2);
438
439 if (y < 0)
440 {
441 if (x == 1)
442 retval = 1;
443 else if (x == -1)
444 retval = (y & 1) ? -1 : 1;
445 else
446 retval = 0;
447 }
448 else
449 {
450 retval = 1;
451 while (y > 0)
452 {
453 if (y & 1)
454 retval *= x;
455 x *= x;
456 y = (EMACS_UINT) y >> 1;
457 }
458 }
459 return make_int (retval);
460 }
461
462 #ifdef LISP_FLOAT_TYPE
463 {
464 double f1 = extract_float (arg1);
465 double f2 = extract_float (arg2);
466 /* Really should check for overflow, too */
467 if (f1 == 0.0 && f2 == 0.0)
468 f1 = 1.0;
469 # ifdef FLOAT_CHECK_DOMAIN
470 else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2)))
471 domain_error2 ("expt", arg1, arg2);
472 # endif /* FLOAT_CHECK_DOMAIN */
473 IN_FLOAT2 (f1 = pow (f1, f2), "expt", arg1, arg2);
474 return make_float (f1);
475 }
476 #else
477 CHECK_INT_OR_FLOAT (arg1);
478 CHECK_INT_OR_FLOAT (arg2);
479 return Fexpt (arg1, arg2);
480 #endif /* LISP_FLOAT_TYPE */
481 }
482
483 #ifdef LISP_FLOAT_TYPE
484 DEFUN ("log", Flog, 1, 2, 0, /*
485 Return the natural logarithm of ARG.
486 If second optional argument BASE is given, return log ARG using that base.
487 */
488 (arg, base))
489 {
490 double d = extract_float (arg);
491 #ifdef FLOAT_CHECK_DOMAIN
492 if (d <= 0.0)
493 domain_error2 ("log", arg, base);
494 #endif
495 if (NILP (base))
496 IN_FLOAT (d = log (d), "log", arg);
497 else
498 {
499 double b = extract_float (base);
500 #ifdef FLOAT_CHECK_DOMAIN
501 if (b <= 0.0 || b == 1.0)
502 domain_error2 ("log", arg, base);
503 #endif
504 if (b == 10.0)
505 IN_FLOAT2 (d = log10 (d), "log", arg, base);
506 else
507 IN_FLOAT2 (d = (log (d) / log (b)), "log", arg, base);
508 }
509 return make_float (d);
510 }
511
512
513 DEFUN ("log10", Flog10, 1, 1, 0, /*
514 Return the logarithm base 10 of ARG.
515 */
516 (arg))
517 {
518 double d = extract_float (arg);
519 #ifdef FLOAT_CHECK_DOMAIN
520 if (d <= 0.0)
521 domain_error ("log10", arg);
522 #endif
523 IN_FLOAT (d = log10 (d), "log10", arg);
524 return make_float (d);
525 }
526
527
528 DEFUN ("sqrt", Fsqrt, 1, 1, 0, /*
529 Return the square root of ARG.
530 */
531 (arg))
532 {
533 double d = extract_float (arg);
534 #ifdef FLOAT_CHECK_DOMAIN
535 if (d < 0.0)
536 domain_error ("sqrt", arg);
537 #endif
538 IN_FLOAT (d = sqrt (d), "sqrt", arg);
539 return make_float (d);
540 }
541
542
543 DEFUN ("cube-root", Fcube_root, 1, 1, 0, /*
544 Return the cube root of ARG.
545 */
546 (arg))
547 {
548 double d = extract_float (arg);
549 #ifdef HAVE_CBRT
550 IN_FLOAT (d = cbrt (d), "cube-root", arg);
551 #else
552 if (d >= 0.0)
553 IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
554 else
555 IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
556 #endif
557 return make_float (d);
558 }
559 #endif /* LISP_FLOAT_TYPE */
560
561
562 /* Inverse trig functions. */
563 #ifdef LISP_FLOAT_TYPE
564 /* #if 0 Not clearly worth adding... */
565
566 DEFUN ("acosh", Facosh, 1, 1, 0, /*
567 Return the inverse hyperbolic cosine of ARG.
568 */
569 (arg))
570 {
571 double d = extract_float (arg);
572 #ifdef FLOAT_CHECK_DOMAIN
573 if (d < 1.0)
574 domain_error ("acosh", arg);
575 #endif
576 #ifdef HAVE_INVERSE_HYPERBOLIC
577 IN_FLOAT (d = acosh (d), "acosh", arg);
578 #else
579 IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
580 #endif
581 return make_float (d);
582 }
583
584 DEFUN ("asinh", Fasinh, 1, 1, 0, /*
585 Return the inverse hyperbolic sine of ARG.
586 */
587 (arg))
588 {
589 double d = extract_float (arg);
590 #ifdef HAVE_INVERSE_HYPERBOLIC
591 IN_FLOAT (d = asinh (d), "asinh", arg);
592 #else
593 IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
594 #endif
595 return make_float (d);
596 }
597
598 DEFUN ("atanh", Fatanh, 1, 1, 0, /*
599 Return the inverse hyperbolic tangent of ARG.
600 */
601 (arg))
602 {
603 double d = extract_float (arg);
604 #ifdef FLOAT_CHECK_DOMAIN
605 if (d >= 1.0 || d <= -1.0)
606 domain_error ("atanh", arg);
607 #endif
608 #ifdef HAVE_INVERSE_HYPERBOLIC
609 IN_FLOAT (d = atanh (d), "atanh", arg);
610 #else
611 IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
612 #endif
613 return make_float (d);
614 }
615
616 DEFUN ("cosh", Fcosh, 1, 1, 0, /*
617 Return the hyperbolic cosine of ARG.
618 */
619 (arg))
620 {
621 double d = extract_float (arg);
622 #ifdef FLOAT_CHECK_DOMAIN
623 if (d > 710.0 || d < -710.0)
624 range_error ("cosh", arg);
625 #endif
626 IN_FLOAT (d = cosh (d), "cosh", arg);
627 return make_float (d);
628 }
629
630 DEFUN ("sinh", Fsinh, 1, 1, 0, /*
631 Return the hyperbolic sine of ARG.
632 */
633 (arg))
634 {
635 double d = extract_float (arg);
636 #ifdef FLOAT_CHECK_DOMAIN
637 if (d > 710.0 || d < -710.0)
638 range_error ("sinh", arg);
639 #endif
640 IN_FLOAT (d = sinh (d), "sinh", arg);
641 return make_float (d);
642 }
643
644 DEFUN ("tanh", Ftanh, 1, 1, 0, /*
645 Return the hyperbolic tangent of ARG.
646 */
647 (arg))
648 {
649 double d = extract_float (arg);
650 IN_FLOAT (d = tanh (d), "tanh", arg);
651 return make_float (d);
652 }
653 #endif /* LISP_FLOAT_TYPE (inverse trig functions) */
654
655 /* Rounding functions */
656
657 DEFUN ("abs", Fabs, 1, 1, 0, /*
658 Return the absolute value of ARG.
659 */
660 (arg))
661 {
662 #ifdef LISP_FLOAT_TYPE
663 if (FLOATP (arg))
664 {
665 IN_FLOAT (arg = make_float (fabs (XFLOAT_DATA (arg))),
666 "abs", arg);
667 return arg;
668 }
669 #endif /* LISP_FLOAT_TYPE */
670
671 if (INTP (arg))
672 return (XINT (arg) >= 0) ? arg : make_int (- XINT (arg));
673
674 return Fabs (wrong_type_argument (Qnumberp, arg));
675 }
676
677 #ifdef LISP_FLOAT_TYPE
678 DEFUN ("float", Ffloat, 1, 1, 0, /*
679 Return the floating point number numerically equal to ARG.
680 */
681 (arg))
682 {
683 if (INTP (arg))
684 return make_float ((double) XINT (arg));
685
686 if (FLOATP (arg)) /* give 'em the same float back */
687 return arg;
688
689 return Ffloat (wrong_type_argument (Qnumberp, arg));
690 }
691 #endif /* LISP_FLOAT_TYPE */
692
693
694 #ifdef LISP_FLOAT_TYPE
695 DEFUN ("logb", Flogb, 1, 1, 0, /*
696 Return largest integer <= the base 2 log of the magnitude of ARG.
697 This is the same as the exponent of a float.
698 */
699 (arg))
700 {
701 double f = extract_float (arg);
702
703 if (f == 0.0)
704 return make_int (- (int)((((EMACS_UINT) 1) << (VALBITS - 1)))); /* most-negative-fixnum */
705 #ifdef HAVE_LOGB
706 {
707 Lisp_Object val;
708 IN_FLOAT (val = make_int ((int) logb (f)), "logb", arg);
709 return (val);
710 }
711 #else
712 #ifdef HAVE_FREXP
713 {
714 int exqp;
715 IN_FLOAT (frexp (f, &exqp), "logb", arg);
716 return (make_int (exqp - 1));
717 }
718 #else
719 {
720 int i;
721 double d;
722 EMACS_INT val;
723 if (f < 0.0)
724 f = -f;
725 val = -1;
726 while (f < 0.5)
727 {
728 for (i = 1, d = 0.5; d * d >= f; i += i)
729 d *= d;
730 f /= d;
731 val -= i;
732 }
733 while (f >= 1.0)
734 {
735 for (i = 1, d = 2.0; d * d <= f; i += i)
736 d *= d;
737 f /= d;
738 val += i;
739 }
740 return (make_int (val));
741 }
742 #endif /* ! HAVE_FREXP */
743 #endif /* ! HAVE_LOGB */
744 }
745 #endif /* LISP_FLOAT_TYPE */
746
747
748 DEFUN ("ceiling", Fceiling, 1, 1, 0, /*
749 Return the smallest integer no less than ARG. (Round toward +inf.)
750 */
751 (arg))
752 {
753 #ifdef LISP_FLOAT_TYPE
754 if (FLOATP (arg))
755 {
756 double d;
757 IN_FLOAT ((d = ceil (XFLOAT_DATA (arg))), "ceiling", arg);
758 return (float_to_int (d, "ceiling", arg, Qunbound));
759 }
760 #endif /* LISP_FLOAT_TYPE */
761
762 if (INTP (arg))
763 return arg;
764
765 return Fceiling (wrong_type_argument (Qnumberp, arg));
766 }
767
768
769 DEFUN ("floor", Ffloor, 1, 2, 0, /*
770 Return the largest integer no greater than ARG. (Round towards -inf.)
771 With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR.
772 */
773 (arg, divisor))
774 {
775 CHECK_INT_OR_FLOAT (arg);
776
777 if (! NILP (divisor))
778 {
779 EMACS_INT i1, i2;
780
781 CHECK_INT_OR_FLOAT (divisor);
782
783 #ifdef LISP_FLOAT_TYPE
784 if (FLOATP (arg) || FLOATP (divisor))
785 {
786 double f1 = extract_float (arg);
787 double f2 = extract_float (divisor);
788
789 if (f2 == 0)
790 Fsignal (Qarith_error, Qnil);
791
792 IN_FLOAT2 (f1 = floor (f1 / f2), "floor", arg, divisor);
793 return float_to_int (f1, "floor", arg, divisor);
794 }
795 #endif /* LISP_FLOAT_TYPE */
796
797 i1 = XINT (arg);
798 i2 = XINT (divisor);
799
800 if (i2 == 0)
801 Fsignal (Qarith_error, Qnil);
802
803 /* With C's /, the result is implementation-defined if either operand
804 is negative, so use only nonnegative operands. */
805 i1 = (i2 < 0
806 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
807 : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
808
809 return (make_int (i1));
810 }
811
812 #ifdef LISP_FLOAT_TYPE
813 if (FLOATP (arg))
814 {
815 double d;
816 IN_FLOAT ((d = floor (XFLOAT_DATA (arg))), "floor", arg);
817 return (float_to_int (d, "floor", arg, Qunbound));
818 }
819 #endif /* LISP_FLOAT_TYPE */
820
821 return arg;
822 }
823
824 DEFUN ("round", Fround, 1, 1, 0, /*
825 Return the nearest integer to ARG.
826 */
827 (arg))
828 {
829 #ifdef LISP_FLOAT_TYPE
830 if (FLOATP (arg))
831 {
832 double d;
833 /* Screw the prevailing rounding mode. */
834 IN_FLOAT ((d = rint (XFLOAT_DATA (arg))), "round", arg);
835 return (float_to_int (d, "round", arg, Qunbound));
836 }
837 #endif /* LISP_FLOAT_TYPE */
838
839 if (INTP (arg))
840 return arg;
841
842 return Fround (wrong_type_argument (Qnumberp, arg));
843 }
844
845 DEFUN ("truncate", Ftruncate, 1, 1, 0, /*
846 Truncate a floating point number to an integer.
847 Rounds the value toward zero.
848 */
849 (arg))
850 {
851 #ifdef LISP_FLOAT_TYPE
852 if (FLOATP (arg))
853 return float_to_int (XFLOAT_DATA (arg), "truncate", arg, Qunbound);
854 #endif /* LISP_FLOAT_TYPE */
855
856 if (INTP (arg))
857 return arg;
858
859 return Ftruncate (wrong_type_argument (Qnumberp, arg));
860 }
861
862 /* Float-rounding functions. */
863 #ifdef LISP_FLOAT_TYPE
864 /* #if 1 It's not clear these are worth adding... */
865
866 DEFUN ("fceiling", Ffceiling, 1, 1, 0, /*
867 Return the smallest integer no less than ARG, as a float.
868 \(Round toward +inf.\)
869 */
870 (arg))
871 {
872 double d = extract_float (arg);
873 IN_FLOAT (d = ceil (d), "fceiling", arg);
874 return make_float (d);
875 }
876
877 DEFUN ("ffloor", Fffloor, 1, 1, 0, /*
878 Return the largest integer no greater than ARG, as a float.
879 \(Round towards -inf.\)
880 */
881 (arg))
882 {
883 double d = extract_float (arg);
884 IN_FLOAT (d = floor (d), "ffloor", arg);
885 return make_float (d);
886 }
887
888 DEFUN ("fround", Ffround, 1, 1, 0, /*
889 Return the nearest integer to ARG, as a float.
890 */
891 (arg))
892 {
893 double d = extract_float (arg);
894 IN_FLOAT (d = rint (d), "fround", arg);
895 return make_float (d);
896 }
897
898 DEFUN ("ftruncate", Fftruncate, 1, 1, 0, /*
899 Truncate a floating point number to an integral float value.
900 Rounds the value toward zero.
901 */
902 (arg))
903 {
904 double d = extract_float (arg);
905 if (d >= 0.0)
906 IN_FLOAT (d = floor (d), "ftruncate", arg);
907 else
908 IN_FLOAT (d = ceil (d), "ftruncate", arg);
909 return make_float (d);
910 }
911
912 #endif /* LISP_FLOAT_TYPE (float-rounding functions) */
913
914
915 #ifdef LISP_FLOAT_TYPE
916 #ifdef FLOAT_CATCH_SIGILL
917 static SIGTYPE
918 float_error (int signo)
919 {
920 if (! in_float)
921 fatal_error_signal (signo);
922
923 EMACS_REESTABLISH_SIGNAL (signo, arith_error);
924 EMACS_UNBLOCK_SIGNAL (signo);
925
926 in_float = 0;
927
928 /* Was Fsignal(), but it just doesn't make sense for an error
929 occurring inside a signal handler to be restartable, considering
930 that anything could happen when the error is signaled and trapped
931 and considering the asynchronous nature of signal handlers. */
932 signal_error (Qarith_error, list1 (float_error_arg));
933 }
934
935 /* Another idea was to replace the library function `infnan'
936 where SIGILL is signaled. */
937
938 #endif /* FLOAT_CATCH_SIGILL */
939
940 /* In C++, it is impossible to determine what type matherr expects
941 without some more configure magic.
942 We shouldn't be using matherr anyways - it's a non-standard SYSVism. */
943 #if defined (HAVE_MATHERR) && !defined(__cplusplus)
944 int
945 matherr (struct exception *x)
946 {
947 Lisp_Object args;
948 if (! in_float)
949 /* Not called from emacs-lisp float routines; do the default thing. */
950 return 0;
951
952 /* if (!strcmp (x->name, "pow")) x->name = "expt"; */
953
954 args = Fcons (build_string (x->name),
955 Fcons (make_float (x->arg1),
956 ((in_float == 2)
957 ? Fcons (make_float (x->arg2), Qnil)
958 : Qnil)));
959 switch (x->type)
960 {
961 case DOMAIN: Fsignal (Qdomain_error, args); break;
962 case SING: Fsignal (Qsingularity_error, args); break;
963 case OVERFLOW: Fsignal (Qoverflow_error, args); break;
964 case UNDERFLOW: Fsignal (Qunderflow_error, args); break;
965 default: Fsignal (Qarith_error, args); break;
966 }
967 return 1; /* don't set errno or print a message */
968 }
969 #endif /* HAVE_MATHERR */
970 #endif /* LISP_FLOAT_TYPE */
971
972
973 void
974 init_floatfns_very_early (void)
975 {
976 #ifdef LISP_FLOAT_TYPE
977 # ifdef FLOAT_CATCH_SIGILL
978 signal (SIGILL, float_error);
979 # endif
980 in_float = 0;
981 #endif /* LISP_FLOAT_TYPE */
982 }
983
984 void
985 syms_of_floatfns (void)
986 {
987
988 /* Trig functions. */
989
990 #ifdef LISP_FLOAT_TYPE
991 DEFSUBR (Facos);
992 DEFSUBR (Fasin);
993 DEFSUBR (Fatan);
994 DEFSUBR (Fcos);
995 DEFSUBR (Fsin);
996 DEFSUBR (Ftan);
997 #endif /* LISP_FLOAT_TYPE */
998
999 /* Bessel functions */
1000
1001 #if 0
1002 DEFSUBR (Fbessel_y0);
1003 DEFSUBR (Fbessel_y1);
1004 DEFSUBR (Fbessel_yn);
1005 DEFSUBR (Fbessel_j0);
1006 DEFSUBR (Fbessel_j1);
1007 DEFSUBR (Fbessel_jn);
1008 #endif /* 0 */
1009
1010 /* Error functions. */
1011
1012 #if 0
1013 DEFSUBR (Ferf);
1014 DEFSUBR (Ferfc);
1015 DEFSUBR (Flog_gamma);
1016 #endif /* 0 */
1017
1018 /* Root and Log functions. */
1019
1020 #ifdef LISP_FLOAT_TYPE
1021 DEFSUBR (Fexp);
1022 #endif /* LISP_FLOAT_TYPE */
1023 DEFSUBR (Fexpt);
1024 #ifdef LISP_FLOAT_TYPE
1025 DEFSUBR (Flog);
1026 DEFSUBR (Flog10);
1027 DEFSUBR (Fsqrt);
1028 DEFSUBR (Fcube_root);
1029 #endif /* LISP_FLOAT_TYPE */
1030
1031 /* Inverse trig functions. */
1032
1033 #ifdef LISP_FLOAT_TYPE
1034 DEFSUBR (Facosh);
1035 DEFSUBR (Fasinh);
1036 DEFSUBR (Fatanh);
1037 DEFSUBR (Fcosh);
1038 DEFSUBR (Fsinh);
1039 DEFSUBR (Ftanh);
1040 #endif /* LISP_FLOAT_TYPE */
1041
1042 /* Rounding functions */
1043
1044 DEFSUBR (Fabs);
1045 #ifdef LISP_FLOAT_TYPE
1046 DEFSUBR (Ffloat);
1047 DEFSUBR (Flogb);
1048 #endif /* LISP_FLOAT_TYPE */
1049 DEFSUBR (Fceiling);
1050 DEFSUBR (Ffloor);
1051 DEFSUBR (Fround);
1052 DEFSUBR (Ftruncate);
1053
1054 /* Float-rounding functions. */
1055
1056 #ifdef LISP_FLOAT_TYPE
1057 DEFSUBR (Ffceiling);
1058 DEFSUBR (Fffloor);
1059 DEFSUBR (Ffround);
1060 DEFSUBR (Fftruncate);
1061 #endif /* LISP_FLOAT_TYPE */
1062 }
1063
1064 void
1065 vars_of_floatfns (void)
1066 {
1067 #ifdef LISP_FLOAT_TYPE
1068 Fprovide (intern ("lisp-float-type"));
1069 #endif
1070 }